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TWO-DIMENSIONAL CROSS-SECTION SENSITIVITY AND UNCERTAINTY ANALYSIS

FOR FUSION REACTOR BIANKETS

by

Mark Julien Embrechts

ABSTRACT

Sensitivity and uncertainty analysis implement the information ob-

tained from a transport code by providing a reasonable estimate for the

uncertainty for a particular response (e.g., tritium breeding), and by

the ability to better understand the nucleonics involved. The doughnut

shape of many fusion devices makes a two-dimensional calculation capa-

bility highly desirable. Based on first-order generalized perturbation

theory, expressions for a two-dimensional SED (secondary energy distri-

bution) and cross-section sensitivity and uncertainty analysis were de-

veloped for x-y and r-z geometry. This theory was implemented by devel-

oping a two-dimensional sensitivity and uncertainty analysis code,

SENSIT-2D0 SENSIT-2D has a design capability and has the option to cal-

culate sensitivities and uncertainties with respect to the response

function itself. SENSIT-2D can only interact with the TRIDENT-CTR code.

A rigorous comparison between a one-dimensional and a two-dimen-

sional analysis for a problem which is one-dimensional from the neu-

tronics point of view, indicates that SENSIT-2D performs as intended.

A two-dimensional sensitivity and uncertainty analysis for the heat-

ing of the ‘ITcoil for the FED (fusion engineering device) blanket was

performed. The uncertainties calculated are of the same order of magni-

tude as those resulting from a one-dimensional analysis. The largest un-

certainties were caused by the cross section uncertainties for chromium.

xiv



1. INTRODUCTION TO SENSITIVITY THEORY AND UNCERTAINTY ANALYSIS

In a time characterized by a continuously growing demand for so-

phisticated technology it should not be surprising that the production

of fusion energy might materialize more rapidly than commonly predicted.

With fusion devices going into a demonstration phase there is a need for

sophisticated nucleonics methods, tailored to the fusion community. In

a relatively short time frame fusion nucleonics has established itself

as a more or less mature subfield. In this context sensitivity theory

has become a widely applied concept which provides the reactor designer

with a deeper understanding of the information obtained from transport

calculations.

Under the term sensitivity theory usually algorithms based upon

classical perturbation and variational theory are understood. The scope

of this work will be limited to cross-section and design sensitivity

analysis with respect to fusion reactors. Since fusion nucleonics do

not involve eigenvalue calculations, the mathematical concepts utilized

will be simpler than those required by the fission community.

Sensitivity theory determines how a design quantity changes when

one or more of the design parameters are altered. Uncertainty analysis



provides the error range on a design quantity due to errors on the de-

sign parameters. Sensitivity information can easily be incorporated

into an uncertainty analysis by introducing covariance matrices.

Cross-section sensitivity and uncertainty analysis will give error

estimates of response functions (such as tritium breeding ratio, heating

and material damage) due to uncertainties in the cross-section data.

Such a study will reveal which partial cross sections and in what energy

range contribute most to the error and will recommend refinements on

cross-section evaluations in order to reduce that error. Although those

results will depend on the particular response and the particular de-

sign, general conclusions can still be drawn for a class of similar

designs.
18

Sensitivity theory is a powerful design tool and is commonly

1-3applied to cross-section adjustment procedures. Design sensitivity

analysis is frequently used to reduce the ❑any and expensive computer

runs required during the development of a new reactor concept.

1.1 Motivation

The purpose of this work is to assess the state of the art of sen-

sitivity and uncertainty analysis with respect to fusion nucleonics,

fill existing gaps in that field and suggest areas which deserve further

attention.

At this moment the literature about sensitivity theory is scattered

between various journal articles and technical reports. Therefore, the

2



author considered it as one of his responsibilities to provide a con-

sistent monograph which explains, starting from the transport equation,

how analytical and explicit expressions for various sensitivity profiles

can be obtained. Current limitations with respect to the applicability

of sensitivity theory are pointed out and the application of sensitivity

theory to uncertainty analysis is explained. At the same time the scope

has been kept limited to those algorithms which are presently used in

calculation schemes.

Due to the particular geometry of fusion devices (toroidal geom-

etry, non-symmetric

code (and therefore

ally be inadequate.

plasma shape, etc.), a one-dimensional transport

a one-dimensional sensitivity analysis) will gener-

In order to mock-up a fusion reactor more closely,

a two-dimensional analysis is required. Although a two-dimensional

45
sensitivity code - VIP ‘ - already exists, VIP was developed with a

fission reactor in mind, and does not include an r-z geometry option,

nor a secondary energy distribution capability. To answer the needs of

the fusion community, a two-dimensional sensitivity and uncertainty

analysis code, SENSIT-2D, has been written.

A sensitivity code uses the regular and adjoint fluxes of a neutron

transport code in order to construct sensitivity profiles. SENSIT-2D

requires angular fluxes generated by TRIDENT-CTR.6’7 TRIDENT-CTR is a

two-dimensional discrete-ordinates neutron transport code specially

developed for the fusion community. Since SENSIT-2D incorporates the

essential features of TRIDENT-CTR, i.e., triangular

etry option, toroidal devices can be modeled quite

meshes and r-z geom-

accurately. SENSIT-

3



2D has the capability of group-dependent quadrature sets and includes

the option of a secondary energy distribution (SED) sensitivity and un-

certainty analysis. An option to calculate the loss term of the cross-

section sensitivity profile based on either flux moments or angular

fluxes is built into SENSIT-2D. The question whether a third-order

spherical harmonics expansion of the angular flux will be adequate for a

2-D sensitivity analysis has not yet been adequately answered.8 The

flux moment/angular flux option will help provide an answer to that

question.

As an application of the SENSIT-2D code, a two-dimensional sensi-

tivity and uncertainly analysis of the inboard shield for the FED

(~usion Engineering Qevice), currently in a preconceptual design stage

by the General Atomic Company, was performed.

1.2 Literature Review

The roots of cross-section sensitivity theory can be traced to the

work of Prezbindowski.9,10 The first widely used cross-section sensi-

tivity code, SWANLAKE,11 was developed at ORNT (Oak Ridge National Lab-

oratory). In order to include the evaluation of the sensitivity of the

response to the response function, SWANLAKE was modified to SWANLAKE-UW

by Wu and Maynard.77

was applied to fusion

practice to include a

Already early in its history, sensitivity theory

12-16
reactor studies. It has now become a common

sensitivity study in fusion neutronics.
17-23,54

4



The mathematical concepts behind sensitivity theory are based on

24-29variational and perturbation theory. The application of sensitiv-

ity profiles to uncertainly analysis was restricted not due to a lack

of adequate mathematical formulations, but due to the lack of cross-

section covariance data. An extensive effort to include standardized

30-34covariance data into ENDF/B files has recently been made.

The theory of design sensitivity analysis can be traced to the work

of Corm, Stacey, and Gerstl.14,26,35,40 The current limitation of de-

sign sensitivity analysis is related to the fact that the integral

response is exact up to the second order with respect to the fluxes, but

only exact to the first order with respect to design changes. There-

fore, only relatively small design changes are allowed. The utilization

42of Pad& approximants might prove to be a valuable alternative to

higher-order perturbation theory, but has not yet been applied to design

63sensitivity analysis.

The two-dimensional sensitivity code ~1p4,5
was developed by

Childs. VIP is oriented towards fission reactors and does not include a

design sensitivity option, nor a secondary energy distribution capa-

bility.

The theory of secondary energy distribution (SED) and secondary

angular distribution (SAD) sensitivity and uncertainty analysis was

43-45 46originated by Gerstl and is incorporated into the SENSIT code.

The FORSS47 code package has been applied mainly to fast reactor stud-

ies48,49
but can be applied to fusion reactor designs as well. Higher-

42,50-51,78order sensitivity theory still seems to be too impractical to

5



be readily applied. Recently however, the French developed a code

52
system, SAMPO, which includes some higher-order sensitivity analysis

capability.



2. SENSITIVITY THEORY

In this chapter the theory behind source and detector sensitivity,

cross-section and secondary energy distribution (SED) sensitivity, and

design sensitivity analysis will be explained. Starting from the trans-

port equation, expressions for the corresponding sensitivity profiles

will be derived. Those formulas will then be made more explicit and

applied to a two-dimensional geometry. The theory presented in this and

the following chapter is merely a consistent combination and reconstruc-

tion of several papers and reports.3,13,16,17,18,43-46,53

Since up to this time no single reference work about the various

concepts used in sensitivity and uncertainty analysis has been pub-

lished, the author uses the most commonly referred to terminology. In

an attempt to present an overview with the emphasis on internal consist-

ency, there might be some minor conflicts with the terminology used in

earlier published papers.



2.1 Definitions

2.1.1 Cross-section sensitivity function, cross-section sensitivity
profile and integral cross-section sensitivity

rate, e.g.,

set and the

Let I represent a design quantity (such as a reaction

the tritium breeding ratio), depending on a cross-section

angular fluxes. The cross-section sensitivity function for a particular

cross section Ix at energy E, F1 (E), is defined as the fractional
x

change of the design parameter of interest per unit fractional change of

cross section lX, or

aI/IFz (E)=% “
x

(1)

In a multigroup formulation the usual preference is to work with a

sensitivity
prOfile %x’

which is defined by

(2)

where Aug is the lethargy width of group g and Z: is the multigroup

cross section for group g. The sum over all the groups of the sensi-

tivity profiles for a particular group cross section l:, multiplied by



the corresponding lethargy widths, is called the integral cross-section

sensitivity for cross section lX, or

‘z = lP; *Aug,
x gx

=fdEFzx(E) . (3)

The integral cross-section sensitivity can be interpreted as the

percentage change of the design parameter of interest, I, resulting from

a simultaneous one percent increase of the group cross sections Z: in

all energy groups g.

2.1.2 Vector cross section

The term “vector cross section” describes a multigroup partial

cross-section set with one group-averaged reaction cross section for

each group. Such a cross-section set can be described by a vector with

GMAX elements, where GMAX is the number of energy groups. The term

vector cross section was introduced by Gerstl to discriminate it from

the matrix representation of a multigroup cross-section set. Differ-

ential scattering cross sections can obviously not be described in the

form of a vector cross section.



2.1.3 Geometry related terminology

Under the term region we will understand a collection of one or

❑ore zones. A zone will always describe a homogeneous part of the reac-

tor. We will make a distinction between source regions, detector

* and perturbed regions, and as a consequence between source,

detector and perturbed zones. We will introduce the term blank region

for a region that is neither a detector, source or perturbed region. A

zone will further be divided into intervals.

The source region will describe that part of the reactor which con-

tains a volumetric source. The detector region indicates the part of

the reactor for which an integral response is desired. In the perturbed

region changes in one or more cross sections can be made.

A source or a detector regions can contain more than one zone, and

each zone can be made up of a different material. Due to the mathemat-

ical formulations a perturbed region can still contain more than one

zone, but in this case all the zones have to contain identical materials.

If there is more than one perturbed region, all those regions should

contain the same materials.

The geometry-relatedterminology is illustrated in Fig. 1. In this

case, there are six regions; a source region, two perturbed regions, one

detector region and two blank regions. The source region contains three

zones (identified by ~, ~, and ~). The first zone, ~, is a vacuum,

while the other two zones are made up of iron. Note that both perturbed

regions satisfy the requirement that the zones in these regions contain

10
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REG1ON I ~GION 11 ~GION III REGION IY

Source Blank Perturbed BlanR
Region Region Region Region

-

I
I

-

REGION V REGION VI

Perturbed Detector
Region Region

MATERIALS ZONES

vacuum a,e,f—--

Figure 1. Illustration of the terminology: blank region,
source region, perturbed region and detectar
region
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identical materials. This requirement does not have to be met for

source and detector regions.

2.2 Cross-Section Sensitivity Profiles

2.2.1 Introduction

Perturbation theory is most commonly applied in order to derive

analytical expressions for the cross-section sensitivity profile. We

therefore will follow in this work Oblow’s approach.
11,25

Based on the

analytical expression, an explicit formula for the cross-section sensi-

tivity profile in discrete ordinates form for a two-dimensionalgeometry

will then be derived.

During the last few years there has been a trend towards using gen-

5,55,61 General-
eralized perturbation theory for sensitivity studies.

ized perturbation theory has the advantage that it can readily be

applied to derive expressions for the ratio of bilinear functional and

that it can be used to

expressions, based on

59,60study nonlinear systems. Also, higher-order

generalized perturbation theory, have been de-

rived.57,58,61

The differential

bation theory and has

by Oblow.
28

A more

approach is closely related to generalized pertur-

been applied to cross-section sensitivity analysis

rigorous formulaticm of the differential approach

50,51was made by Dubi and Dudziak. Although higher-order expressions

12



for cross-section sensitivity profiles can be derived,50,51 the practi-

cality of its application has not yet been proved.50,51,78

The evaluation of a sensitivity profile will generally require the

solution of a direct and an adjoint problem. Such a system carries more

information than the forward equation and it is therefore not surprising

that this extra amount of information can be made explicit (e.g.,

through sensitivity profiles).

The higher-order expressions for the cross-section sensitivity pro-

files derived by Dubi and Dudziak involve the use of Green’s func-

tions.50,51 The Green’s function - if properly integrated - allows one

to gain all possible information for a particular transport problem. It

therefore can be expected that higher-order sensitivity profiles can be

calculated up to an arbitrary high order by

tion. For most cases, the derivation of

tremely complicated, if not impossible. It

evaluating one Green’s func-

the Green’s function is ex-

therefore can be argued that

the Green’s function carries such a tremendous amount of information

that it is not surprising that higher-order expressions for the sensi-

tivity profile can be obtained, and that while the use of Green’s func-

tions can prove to be very valuable for gaining analytical and physical

insight, they will not be practical as a basis for numerical evaluations.

From the study done by Wu and Maynard,78 it can be concluded that a

first-order expression allows for a 40% perturbation in the cross sec-

tions (or rather the mean free path) and will still yield a reasonably

accurate integral response (less than 10% error). Larger perturbations

give rapidly increasing errors (the error increases roughly by a power

13



of three). Expressions exact up to the second order allow a 65% per-

turbation, and a sixth-order expression allows a 190% perturbation, both

for an error less than 10%. Also, for higher-order approximations, if

was found that the error on the integral response will increase drastic-

ally once the error exceeds 10%. It can be concluded therefore that the

higher-order expressions do not bring a tremendous improvement over the

first-order approximation (unless very high orders are used), while the

computational effort increases drastically. Higher-order sensitivity

analysis can only become practical when extremely simple expressions for

the sensitivity profiles can be obtained, or when a suitable approxima-

tion for Green’s functions can be found.79

2.2.2 Analytical expression for the cross-section sensitivity prefile

Consider the regular and adjoint transport equations

L.@=Q ,

and

(4)

(5)

A
.

where @ and @ represent the forward and the adjoint angular fluxes, L
.%.,

and L are the forward and adjoint transport operator, Q is the source,

14



and R is the detector response function. The integral response, I, can

then be written as

I = <R,@>

or

(6)

* *
I = <Q,@ > , (7)

where the symbol < , > means the inner product, i.e., the integral over

the phase space. In a fully converged calculation I* will be equal to

I. For the perturbed system, similar expressions can be obtained:

LoPP=Q ,

A J.
L-O” = R ,
PP

I = <R,@p> ,
P

.1. -L
and I“ = <Q,O”> ,

P P

where

(8)

(9)

(lo)

(11)

15
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# = J+ d ,
P

and I =1+61 .
P

From Eqs. (9), (13), and (5) we have

L:.&h*= (L* - L;).@* .

(13)

(14)

(15)

Further, we have from Eqs. (14), (11), (6), (12), and (9)

61=1-1 ,
P

= <R,c$ - 0> ,
P

= <R,&$> ,

or 61 = <L~,&b> . (16)

Using the definition of the adjoint transport operator and Eqs. (15) and

(16) transforms to

&

61 = <@p,L~&”> ,

or

61 = <@P,(L* - L~)O*> . (17)

16



It is assumed that the perturbed differential scattering cross

section can be expressed as a function of the unperturbed differential

scattering cross section by

Z~p(~,~_’,E+E’ ) = C.Zp(r,_@’,E+E’) , (18)

and similarly for the total cross section

ZTp(~,E) = C.~(~,E) , (19)

where C is a small quantity, which can be a function of E and (1. Defin-

ing 6C= C - 1, we have

+ (~,E) - XT(~,E) 2s (r,Q%2’,E+E)- 2&~_’,E+E’)
6C =

———

~(~,E) = 2&,&&’, E+E’ )
(20)

so that

(21)

The cross-section sefisitivityfunction F~ (E) is defined by
x

.,,:

(22)
I

17



and can be approximated by

The sensitivity function Fx (E) represents the dependence or sensi-
X

tivity of a design parameter of interest to a particular cross section

xx at energy E. The first term is usually referred to as the loss term

27and the second term is called the gain term.

The cross-section sensitivity profile P: is then defined as
x

E
g-1

P:=LJ dEFZ (E) .
x Aug E x

g

(24)

The scaling factor Aug is the lethargy width of group g and is intro-

duced as a normalization factor in order to remove the influence of the

choice of the group structure.

Remarks

1. In the previous section Xx represents a partial cross section for

a particular ❑aterial. Ix can be an absorption cross section, a

total cross section, a differential scattering cross section, a re-

action cross section, etc. Therefore Xx has a suppressed index

18



which indicates the specific partial cross section. When evaluat-

ing the cross-section sensitivity profile for a partial cross sec-

tion only the appropriate part, either the loss term or the gain

term, will have to be considered in Eq. (23). When the partial

cross section is not related to the production of secondary parti-

cles (e.g., a differential scattering cross section) the sensitiv-

ity profile in the multigroup form is referred to by Gerstl as a

vector cross-section sensitivity profile. Obviously such cross

sections contribute only to the loss term.

2. It is possible to define a net or a total sensitivity profile,

which can be obtained by summing the loss and the gain terms for

various partial reactions. The net sensitivity profile can be used

to determine how important a particular element is with respect to

a particular response.

3. Note that while deriving an expression for the cross-section sensi-

tivity profile, we implicitly assumed that the response function

was independent from the partial cross section for which a sensi-

tivity profile is desired. If this assumption does not hold, an

extra term has to be added to the previously obtained expressions.

When the response function is also the cross section for which a

sensitivity profile is sought, the sensitivity function will take

the form

19



(25)

where L
Zx

represents that portion of the transport operator that

contains the cross-section set {2X]. In this expression the first

term is a direct effect and the second term is an indirect effect.

If the direct

be negligible.

Table I.

effect is present,

A summary of the

the indirect effect will usually

various possibilities is given in

4. The spatial integration

perturbed regions only.

in Eq. (23) has to be carried out over the

2.2.3 Explicit expression for the cross-section sensitivity profile in
discrete ordinates form for a two-dimensionalgeometry represen-
tation

Coordinate system

The coordinate systems for x-y and r-z geometry are shown in Figs.

2a and 2b.53 In both geometries $ was chosen to be the angle of rota-

tion about the ~-axis such that do = d~.d~, and since (2 + 1.12+ V2 = 1,

we have

20



TABLE I: FORMULAS FOR THE SENSITIVITY FUNCTION

Case

a.

b.

c.

I = <R,O>,where xi # R

I = <R,O>, where Z. = R
1

and Ii$L

I = <R,c$>,wherez: = R
A

and ~iCL

Sensitivity Function

%i
= <@I*,Lz@>/I

‘x: = <R,Q>/I

%:
= <R,@>/I + <L$*,LZ1$>/I

.“
&

direct
effect

.L

indirect
effect

The direct
dominant

effect is usually

< > indicates the inner product over the phase space ~

L stands for the transport operator

‘1. represents that portion of the transport operator which
1 contains cross-section {Zi}

c means is included in

~ means is not included in
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Figure 2. a. Coordinates in x-y geometry
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Figure 2. b. Coordinates in r-z geometry
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~= (1 - p2)%.sin$ ,

and

n= (1 - pz)+.cos$ .

Therefore both the x-y and the r-z geometry representation will

lead to identical expressions for the sensitivity profile, with the

understanding that in x-y geometry the angular flux is represented by

@(x,Y,P,$), and by @(r,z,p,$) in the case of r-z geometry.

We now will derive an expression for the sensitivity profile in an

x-y or in an r-z geometry representation.

Method

Before deriving an expression in a discrete-ordinates formulation

and a two-dimensional geometry for Eq. (23), a brief overview of the

methods used is outlined.

Gain term:

I* order to represent the differential scattering cross section in

a multigroup format, the common approach to expand the differential

scattering cross section in Legendre polynomials is used. The num-

ber of terms in the expansion is a function of the order of aniso-

tropic scattering. The Legendre polynomials are a function of the

scattering angle p. (Fig. 2). Introducing spherical harmonics

24



functions and applying the addition theorem for spherical har-

monics, the dependence on p. can be replaced by p’s and $’s. The

angular fluxes are expanded in flux moments. The integrals are

replaced by summations. Defining multigroup cross sections an

expressions for the gain term can be obtained.

Loss term:

An explicit expression for

angular fluxes or based on

the loss term

flux moments.

can be derived based on

In order to check the

internal consistency in SENSIT-2D both methods will b< applied.

The derivation of an expression based on angular fluxes is

straightforward: the integrations are replaced by summations and

the appropriate multigroup cross sections are defined. An expres-

sion as a function of flux moments can be obtained by expanding the

fluxes in flux moments, using spherical harmonics functions. The

orthogonality relation of spherical harmonics is applied, the

integrations are replaced by summations and appropriate multigroup

cross sections are defined. Finally an expression for the loss

term is the result.

Analytical derivations

Expand the differential scattering cross section in Legendre poly-

nomials according to
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LMAX

Zx @-&’,E+E’) =1
x,s(Po~E+E’) = z ~p2(Po)z~,2(E+E’) , (26)

9

where the P2(po)’s are the Legendre polynomials and LMAX the order of

anisotropic scattering. Here, the scattering angle p can be written as
o

= Q.()’lJo –– = Qxq + QYQ; +-Q !2’Zz’

or

P. =pp’ + flrl’+~g’ ,

= pp’ + (1-p2)%(l-p’2)% cos$ COS$’ + (1-p2)%(l-p’2)%sino sin$ ,

or

P. = w’ + (1-1.hl-l-l’+ Cos($-($1’).

The spherical harmonics addition theorem states that (see e.g., Bell and

Glasstone62)

Q
P2(I.JO) (~-k)! p~(p)pfi(p!)cos[k($-$’)] ,= Pg(P)pg(I.J’)+ 2 k~l (g+k)! (27)

=

where the P~(p)’s are the associated Legendre polynomials. The above

expression can then be reformulated as

26



We define

and

so that

P9(PO) = : {R;(P,I$)I@,I$’)+Q;(P,Ij)Qj(P’,w)} .
k=O

(28)

(29)

(30)

(31)

The Q terms will generate odd moments which will vanish on integration,

thus the Q terms will be omitted in the following discussion. The R:

terms are the spherical harmonics polynomials. Using the above expres-

sion for P (p ) in the expansion of the scattering cross section, we
10

have
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where LMAX is the order of anisotropic scattering.

The second term of the sensitivity profile, Eq. (24), becomes

1
. R~(P,O)@(~,~,E) . 2 J dp’ ~ d$’R~(p’,$’)&@,E’) . (33)

-1 0

Note that

and therefore the angular flux can be expanded according to

Oa
@(Q,E) = 2 (21+1) : Rk@k(E) ,

2=0 k=o 2 Q

where O;(E) = } dP}dOR&(~,E)/2n ,
-1 p

28
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(35a)

(35b)



and similarly for the adjoint angular flux

(36a)

(36b)

Introducing these expansions in the sensitivity profile, the gain term

becomes

l?,
. 2 @;(E)O;k(E’) ,

k=O
(37)

where GMAX is the number of energy groups. Defining

E
g’-l ‘g-l

(E+E’Y$E)O;RE’) ,~::;’ ~;go;kg’
={ dE’ J dE 1s ~ (38)

E 9
g’ g

and discretizing over the spatial variable we have
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GMAX IMAX , 9 IPERTp: z (29+l)z7~ z E ViO~g(i)O~g’ (i) , (39)
x,gain IAug g’=1 9=0 ‘ k=O i=l

where IPERT is the number of perturbed spatial intervals and i indicates

the spatial interval. If there is no upscattering, and introducing

IPERT
Y;g‘ = 4X : (29+1) 2 *kg’(i) ,Vi@~g(i)OQ

k=O i=1

we have

(40)

(41)

The loss term of the sensitivity profile is given by

E
g-1

= A ~ dE Jd~2 } dpfd$ @b(p,$,E)2xT(E)@*(p,$,E)] ,
IAug E v -1 0 9

g
(43)

E-
= -471 MM

—J- g 1 dE;d~+(E) ~f Wm@(Pm,@m,E)@*(Pm,$m) , (44)
IAug E =

g
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where @m = tan-l(l - p: - tl~)4/p forpm>O,
m

(45)

(46)

and MM is the number of angular fluxes per quadrant.

Define

ml Eg-1 MM
~J dE ~x,T(E)o@(Pm,$m,E)e@*(Pm,$m,E) = 2~,T 2 O~& , (47)
m=l E

g
m=1

so that

IPERT MM
~: =*I:T I v. Z wm@~(i)O~(i) .
X,loss IAug ‘ i=l 1 m=l

Introducing

IPERT MM
Xg =4X1 v. 2 wm@~(i)O~g(i) ,

i= 1 1 m=l

we have

q = A- q # .
X,loss IAug ‘

(48)

(49)

(50)

Note that the gain term was e~ressed as a function of flux moments,

while the loss term was expressed in terms of angular fluxes. When the

gain term is expressed as a function of flux moments, a very useful
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relationship between the Y’s and the x’s will be obtained. For this

case, substituting Eqs. (36) and (38) into Eq. (42), the loss term can

be expanded as

(51)

Using the orthogonality relations Eq. (34) and defining the multigroup

total cross section for group g by

LMAX2 LMAX 9 ‘g-1
22 z: ~op(~)o;kg(~) = z ~ J dE Zx ~(E)d$(~,E)@~k(~,E)
J2=0 k=O ‘ 9=0 k=O E 9

g
(52)

we have after discretizing the spatial variable, E, and truncating the

summation over 2,

32



Introducing

(54)

the expression for the loss term reduces to Eq. (50) again.

=

1 LMAX GMAXp:=—-z; T)(g+z 2 2:+;’Y;g’,
x 1.Aug 9 Q=o g’=g ‘

(55)

where

2: ~ = total macroscopic cross section for reaction type x,
9

~~; ‘ = J?’thLegendre coefficient of the scatteringmatrix element for
9 energy transfer from group g to group g’, as derived from the

differential scattering cross section for reaction type x,

IPERT 1
y:g‘ = 4x(22+1) 2 2 Vi@~g(i)@~kg’(i)

i=l k=O

= spatial integral of the product of the
expansions for the regular and adjoint

Xg
IPERT MM

=47t z v. z @g(i)@~g(i)w m
i=l 1 m=l m

(56)

spherical harmonics
angular fluxes,

(57)

= numerical integral of the product of forward and adjoint
angular fluxes over all angles and all spatial intervals de-
scribed by i=l . . ., IPERT,

LMAX
= z Yjg . (58)

2=0
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Note that expression (55) is identical with the expression for the

46
cross-section sensitivity profile in a one-dimensional formulation.

The flux moments can be expressed in terms of angular fluxes corre-

sponding to

and

(59)

(60)

Rfi(Q) = spherical harmonics function

v. = volume of rotated triangles
1

Aug = lethargy width of energy group g

= in (Eg/Eg+l),where Eg and Eg+l are upper and lower energy
group boundaries

= integral response as calculated from forward fluxes only

IDET IGM
= z 2 ViR~$~g(i)

i=l g=l

R= spatially and group-dependentdetector response function.
i

2.3 Source and Detector Sensitivity Profiles
46

Source and detector sensitivityprofiles indicate how sensitive the
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L

integral response I or 1“ is

or to the detector response

lated

flUX,

from

equal

from the forward flux,

according to Eq. (64).

to the energy distribution of the source,

R. The integral response I can be calcu-

according to Eq. (63), or from the adj~int

When the integral response is

the adjoint flux it will be denoted as I*. Ideally,

to I*.

calculated

I will be

The sensitivity of the integral response to the energy distribution

of the detector response function or the source can therefore be ex-

pressed by the sensitivity profiles

E
g-1

P~=~ d~~ _ __,_,dE JdL?R(~,E).@(r C?E) / I.Aug

‘d ‘g

and

(61)

(62)

where R(~,E) is the detector response and Q(r,C?,E)is the angular source,——

and V and Vs are the volumes of the detector and the source region. I
d

was used in the denumerator of P% and I* was used in the denominator of
R

P; for internal consistency. It is obvious that the integral source and

detector sensitivities, SQ and SR, will be equal to one.
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It is possible to derive an expression similar to Eq. (61) for the

sensitivity of the integral response to the angular distribution of the

source. The derivation of explicit expressions for P; and P: is

straightforward. The detector sensitivity profile as a functton of the

scalar fluxes becomes

IDET
P: = 1 Vi.R~.@~g(i) I I.Aug ,

i=l
(63)

where the O;g(i) are the scalar fluxes for group g at interval i, IDET

is the number of detector intervals g, and Ri is the detector response at

interval i for group g.

For the source sensitivity profile in case of an isotropic source

Eq. (62) transforms into

I SRS
~: = z Vi.Q~.@~g(i) / l*.Aug ,

i=1
(64)

where Q: is the voluminar source for group g at source interval i.

In the case of an anisotropic source we defined Qg(x,Q) by

E
g-1

dE Q(r,O,E).@X(r,C?E) ,Qg(r,O).@~’g(E,~)= { _ _ _ _$-—

%

(65)
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and expand the angular source according to

IQAN
Qg(s,Q) = Qg(WJ,@) = & (29+1) : R&@).Qp(@/2n , (66)

k=O

where IQAN is the order of anisotropy of the source.

Substituting Eqs. (65) and (66) in Eq. (63), discretizing the

spatial variable and using Eq. (36), the expression for the source

sensitivity profile becomes

ISRS IQAN Q
pg=z. ~ ~.

Q
Z (2Q+1) Z Q~k(i)@~gk(i)/l*.Aug

i=l 1 Q=O K=o

As in Eq. (61) we can also define an angular source sensitivity func-

tion. The angular source sensitivity function indicates how sensitive
A

the integral response 1“ is to the angular distribution of the source,

or

(68)
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2.4 Sensitivity Profiles for the Secondary Energy Distribution and the
Secondary Angular Distribution

The theory of the secondary energy distribution (SED) and the sec-

ondary angular distribution (SAD) sensitivity analysis was originated by

Gerstl.
43-46

Physically the only difference between a secondary energy

distribution and a cross-section sensitivityprofile is the way in which

the integration over the energy variable is carried out. The “hot-cold”

and the “forward-backward” concepts lead to a simple formulation of

secondary sensitivity theory and can easily be incorporated in an uncer-

tainty analysis. Even when both those concepts are a rather coarse

approximation they have the advantage that they are simple and can be

physically understood.

A more rigorous formulation might be possible, but its simple

63
physical interpretationwould be lost. The primary restriction on the

application of secondary energy distribution and secondary angular dis-

tribution sensitivity profiles is the lack of cross-sectionuncertainty

information in the proper format.

2.4.1 Introduction

The expression for the sensitivity profile for the differential

scattering cross section is part of the gain term of the cross-section

sensitivity profile and takes the form

38



x RZ (r,Lk&’,E+E’) ,
x,gain – –

where R
I (E,~_’,E+E’) is a shorthand notation for
x,gain

(r,K?+fl’,E+E’)=O(r,Q,E)Zx J~,$&fJ’,E+E’)4J(:,~’,E’)‘z ––– ——
x,gain 9

and similarly,

‘2 (r,~’%J,E’+E)=@(r,O,E)Z x s(~,$J’~,E+E)4J*(~,~,E).——
x,gain – – 9

Equation (70) gives the contribution to the integral detector

(69)

(70)

(71)

re-

sponse, I, from the particles born at position ~ with energy E’, travel-

ing in direction Q’, since

I = <@,L*@$’>= <@*,L@> . (72)

Similarly,
‘z (z,~_’,E’+E) gives the contribution to the integral
x,gain

detector response from the particles born at position r, with energy E,

traveling in direction Q.—

As it turns out, up to this point there is no difference in the

physical interpretation of Eqs. (70) and (71). The way the integrations
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are carried out will distinguish between the differential scattering

cross-section sensitivity profile and the secondary energy distribution

and secondary angular distribution sensitivityprofile.

2.4.2 Further theoretical development

In this section we will elaborate on the physics behind the deriva-

tion of SEDS and SADS. Consider

‘z (E,E’) = @OKUW R~x ~ainH+!?’J+E’) “
X,s 9

(73)

In this expression
‘z

represents the fractional change in the inte-
X,s

gral response per unit fractional change in the differential scattering

cross section 1 (E+E’); i.e.,
X,s

it is the fractional change in the in-

tegral response when the number of particles that scatter from E into E’

is increased by one percent. Obviously this will always be a positive

effect and will therefore be included in the gain term.

Similar to Eq. (73),

E
g-1

~:
=;{ dE~dE’ ~dQjdQ’RZ (r,fM’,E+E’)———

X,s 0
g

x,gain
(74)
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represents the fractional change in the integral response when the num-

ber of particles that scatter from group g is increased by one percent.

The tilda in Eq. (74) is introduced to distinguish from a lethargy nor-

malized sensitivityprofile.

In the adjoint formulation the equivalent of Eq. (73) will be

%xs(E’,E) =F SED(E’,E) ‘:~d3~d~~d!?RZx gain(ztQ’W,E’+E) ,
9 9

(75)

which represents the fractional change in the integral response per unit

fractional change in differential scattering cross section 2X s(E’+E),
9

i.e., it is the fractional change in the integral response when the num-

ber of primary particles that scatter from E’

percent, or for that matter that the number of

were scattered from E into E’ were increased

to E is increased by one
.

secondary particles that

by one percent. Again,

this will always have a positive effect and will therefore constitute a

gain term in the sensitivityprofile.

Define

E
g-1

;g=l
SED ~{ dE ~ dE’ J d$2~d~’RZ (r.C?’-@,E’+E) . (76)

o
——

g
x,gain

While there is no difference in the physical ❑eaning of Eqs. (73)

and (75), the formulations (74) and (76) are different. Equation (74)



represents the fractional change in the integral response when the num-

ber of secondary particles that were scattered into group g have been

increased by one percent.

It is clear from these examples that, depending on the way the

integrations are done, several different sensitivity profiles can be

constructed. In order to study the secondary angular distribution, we

can introduce

This expression gives the fractional change in the

when the number of secondary particles scattered from

into final direction C!is increased by one percent.

be clear that

(77)

integral response

initial energy E’

It will therefore

is the fractional change in the response function when

secondary particles which were scattered into direction !2

by one percent.

(78)

the number of

was increased
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2.4.3 Secondary energy and secondary angular distribution sensitivity
profiles

A double secondary energy distribution (SED) sensitivity profile is

defined by

E E
g-1 g’-l

pg’g= 1 ,J
SED

dE J dE’ J dr jdQJd~’RZ (r,O’+fJ,E’+E),
IAugAug E

— —
E

g g’
x,gain – –

(79)

The energy integrated SED sensitivity profile becomes

d~‘RI (r,fl’-KJ,E’+E). (80)——
x,gain

The differential

of secondary particles

sensitivity profile for the angular distribution

scattered from initial energy E’ is

E
g’-l m

PgJ$J) = Js dE’ JdE ~dr JdQ’RZ (~,Q’~,E+E’) (82)
IAug E o–

g
x,gain

An energy integrated SED sensitivity profile can be defined by
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p~m(g) =;~dE’~dE~d~~d$J’R2 (r,!2’-KJ,E+E’) .
0 0 s,gain – –

(82)

2.4.4 Integral sensitivities for SEDS and SADS

In order to make the sensitivity and uncertainty analysis for

secondary energy distributions and secondary angular distributions less

tedious, Gerstl introduced the concepts of the “hold-cold” SED and the

“forward-backward”SAD integral sensitivity:

and

‘SAD = s
forward

d~psw(~) - J
backward

d~ ps~(~) .

angles angles
(P>o) (IJ<o)

(83)

(84)

The forward-backwardSAD integral sensitivity can be interpreted as

the fractional change in the integral response when the number of sec-

ondaries which were scattered forward is increased by one percent, while

the number of secondaries that were scattered backwards (p<O) is de-

creased by one percent. The integral SAD sensitivity is a positive

number which is labeled “forward” or “backward” depending whether the

first or the second term in Eq. (84) is the larger one. Physically,
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that positive number indicates how much more sensitive the response

function is to forward scattered particles than to backward scattered

particles, or vice versa.

For the hot-cold integral SED sensitivity, the concept of the

median energy has to be introduced. In the multigroup formulation, the

median energy defines the energy boundary which roughly divides the

cross-section profile into two equal parts. The ❑edian energy and the

43integral SED sensitivity are illustrated in Fig. 3. Note that the

median energy g’ is a function of the primary energy group g’. For that

reason also the integral SED sensitivity will depend on g’.

The hot-cold integral SED sensitivity expresses the fractional

change in integral response when the number of secondaries which scatter

in the “hot” part of the secondary energy distribution is increased by

one percent while the number of secondaries scattered into the “cold”

part is decreased by one percent. The integral hot-cold SED sensitivity

is a positive numberj labeled “hot” or “cold” depending on which term

dominates in Eq. (83). That number indicates how much more sensitive

the integral response is to particles scattered into the hot part of the

secondary energy distribution than to particles scattered into the cold

part, or vice versa.
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Figure 3. Definition of median energy and integral

E (}le\’)out

,lc&ll

SED sensitivity
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2.4.5 Explicit expressions for integral SED sensitivity prefiles in a
two-dimensionalgeometry representation

The expression for the double SED sensitivity profile, Eq. (79), is

similar to the gain term of the cross-section sensitivity profile, Eq.

(24). By comparing Eq. (79) with Eq. (24) and using Eq. (41), the ex-

plicit expression for the double SED sensitivity profile becomes

(85)

From Eqs. (85) and (80), it follows that the energy integrated SED sen-

sitivity profile for the case of no upscattering can be represented by

p:ED = ---L #+~ Y:’% .
IAug g’=1 2=0

s,Q (86)

Using the definition for the integral SED sensitivity (83), it becomes

clear that

/z*(%’) GMAX
# = =
SED Aug .P~ED - Z Au%.p~ED ,

%=g‘ %=%m(%’)+l

where gm(g’) is defined in Fig. 1.
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2.6 Desire Sensitivity Analvsis

Design sensitivity analysis provides a method to estimate changes

in integral response for a slightly altered design. The results are

exact up to the second order with respect to the corresponding flux

changes, but only exact up to the first order with respect to design

changes. The theory presented in this section is applicable only when

the design changes can be expressed in terms of macroscopic cross-

section changes. Methods based on generalized perturbation theory have

been applied to design sensitivity analysis.
14,37

The integral response for the perturbed system can be expressed by

Eq. (88) for the adjoint difference formulation,
35

lAD= <R,@> - <c#,MI$>= I - 61N ,

and by Eq. (89) in the forward difference formulation

J.. ..L.L
n #.

%D=<Q’l>-<o’&o>=l - 61FD . (89)

Proceeding in a ❑anner similar to the derivation of the cross-

section sensitivity profile, the second-order term in the right hand

side of Eqs. (88) and (89) canbe written as
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+ ~ dE’ ~ dfl’@(~,fJ’,E’)6ZxJr,fl’+Q,E’+E)@*(~,~,E)] , (90)—-—
0 9

and

+ ~ dE’ ~ dQ’0(r,0,E)62x J~,fJ&’,E+E”’)@*(~,Q’,E’) . (91)——
0 9

In the above expressions we used

and

(92)

(93)

where Z refers to a perturbed cross section and I to a reference cross

section.

A design sensitivity coefficient X can be defined as the ratio of

the integral response for the altered design over the integral response
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for the original model. Depending whether the forward or the adjoint

difference method are used, the design sensitivity coefficient equals

‘AD= Iw/I = 1 - 61~/I ,

or

‘FD= IFD/l*= 1 - 61~/1* .

(94)

(95)

Note that respectively, I and I* were used in the denominator of Eqs.

(94) and (95) for internal consistency. Numerically 61m and 61FD are

35
identical; I and I*, however, can be different. Gerstl and Stacey in-

dicate that the adjoint formulation is more accurate for perturbations

closer to the detector, while the forward difference method gives better

results for perturbations closer to the source. If both reference

fluxes @ and Q* are completely converged, Eqs. (94) and (95) will give

identical results.

Explicit expressions for Eqs. (94) and (95) canbe formulated. The

procedure for the evaluations of 61~ and 61FD is similar to the deriva-

tion of the cross-section sensitivity profile and leads to the equations

(96)
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3. APPLICATION OF SENSITIVITY THEORY TO UNCERTAINTY ANALYSIS

Sensitivity theory can be used to do an uncertainty analysis by

introducing the concepts of cross-section covariance matrices and frac-

tional uncertainties for SEDS. In this chapter we will explain how sen-

sitivity profiles can be used in order to calculate the uncertainty of a

reaction rate due to the uncertainties in the cross sections.

3.1 Definitions

Let I represent a design parameter depending on a multigroup cross-

section set {Zi}, so that

I = I(Zi) , (98)

where the index i can reflect a group, a partial cross section or a

material.
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The variance of I is defined as the expected value of the square of

the difference between the actual value of I and the expected value of

I, or

Var(I) SE{(61)2] =E{(I -E{I})2] .

The standard deviation of I is the square root of the variance,

AI ~ [Var(I)]% . (loo)

The covariance of a and b is defined as

C9m

Cov(a,b) ~E{6a”6b] = ~ J da.db.(a - E{a]).(b - E{b}).f(a,b) ,
-m -0

(101)

where f(a,b) is a joint probability density function. A nonzero covar-

iance between the quantities a and b indicates a mutual dependence on

another quantity. Obviously we have

Cov(a,a) = Var(a) ,

since f(a,a) = 1.

A relative covariance element is defined by
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R(a,b) s Cov(a,b)/a.b . (103)

3.2 Cross-Section Covariance Matrices

During the experimental evaluation of cross-section data, statis-

tical errors arise from the fact that two similar experiments never

agree completely. Also a systematic error reflects the fact that no

equipment and no evaluation procedure is perfect, and that - among other

factors - reference standards are used.

Cross-section covariance data describe the uncertainties in the

multigroup cross sections and the correlation between those uncertain-

ties. A nonzero nondiagonal covariance matrix element indicates that

there was a common reason why an uncertainty in two different (e.g.,

partial cross sections or energy range) cross section was introduced.

The evaluation procedure for covariance data is tedious and requires a

sophisticated statistical analysis.2,30,31

Multigroup cross-section covariance data are ordered in covariance

matrices. Such a covariance matrix contains GMAX rows and GMAX columns,

where GMAX is the number of energy groups. A covariance matrix can

contain covariance data of a particular partial cross section with

itself over an energy range , with a different cross section for the

same element, or with a partial cross section of a different element.

It has become a common practice to include formatted uncertainty

data in the ENDF/B data files. Even though the uncertainty files are
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still missing for many materials in ENDF/B-V, extensive work is underw-

ay. Based on these uncertainty data, covariance libraries can be con-

32,33strutted. A 30-group covariance library based on ENDF/B-V which

contains most of the elements commonly used in reactor shielding has

been constructed by Muir and LaBauve.
33 The covariance data in this

library were processed into a 30-group format by using the NJOy

code 64,65
. In this particular library, called COVI?ILS,the multigroup

cross sections and the relative covariance matrices for lH, 10B, C, 160,

Cr, Fe, Ni, Cu, and Pb are included. Another covariance library was set

up by Drischler and Weisbin.32

3.3 Application of Cross-Section Sensitivity Profiles and Cross Section
Covariance Matrices to Predict Uncertainties

Using first-order perturbation theory, the change in the integral

response I, 61, as a consequence of small changes in Zi can be approxi-

mated by
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or

Var(I) = Z && Cov(zi,zj) .
i,j i j

From Eqs. (100) and (106) it now becomes obvious that

[1AI 2
Cov(zi,z.)

r ~5= ‘. %i%. 2.2. 9
i9J J lJ

I II

(106)

(107)

where P~ and PZ are sensitivity profiles, and the subscript xs refers
i j

to reactor cross sections.

The concept of covariance data and sensitivity profiles leads to a

simple way to evaluate the error in I.

requires sensitivity profiles and is

The first part in the summation

highly

second part requires cross-section uncertainty

lem independent.

When trying to apply the theory presented

problem dependent. The

information and is prob-

here, very often covari-

ance data will be missing for certain materials. One way of going

around this problem would be to substitute the covariance file of the

missing material by

cross sections are

problem would be to

a covariance file for another material for which the

less well known.
45 Other methods to eliminate this

16,17
make very conservative estimates.

The most conservative method would be to assume that the error in

the cross section is the same for all groups and equal to the largest

16,17
error for any one group. In that case it can be shown that
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3.4 Secondarv Enerev Distribution Uncertainty Analvsis

(108)

For evaluating uncertainties in the integral response due to un-

certainties in the secondary energy distribution we will follow Gerstl’s

44,46
approach and introduce the spectral shape uncertainty parameter for

the hot-cold concept.

When the total number of secondaries scattered from group g’ are

held constant, then necessarily

(109)

Therefore f
!3’

quantifies the uncertainty in the shape of the SEDS and is

44
called the spectral shape uncertainty parameter (Fig. 4) .

It now becomes possible to express the relative change in integral

response due to the uncertainty in the secondary energy distribution in

a form similar to Eq. (107):

(110)
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),

u
2+g= =g 12=gm

I

E
‘reedian

Eout(MeV)

& I+f if g<gm

Cg -f if g~gm

Figure 4. Interpretationof the integral SED uncertainty as
spectrum shape perturbationsand definition of the
spectral shape uncertainty parameter “f” (ref. 44)
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SubstitutingEqs. (87) and (109) inEq. (110), it follows that

[161T =2 #

SED g’
SED ‘g’ “

(111)

Denote fg, by f., where the index j refers to a particular nuclear
J

reaction, e.g., (n,2n), at specific incident energy g’, and let fi rep-

resent some

uncertainty

ties of all

different reaction/primary energy combination. Then the

in integral response corresponding to correlated uncertain-

SEDS for a specific isotope is

[1AI 2 = Var(I)
T SED - 12 ‘E~~\=E{~~~EDs~EDfifj\

or

[1AI 2
T

= z S:EDS:ED Cov(fi,fj) .
SED i,j

(112)

(113)

If the spectral shape uncertainty parameters for a specific par-

ticle interaction, identified by the subscript 2, are assumed to be

fully correlated
67

, it can be shown that

Cov(fi,fj)cor(+ll= [Cov(fi,fi)]% “ [Cov(fj,fj)]+ , (114)

so that
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(115)

or,

HI 4
T

(116)=Z lS&~’l[Var(fgg,)l .
2 g’

If N independent measurements of the same SED are available, the

values for Var(f ,) can easily be evaluated.Qg
For each cross-section

evaluation, weights, Wn, are assigned> then

%OT - %OLII
f:,= ~a 9 for n = 1,2...N

with

N
E{f;,] = 2 wnf;, = O .

n=1

The variance of f will be
g’

N (“&jT- O:OLD)
Var(fg,) =E{f:,} = ~ Wn

n=l [E{o]]2

(117)

(118)

(119)

Var(fg,) is called the fractional uncertainty for the secondary energy

distribution and is identified by the symbol F. A short program which

66
evaluates the values of F has been written by Muir; the results for

the 30-group neutron structure
45

is shown in Table II.

60



nt-l

h

w

I
N
o
o
m
c
e
r
-

F
a
a
I
n
m
u
l

u
m
c
u
m

-S
-l+

0000
0

0
0

0
0

0
0

0
0

k
o

o“
o

0
0

o
“

o
o“

o
0

0
o
“

o
“

o
“

o
“

o

H
o
~
m
a
.
-
l
-
u
y

a
m
t
n
m
w
t
w
w

N
0
0
0
0
0

k~
-.

0
0
0
0
0
0
0

0
0

0
60

0
o
“

00”
“

“
“

“
“

“
“

0
0
0
0
0
0
0

G

-
m

d
.4

0
m

w
-
a

In
U

m
c-d

0
0
0
0
0
0
0

0
1.4::;-.

●
●

.
.

.
.

“
0
0
0
0
”
0
0
0

0

-
o

~m
ail-r-aa

G
m
m
w
w

0
0
0
0
0
0
0
0

0
0
0

k~~.....
..

”.”””
0
0
0
0
0
0
0

0
0
0
0
0
0
0

II
-In

m
-a

a
f
-
~
l
n
u
m
m

&
0
0
0
0
0
0
0

0
=

C
4
=

-
.
x

-
.

.
.

.
.

.
.

.
.

.
0
0
0
0
0
0
0

0
0
0
0
0
0

c
Q
e
J
c
N
r
-
o
o

al=
o
o
~
~
~
~
o

0
:
0

Q
L
n
m
c
f
J
.
s
-

4
?
+

0
0
0
0
0
0
0

0
0
0
0
0
=

C
4

0
0
0

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

w
m

~
g$~

oo
O

gggggg
g

r+ti
S
-
I
I
-
l
+

0
0
0

0
0
0
0

k
.

.
0
0
0
0
0
0

0
0
0

.
.

.
.

.
0
0

0
0

0
0

&
o

0
o
“

o
“

o
0

0
0

0

61



3.5 Overall Response Uncertainty

The overall response uncertainty will be of the form

where

[1

AI 2 [1
2

T
=Z q

SED i SED,i

and

(120)

(121)

(122)

The index i reflects the uncertainties in the various materials.

It was assumed that the effects from SED uncertainties for all possible

reactions which generate secondaries are uncorrelated. It is also

assumed that the uncertainties due to the SEDS are uncorrelated with

other uncertainties due to reaction cross sections (XS), and that the

uncertainties between the reaction cross sections themselves are un-

correlated.
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Remarks

1.

,2.

To be absolutely correct, a term reflecting the uncertainty in

the secondary angular distribution should be included. Due to

the difficulty in generating uncertainty data from ENDF/B-V in

the proper format, we do not include that term.

In

in

on

is

order to evaluate the sensitivity profiles, we should keep

mind that the form of the sensitivity

the particular reaction cross section

desired (Table 1).

profile will depend

for which a response
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4. SENSIT-2D: A TWO-DIMENSIONAL CROSS-SECTION AND DESIGN SENSITIVITY

AND UNCERTAINTY ANALYSIS CODE

4.1 Introduction

The theory explained in the previous chapters has been incorporated

in a two-dimensional cross-section and design sensitivity and uncertai-

nty analysis code, SENSIT-2D. This code is written for a CDC-7600

machine and is accessible via the NMFECC-network (National Magnetic— —

~usion Energy ~omputer ~enter) at Livermore. SENSIT-2D has the capa-

bility to perform a standard cross-section and a vector cross-section

sensitivity and uncertainty analysis, a seconds-:yenergy distribution

sensitivity and uncertainty analysis, a design sensitivity analysis and

an integral response (e.g., dose rate) sensitivity and uncertainty

analysis. As a special feature in the SENSIT-2D code, the loss term of

the sensitivity profile can be evaluated based on angular fluxes and/or

flux moments.
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SENSIT-2D is developed with the purpose of interacting with the

TRIDENT-CTR6 code, a two-dimensional discrete-ordinates code with tri-

angular meshes and an r-z geometry capability, tailored to the needs of

the fusion community. Angular fluxes generated by other 2-D codes, such

as DOT, TWODANT, TRIDENT, etc., cannot be accepted by SENSIT-2D due to

the different format. The unique features of TRIDENT-CTR (group de-

pendent quadrature sets, r-z geometry description, triangular meshes)

are reflected in SENSIT-2D. Coupled neutrun/gamma-ray studies can be

performed. In contrast with TRII)ENT-CTRhowever, SENSIT-2D is re-

68
stricted to the use of equal weight (EQn) quadrature sets, symmetrical

with respect to the four quadrants. Upscattering is not allowed.

Many subroutines
46

used in SENSIT-2D are taken from SENSIT or

TRIDENT-CTR. SENSIT-2D is similar in its structure to SENSIT, but is an

entirely different code. Unlike SENSIT, SENSIT-2D does not use the

BPOINTR69 package for dynamical data storage allocation, but rather uses

a sophisticated pointer scheme in order to allow variably dimensioned

arrays. As soon as an array is not used any more, its memory space

becomes immediately.available for other data. SENSIT-2D does not in-

clude a source sensitivity analysis capability and cannot calculate

integral responses based on the adjoint formulation. This has the dis-

advantage that no check for internal consistency can be made. There-

fore, other ways have to be found in order to determine whether the

fluxes are fully converged. One way for doing so would be to calculate

the integral response based on the adjoint formulationwhile performing
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the adjoint TRIDENT-CTR or the adjoint TRDSEN run, and compare with the

integral response based on the forward calculation.

SENSIT-2D requires input files which contain the angular fluxes at

the triangle midpoints multipled by the corresponding volumes, and the

adjoint angular fluxes at the triangle midpoints. A modified version of

TRIDENT-CTR, TRDSEN, was written by T. J. Seed
70

to generate these flux

files. A summary of these modifications was provided by T. J. Seed and

is included as Appendix B. After a TRIDENT-CTR run, the TRDSEN code

will use the dump files generated by TRIDENT-CTR, go through an extra

iteration, and write out the angular fluxes in a form compatible with

SENSIT-2D. Both SENSIT-2D and TRDSEN use little computing time compared

with the time required by TRIDENT-CTR.

The features of SENSIT-2D are summarized in Table III. The SENSIT-

2D source code is generously provided with comment cards and is included

as Appendix A.

4.2 Computational Outline of a Sensitivity Study

A flow chart (Fig. 5) illustrates the outline for a two-dimensional

sensitivity and uncertainty analysis. From this figure it becomes imme-

diately apparent that a sensitivity analysis requires elaborate data

management. The data flow can be divided into three major parts: a

cross-section preparation module, in which the cross sections required

by TRIDENT-CTR and SENSIT-2D are prepared, a TRIDENT-CTR/TRDSEN block,
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TABLE III: SUMMARY OF THE FEATURES OF SENSIT-2D
(PART I)

SENSIT-2D: A Two-Dimensional Cross-Section and Design

Sensitivity and Uncertainty Analysis Code

Code Information:

* written for the CDC-7600

* typical storage, 20K (SCM), 80K (LCM)
* number of program lines, 3400
&. used with the TRIDENT-CTR transport code

* typical ru,ltimes, 10-100 sec

Capabilities:

A.
. computes sensitivity and

integral response (e.g.,

uncertainty of a calculated

dose rate) due to input cross

sections and their uncertainties
* cross-section sensitivity
+ vector cross-section sensitivity and uncertainty

ac.?lysis

* design sensitivity analysis
4.. secondary energy distribution (SED) sensitivity and

uncertainty analysis
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TABLE III: SUMMARY OF THE FEATURES OF SENSIT-2D
(PART 2)

SENSIT-2D

TRIDENT-CTR Features Carried Over into SENSIT-2D:

* x-yor r-z geometry

* group-dependentSn order

* triangular spatial mesh

Unique Features:—

* developed primarily for fusion problems
&,, group dependent quadrature order and triangular mesh
.&. can evaluate loss-term of sensitivity profile based

on angular fluxes and/or flux moments

Current Limitations:

* can only interact with TRIDENT-CTR transport code
&a not yet implemented on other than CDC computers

* based on first-order perturbation theory

* upscattering not allowed
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where the angular fluxes in a form compatiblewith SENSIT-2D are gener-

ated, and a SENSIT-2D module, which performs the calculations and manip-

ulations necessary for a sensitivity and uncertainty analysis.

4.2.1 Cross-sectionpreparation module

There are many possible ways to generate the multigroup cross-

section tables required by SENSIT-2D and TRIDENT-CTR. The flow chart

of Fig. 5 illustrates just one of these possibilities. All the codes

mentioned here are accessible via the MFE machine. Basically, three

codes are required: NJOY, TRANSX, and MIXIT. Starting from the ENDF/B-V

data file, the NJOY code system
64

generates a multigroup cross-section

library (MATXS5) and a vector cross-section and covariance library

(TAFE1O). A covariance library can be constructed by using the ERROR

33module in the NJOY code system.

From the ❑ultigroup cross-section library (MATXS5), the desired

72isotopes can be extracted by the TRANSX code and will be written on

a file with the name XSLIBF5. The MIXIT

rials by mixing isotopes from the XSLIBF5

used in SENSIT-2D have to be written on a

code73 can make up new mate-

library. The cross sections

file called TAPE4. The cross

sections used in TRIDENT-CTR and TRDSEN will be on file GEODXS. SENSIT-

2D and TRIDENT-CTR include the option to feed in cross sections directly

from cards.
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4.2.2 The TRIDENT-CTR and TRDSENS block

SENSIT-2D requires regular angular fluxes at the triangle center-

points, multipled by the corresponding volumes, an{ adjoint angular

fluxes at the triangle centerpoints. TRIDENT-CTR does not write out

angular fluxes. Therefore the TRDSEN version of TRIDENT-CTR was written

by SEFD. TRDSEN makes use of the flux moment dump files, generated by

TRIDENT-CTR. These dump files will be the starting flux guesses for

TRDSEN. TRDSEN will perform one more iteration and write out the

angular fluxes. In this discussion we will represent the dump file

families by DUMP1 for the regular flux moments, and DUMP2 for the

angular flux moments. Except for a different starting guess option,

TRDSEN requires the same input as TRIDENT-CTR.

4.2.3 The SENSIT-2D module

The SENSIT-2D code performs a sensitivity and uncertainty analysis.

When vector cross sections and their covariances are required, they have

to be present on a file with the name TAPElO. If the cross section data

are read from tape, they have to be written on a file called TAPE4. The

regular angular fluxes at the triangle centerpoints multiplied by the

corresponding volumes (TApEll, TApE12,...) and the adjoint angular

fluxes at the triangle centerpoints (TAPE15, TAPE16,...) can be quite

voluminous. Writing out large files can be troublesome on the MFE
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machine when there is a temporary lack of continuous disk space. There-

fore TRIDENT-CTR and SENSIT-2D have the built-in option to specify the

maximum number of words to be written on one file. This limit has to

be set high enough to ensure that all the flux data related to ane group

can be written on one file. 1 000 000 words per file is usually a

practical size and is the default in TRIDENT-CTR.

1.

2.

3.

4.

SENSIT-2D can generate four more file families:

TAPE1, which contains the regular scalar fluxes at the triangle

centerpoints.

TAPE20, TAPE21,..., which are random access files and contain the

adjoint angular fluxes at the triangle centerpoints,

TA.PE25, TAPE26,..., containing the regular flux moments at the

triangle centerpoints, multipled by the corresponding volumes,

TAPE30, TAPE31,..., which contain the adjoint angular fluxes at the

triangle midpoints.

SENSIT-2D has the option of not generating those file families, but

using those created by a former run. The flux moments are constructed

from the angular fluxes according to the formula

where the Win’sare the quadrature weights, the R~’s the sphericai har-

monics functions, and MN the total number of angular fluxes.
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4.3 The SENSIT-2D Code

In this section the structure of the SENSIT-2D code, its options

and capabilities will be explained in more detail. SENSIT-2D is

powerful sensitivity and uncertainty analysis code. The description

this code from the user’s point of view is given in the user’s manual.

a

of

71

4.3.1 Flow charts

The overall data flow within the SENSIT-2D module is repeated in

Fig. 6. A simplified flow chart is illustrated in Fig. 7. The main

parts of the flow

The control

read in.

chart include these steps:

parameters and the geometry related information are

The quadrature sets and the spherical harmonics functions required

to generate the flux moments are constructed.

The adjoint angular fluxes

on random access files,

fluxes are extracted.

at the triangle centerpoints are written

flux moments are generated and scalar

A detector sensitivity analysis is performed;

tainty analysis is done.

The X’S and $’s which form the essential parts

if desired an uncer-

of the cross-section

and secondary energy distribution

lated for each perturbed zone and

zones.

sensitivity profiles are calcu-

for the sum over all perturbed
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QTAPE1O

Q

TAPE.i

QTAPE1l
TAPE12
...

QTAPF.15TAPE16
...

Vector cro6s-sections and covariance data

(only required for vector cross-section

●ensicivity and uncertainty analysis)

Cross sections in L4SL format (only required
if cross sections are intended to be rud
from cross-aeccion file)

Angular fluxes at triangle midpoints
multiplied by the corresponding volumes

Ad joint angular fluxes
at triangle midpoints

/,

KEN-’-l-l
/ II

Q

TAIY27

TAPE28

. . . QTAPE2

●joint flux moments

●t triangle center-
points

psi’s
●n d
chi’s

/ -Q‘f,&JD~1

\

scalar fluxes ● t

triangle midpc. ints

@@

●djoint ●ngular regular flux nocer. ts a:

fluxes at triangle triangle centerpol:. ts
midpoints rclt iplied by the

(random access file) corresponding vol”nes

Figure 6. Data flow for the SENSIT-2D module
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* Read

* CALL

* CALL

* CALL

* CALL

the input parameters.

EDKD: Read in the neutron and ganma-ray structure
and calculate the lethargy width/group.

CEO)4: Read and edit the geometry.

SHCON: Read quadrature Information and calculate

E~-acts.

TAPAS: Assign files to the fluxes.

i
yes

do for forrard and adjoint fluxes

t

* CALL PNCEN : Calculate spherical hitnaonics functions.

* CALL PLL?XYO?f: Calculate flux moments.
Extract scalar fluxes.

I

[ Continue )

1

* CALL DETSEX: Calculate detector response and detector
aensitivlty profile.
If desired a detector uncertainty analysis
is performed.

* CALL CHIS : Calculate CM’S based on angular fluses if
desired,

* CALL MIS : Calculate the psi’s based on flux mo~ents

and store in L(X.
If desired chi’s based on flux moments will
be calculated.

Figure 7. F1ov?chart for SZNSIT-2D (part 1)
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4 :Sl:c::::-seccionsensltlvlty and uncertainty

4
I● In the case that ● SID uncertainty●nalysis is required.

read in the SLD uncertainty data.
I

● (XLL SUS5 :

● CALL SUS5 :

● CALL SUS6 :

Read in cross sections.
Convert to macroscopic cross sectionsvia
nur.berdensities.

Resd in srcond cross-section set inthe case
that ● desisn sensitivity ●nalysis is desired.

Extract vector cross sections ●nd scstterins

mstrix from the full cross-section table.
In case of s desisn sensitivity ●nalysis

calculate delts sigms.
Cslculate u.croscopic scattering cros~ sections.

l--+ do for all perturbed zones snd for the sum
over all perturbed zones )

i
● CALL TIXT or TtXtA: Print ●ppropriate definitions when this

section is passed for the first tine.

II ● CALL ?01S?8 : Set pointers in order to choose proper chi’s

and psi-s.

II ● CALLSLD8 : Calculates●nd ●r!its final results of sensitivity

●nalysis if it is not a SED analysis.

● CALL SL%lI : Cslculstes ●nd ●dits final results for ● SXI’J
sensitivity ●nd uncertainty ●nslysis (neucroc

Sroups only).

r-+$?
● CALL SLZ9 : Read covariance dsta ●nd provide !mcer:a:ntlcs

in the intesral response for the fully correlated
and the non-correlated case.

no

Figure 7. Flow chart for SENSIT-2D (part 2)
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nD

This section performs a complete sensitivity and uncertainty
analysis for vector cross sections.
The code requires a covariance file to be given in LASL error-
file format which contains pairs of vector cross sections with
their corresponding covariance matrix.

t
do for all successive cases

I*
* CALL SUB5V : Reads cross-section ID from input file.

Reads number density from input file.
Reads relative vovariance data (via COVAP3)
Generates macroscopic cross sections.
Reads cross sections (via COYARD).

* CALL POINT8: Set appropriate pointers for chi’s and psi’s,
* CfiL SL~8\, : Conputes and edits sensitivity profiles snd

folds then with the covariance mmtrix in order
to obtain the relative integral response.

1

* CALL SLB9V : Computes partial sums of individual response
variances.
Reads SUNSTP.T and SL?KXD (variances to be surxned)
assuming no correlation between individual vector
cross-section errors, the total variance and the
relative standard variation are computed.

i

Figure 7. Flow chart for SENSIT-2D (part 3)
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Up to this point, all the subroutines used are different from those used

in the SENSIT code. The remaining calculations are done with SENSIT sub-

routines.

-k

*

A
.

*

.2-
0s

Cross sections are read in.

Vector cross sections are extracted.

Sensitivity profiles are calculated used in the appropriate $’s and

X’s.

If desired to do so, an uncertainty analysis is performed.

A vector cross-section sensitivity and uncertainty analysis can be

performed and partial sums of individual response variances can be

made.

4.3.2 Subroutines used in SENSIT-2D

Table IV summarizes the subroutines used in SENSIT-2D and indicates

their origin in case they were taken over or adapted from another code.

The essential difference between SENSIT and SENSIT-2D is the way that

the geometry is described and how the $’s and the x’s are calculated.

Basically, all the subroutines are called from the main program with a

few exemptions when subroutines are called from other subroutines. The

subroutines for SENSIT-2D which were not taken over from other codes

will now be described. For the SENSIT subroutines we refer to the

46
user’s manual.
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TABLE IV: LIST OF SUBROUTINES USED IN SENSIT-2D

Name Subroutine Origin If Taken From Another
Code, Were Changes Made?

EBND

GEOM

SNCON

TAPAS

PNGEN

FLUXMOM

DETSEN

CHIS

POINT4B

PSIS

POINT8

SUB5

SUB6

TEXT

TESTA

SUB8

SUB11

SUB8V

SUB9

SUB9V

SUB5V

COVARD

SETID

SENSIT-2D

SENSIT-2D

TRIDENT-CTR

SENSIT-2D

TRIDENT-CTR

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT-2D

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

SENSIT

yes

yes

yes

no

no

no

yes

yes

no

no

no

no

no

no

79



1. Subroutine EDNB. Neutron and gamma-ray energy group structures

are read in from cards and the lethargy widths for each group are

calculated.

2. Subroutine GEOM. Geometry related information is read in and

edited.

3. Subroutine SNCON. This routine was taken and adapted from the

TRIDENT-CTR code. The EQn cosines and weights are calcualted. The

quadrature information is edited whenever IOPT is 1 or 3.

4. Subroutine TAPAS. Files are assigned to the various flux data.

The filenames for the angular fluxes are read from the input file.

Those filenames will have to be of the form TAPE=, where XY will.

be the input information. Filenames in the same format will then

be assigned to the adjoint angular fluxes (on sequential files in

this case), and the flux moments. The maximum number of words to

be written on each file is controlled by the input parameter

MAxwRD. Groups will never be broken up between different files.

5. Subroutine PNGEN. This subroutine originates from the TRIDENT-

CTR code. Spherical harmonics functions, used for constructing

flux moments, are calculated. For the adjoint flux moment calcu-

lation the arrays related to the spherical harmonics will be re-

arranged to take into account the fact that the numbering of the

angular directions was not symmetric with respect to the four

quadrants in TRIDENT-CTR.

6. Subroutine FLUXMOM. The adjoint angular fluxes will be re-

written on a random access file. The direct and adjoint flux
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moments are constructed and written on sequential files. In the

case that the input parameter IPREP1, it is assumed that those

manipulations are already performed in an earlier SENSTT-2D run.

In this case one has to make sure that the parameter MAXWRD was not

changed. While creating the regular flux moments, the scalar

fluxes will be extracted and written on a file named TAPE1.

7. Subroutine DETSEN. From the scalar fluxes, the integral re-

sponse for each detector zone is read from input cards. The detec-

tor sensitivity profile is calculated and edited. In the case that

the input parameter DETCOV equals one, a covariance matrix has to

be provided, subroutine SUB9 will be called and a detector response

uncertainty analysis is performed.

8. Subroutine CHIS. The x’s are calculated for each perturbed

zone and for the sum over all perturbed zones based on angular

fluxes. In the case that the parameter ICHIMOM equals one, this

subroutine will be skipped and the x’s will be calculated based

on flux moments via the

9. Subroutine POINT4B.

flux moments which will

$’s.

This subroutine sets LCM pointers for the

be used in SUB4B.

10. Subroutine PSIS. The $’s are calculated for each of the per-

turbed zones and for the sum over all perturbed zones based on

flux moments. In the case that ICHIMOM is not equal to zero also

the x’s will be calculated from flux moments. In the case that

parameter IPREP equals one, the $’s will be read in from file

TAPE3.
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11. Subroutine POINT8. This subroutine sets pointers for the

appropriate x’s and $’s, used in subroutine SUB8.
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5. COMPARISON OF A TWO-DIMENSIONAL SENSITIVITY ANALYSIS WITH A ONE

DIMENSIONAL SENSITIVITY ANALYSIS

Before applying SENSIT-2D to the FED (fusion engineering device)

inboard shield design, currently in development at the General Atomic

Company, it was necessary to make sure that SENSIT-2D will provide the

correct answers. One way for checking on the performance of SENSIT-2D

is to analyze a two-dimensional sample problem, which is one-dimensional

from the neutronics point of view, and then to compare the results with

a one-dimensional analysis. In this case 0NEDANT74 and SENSIT46 are

used for the one-dimensional study, while TRIDENT-CTR, TRDSEN, and

SENSIT-2D are used for the two-dimensionalanalysis.

Two sample problems will be studied. The first sample problem uses

real cross-section data, while the second sample problem utilizes arti-

ficial cross sections. Computing times, the influence of the quadrature

set order, and the performance of the angular fluxes versus the flux

moments option for the calculation of the chi’s will be discussed.

83



5.1 Samvle Problem 1}1

The first sample problem is a mock-up of a cylindrical geometry

(Fig. 8). There are four zones present: a source zone (vacuum),a per-

turbed zone (iron), a zone made up of 40% iron and 40% water, and a

detector zone (copper). The reaction rate of interest is the heat gen-

erated in the copper region. The source was assumed isotropic and had a

neutron density of one neutron per cubic centimeter (1 neutron/cm3).

The source neutrons are emitted at 14.1 MeV (group 2). The left bound-

ary is reflecting, and on the right there is a vacuum boundary condition.

Thirty neutron groups were used with a third order of anisotropic scat-

tering. The

energy group

In the

cross sections were generated using the TRANSX72 code. The

boundaries are reproduced in Table V.

two-dimensional model (TRIDENT-CTR) two bands--each 0.5-cm

wide--are present. In order to be consistent with the one-dimensional

analysis the upper and the lower boundaries were made reflective (Fig.

9). Each band is divided into 35 triangles (5 triangles for the source

zone, 10 triangles for each of the other three zones). The automatic

mesh generator in TRIDENT-CTR was used. The convergence precision was

-3set to 10 . A convergence precision of 10-3 means here that the aver-

age scalar flux for any triangle changes by less than 0.1% between two

consecutive iterations. A similar criterion is used in ONEDANT. The

calculation is performed with the built-in EQn -8 (equal weight) quad-

rature set. The mixture densities are given in Table VI. For the ad-

joint calculation the source is in zone IV and consists of the copper

84



Figure 8. Cylindrical geometry representationfor sample
problem #1
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TABLE V: 30-GROUP ENERGY STRUCTUIW

Neutrons
E-Upper Group E-Lowe r

(tkv) (UeV)

1.700+01 1

1.500+01 2

1.350+01 3

1.200*01 4

1.000+01 5

7.790+00 6

6.070+00 7

3.680+00 8

2.865*OO 9

2.232+00 10

1.738+00 11

1. 353*OO 12

8.230-01 13

5.000-01 14

3.030-01 15

1.8&0-01 16

6.760-02 17

2.480-02 18

9.120-03 19

3.350-03 20

1.235-03 21

4.540-04 22

1.670-04 23

1. 500+01

1.350+01

1 .200+01

1 .000+01

7.790+00

6.070+00

3.680+00

2.86S+00

2.232+00

1.738+oo

1.353+00

8.230-01

S.000-ol

3.030-01

1.840-01

6.760-02

2.k80-02

9.120-03

3.350-03

1.235-03

4.540-04

1.670-04

6.160-05

E-Uppr r Group E-Lowe r

( rlev ) (tk-v)

6.140-05 26 2.260-05

2.260-05 25 8.320-06

8.320-06 26 3.060-06

3.060-06 27 1.130-06

1.130-06 28 4.140-07

4.140-07 29 1.520-07

1.520-07 30 1.390-10
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REFLECTING BOUNDARY
10 cm

● 9

ZONE #11

pERT~ED

Fe

1(Jtriangles

10 cm
● ●

ZONE #ITI

40% Fe

10 triangles

10 cm

ZONE #IV

DETECTOR

Cu

10 triangles

REFLECTING BOUNDARY

30 neutron groups
.

neutron source: 1 neutron / cms in group2 (14.1 Mev)

P-3, EQn-8 : third-order of anisotropic scattering

8th-order equal weight quadrature set

response function:copperkerma factor in zone #IV

-3
convergence precision : 10

Figure 9. Two-dimensional (TRIDENT-CTR)representationfor
sample problem #l
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TABLE VI. ATOM DENSITIES OF MATERIALS

Atoms/m3

ZONE #1 Vacuum .-

ZONE #II Fe 8.490 + 28=

ZONE #IIIb Fe 3.396 + 28

H 4.020 + 28

0 1.900 + 28

ZONE #Iv Cu 8.490 + 28

a 8.490 + 28 = 8.49 X 1028

b
40 vol x Fe and 40 vol x water.
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kerma factors. The response is calculated in that case in zone I. It

was found that the adjoint calculation required more iterations and time

in order to reach convergence. Originally the forward calculation was

done using 20 triangles per band. The adjoint problem, however, did not

converge. In the evaluation process of the kerma factors, the kermas

for some groups are made negative in order to satisfy energy balance.

Making those negative sources zero in the TRIDENT-CTR run did not lead

to any improvement. Subsequently, 35 triangles per band were used.

When the negative sources were set to zero convergence was reached.

Ignoring the negative kerma factors leads to a 20~ increase in the total

heating. The forward calculation required about 11 minutes cpu time

(central processor unit time on a CDC-7600), while the adjoint cal-

culation required about 13.5 minutes. Generating the angular fluxes

using the TRDSEN code required about 20 seconds of cpu time for each

case.

TRDSEN does on extra iteration in order to generate the angular

fluxes. The convergence criterion in TRIDENT-CTR is based on the scalar

fluxes, and therefore one extra iteration in TRDSEN should be adequate.

However, restarting TRIDENT-CTR with the flux moments as starting

guesses, revealed that for some groups two extra iterations were neces-

-3
.

sary to reach a convergence precision of 10 . No explanation for this

could be found.

The one-dimensional model (ONEDANT) contains 35 intervals (5 for

the source zone, 10 intervals for each of the remaining zones). The

one-dimensional description for the forward problem is summarized in
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10 cm
● ●

10 cm
● *

—

ZONE #I
SOURCE
vacuum

5 intervals

ZONE #11 ZONE #111
PERTURBED

zFe
10 intervals

40%Fe+60%H2
10 intervals

10 cm

ZONE #IV
DETECTOR

Cu
10 interval

30 neutron groups
.

neutron source: 1 neutron / cm’ in group 2 (14.lMeVO

P-3, S-8 : third-order of anisotropic scattering

8th-order Gaussian quadrature set

detector response: copper kerma factor in zone #IY

-4
convergence precision: 10

Figure 10. One-dimensional (ONEDANT)representationfor
sample problem #1
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Fig. 10. Again it was found that the use of negative sources in the

adjoint calculation caused difficultieswith respect to the convergence.

In that case, groups 18 and 19 triggered the message “TRANSPORT FLUXES

BAD”; groups 4, 5, 6, 7, and 19 did not converge (max. number of inner

iterations 300/group). However, the overall heating in the copper

region was within 0.1% of the heating calculated by the forward run. A

coupled neturon/gamma-ray calculation (30 neutrons groups and 12 gamma-

ray groups) in the adjoint mode led to some improvement. In that case,

only group 2 did not converge. The required convergence precision in

-4the ONEDA.NTruns was set to 10 . The built-in S-8 Gaussian quadrature

sets were used. In order to be consistent with the TRIDENT-CTR calcula-

tions, the negative sources in the adjoint case were set to zero, even

though this did not seem to be necessary. Each run required about six

seconds of cpu time.

A standard cross-section sensitivity analysis (the cross sections

in zone II are perturbed) was performed using the SENSIT code and the

SENSIT-2D code. A ‘comparisonbetween the SENSIT and the SENSIT-2D

76results revealed that SENSIT does not rearrange the angular fluxes

correctly (in cylindrical geometry). To correct this error, a shuffling

routine which takes case of this deficiency was then built into SENSIT.

The SENSIT results are in good agreement with those obtained from

SENSIT-2D. The flux moments versus the angular flux option was tested

out for the calculation of the loss term. Again there is good agreement.

Finally, an uncertainty analysis was performed for the heating in the

copper zone. The SENSIT-2D analysis matches the SENSIT analysis.
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5.1.1 TRIDENT-CTR and ONEDANT results

A comparison of the heating in the copper region (zone IV) between

TRIDENT-CTR (and SENSIT-2D) and ONEDANT (and SENSIT) is summarized in

Table VII a. The adjoint calculations yield a 20% higher heating rate

due

The

The

to the fact that the negative kerma factors were set equal to zero.

one-dimensional and the two-dimensional analysis are in agreement.

computing times for those various runs are given in Table VII b.

Each ONEDANT run requires about 8 seconds of total computing time

(LTSS time), whereas it takes about 12 minutes to do the TRIDENT-CTR

runs. The TRIDENT-CTR runs were done with a convergence precision of

10-3,
-4

whereas for the ONEDANT runs a convergence precision of 10 was

specified. In order to obtain the same convergence precision in

TRIDENT-CTR about eight additional minutes of cpu time are required. It

was found that a forward coupled neutron/gamma-raycalculation (30 neu-

tron groups and 12 gamma-ray groups) required only 8 minutes of comput-

ing time with TRIDENT-CTR (convergence precision 10‘3). An explanation

for this paradoxicalbehavior is related to the fact that aS/GT has a

different (smaller) value in a coupled neutron/gamma-ray calculation.

The flux moments generated by TRIDENT-CTR and ONEDANT were com-

pared. In the ONEDANT geometry the angular fluxes are assumed to be

75
symmetrical with respect to the z-axis, so that the odd flux moments

(0:, 0;, 0:, and $:) vanish. Since TRIDENT-CTR performs a real two-

dimensional calculation the odd moments will not be zero in that case.

In our sample problems there is still symmetry with respect to the
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TABLE VIIa. COMPARISON OF THE HEATING IN THE COPPER REGION
CALCULATED BY ONEDANT AND TRIDENT-CTR

FORWARD ADJOINT

ONEDANTa 2.37382 + 7 2.40541 + 7

ONEDANT 2.01189 + 7 2.01882 + 7

TRIDENT-CTR 2.01175 + 7 2.39263 + 7

SENSIT 2.01011 + 7 2.40541 + 7

SENSIT-2D 2.01098 + 7

a
negative KERMA factors

TABLE VIIb. COMPUTING

set to zero

TIMES ONA CDC-7600 MACHINE

CPU-TIMEa 1/0 TIMEb LTSS TIMEC

ONEDANT FORWARD 5.80 sec. 1.87 sec. 7.65 sec.

ONEDANT ADJOINT 6.09 sec. 1.82 sec. 7.97 sec.

TRIDENT-CTR FORWARD 13.5 minutes

TRIDENT-CTR ADJOINT 11.1 minutes

SENSIT 4.92 sec. 0.55 sec. 6.08 sec.

SENSIT-2D 8.50 sec. 9.02 sec. 17.84 sec.

a
central processor unit time

b
input/output time

c Livermore time sharing system time (total computing time)
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z-axis. For that reason, the odd moments in TRIDENT-CTR will have oppo-

site signs in band one and band two. For some zones and some groups

this was not completely the case. There was about 30% difference in the

absolute values of some flux moments in band one and band two, which

indicates that the problem was not in a sense truly converged. The con-

vergence criteria in ONEDANT and TRIDENT-CTR test only for the scalar

fluxes between two consecutive iterations. Even when the convergence

criteria are satisfied in both codes, a true convergence of the angular

flux is not guaranteed. The even moments in band one are exactly the

same as those for band two. Because the contribution of the odd moments

is small compared to the contribution of the even moments (about one

thousandth), the problem can be considered fully converged.

The scalar flux moments calculated by TRIDENT-CTR and ONEDANT are

in very good agreement. The higher-order moments are different. Since

TRIDENT-CTR and ONEDANT do not use the same coordinate system, they do

not calculate the same physical quantity for the higher-order flux

moments. As long as TRIDENT-CTR is consistent with SENSIT-2D, and

ONEDANT consistent with SENSIT, the results from the one-dimensional

sensitivity analysis should match those obtained from a two-dimensional

sensitivity analysis.

5.1.2 SENSIT and SENSIT-2D results for a standard cross-section sensi-
tivitv analvsis

A standard cross-section sensitivity analysis was performed using

94



SENSIT and SENSIT-2D. The sensitivity of the heating in zone IV to the

cross sections in zone II was studied. SENSIT-2D requires about three

times more computing time than SENSIT in this case (Table VII b). The

main part of the calculation involves the evaluation of the $’s (gain

term). A complete sensitivity and uncertainty analysis may involve

several SENSIT (or SENSIT-2D) runs. Thus an option which allows one to

save the ~’s has been built into SENSIT-2D. It is obvious that the com-

puting time required in SENSIT-2D is negligible compared to the comput-

ing time required for the forward and adjoint TRIDENT-CTR calculations.

The partial and the net sensitivity profiles calculated by SENSIT

and SENSIT-2D are reproduced in TABLES VIII a and VIII b. It can be

concluded that the SENSIT-2D results are in good agreement with those

obtained by SENSIT. Note that the absorption cross section is negative

for groups 2 and 3. A negative absorption cross section does not nec-

essarily indicate that errors were made during the cross section pro-

cessing. There are various ways to define an absorption cross section,

and a controversy about a commonly agreed on definition is currently in

progress. What is called an absorption cross section in a transport

code is not truly an absorption cross section but the difference between

the transport cross section and the outscattering (f=# -zu~g’).
tr g’

Note that groups 2 and 3 are the main contributors to the integral

sensitivity.

It was mentioned earlier that the X’S can be calculated based on

flux moments or based on angular fluxes according to
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TABLE VIIIb: PARTIAL AND NET SENSITIVITY PROFILES
FOR THE TWO-DIMENSIONALANALYSIS
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Table IX provides a comparison between the x’s calculated from angular

fluxes and flux moments. There is a very good agreement. It was found

that this relationship is also true in the one-dimensional analysis.

For Q = Oand!l= 1, the Y~’ s calculated in SENSIT and SENSIT-2D are

different. However, the YQ’s defined by

are in agreement.

5.1.3 Comparison between a two-dimensionaland a one-dimensionalcross-
section sensitivity and uncertainty analysis

A cross-section sensitivity and uncertainty analysis was done for

the heating in the copper region, using SENSIT and SENSIT-2D. In this

analysis the effects of the uncertainties in the secondary energy dis-

tribution were included. Six separate SENSIT (or SENSIT-2D) runs were

required:

(123)



TABLE IX: CO.WARISON BETWEEN THE CHI’S CALCULATED FROM ANGULAR

+oc;

1

?

3

II

c.

6

?

8

9

10

32

12

13

lb

15

16

37
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:9

20

21

2?

23

2iJ

25

26

27

28

29

30

SFNS17-7D

Chl (an F. fluxes)

0.0

?.5058+9

2.lJ390*7

6.130b4

8.3365+6

5.6B69+6

9.395345

5.68834

7.151JY6

7.331J9*6
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2.1571*7

2.857167

2.5L?9*7

6.31J91*6

1.57!33+7

6.5269*6

~.763&6

1.21J63+6

7.6860+;

3.7761J*s

3.71L15*5

2.9673*;

2.?o&l●5

1.5D57*5

9.IJ631A

5ol@9041

2.91J76+II

1.3321PlJ

7.3951*II

chi (flux mow~ts )

0.0

2.5%3.9

2.11362+7

6.1261A+6

8.3329+6

5.695L+6

9.39UP6

5.6M146

7.15h3*6

7.331J9*6

7.5619+6

2.1571*7

2.9571+7

2.5L29*7

6.31A1*6

L57i!3*7
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1.7536+6
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2.BIL994

1.3318*II

2.IA91O+II

ch i (flu monwts)

2.5003+9
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three runs for the vector cross-section sensitivity and uncertainty

analysis (one for the cross sections of zone II, one for the cross

sections of zone III, and one for the cross sections of zone IV),

three runs for the SED sensitivity and uncertainty analysis.

Oxygen was not included in the vector cross-section sensitivity and un-

certainty analysis, and hydrogen was ignored in the SED sensitivity and

uncertainty analysis.

The procedure for an uncertainty analysis has been discussed by

Gerstl.
45

The results from the one-dimensional analysis are reproduced

in Table Xa, while those from the two-dimensional study are given in

Table Xb. The studies are in good agreement. Sensit required a total

of 89 seconds of computing time, while SENSIT-2D required 90 seconds on

a CDC-7600 machine. The uncertainty of the heating rate due to all

cross-section uncertainties is 30%. The iron in zone II is the largest

contributor to that uncertainty. The contribution of the SED uncer-

tainty is smaller than that from the vector cross sections. Gerstl

points out that the results obtained from the SED analysis might have

been underestimated due to the simplicity of the “hot-cold” concept and

due to the fact that the partial cross sections which contribute to the

secondary energy distribution were not separated into individual partial

45
cross sections.
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TABLE Xa. PREDICTED RESPONSE UNCERTAINTIES DUE TO ESTIMATED CROSS
SECTION AND SED UNCERTAINTIES IN A ONE-DIMENSIONALANALYSIS

CROSS RESPONSE UNCERTAINTIES DUE
SECTION ZONE TO SED UNCERTAINTIES, IN z

[1AR

[1

AR ‘~
F F

x-sect zone
zone

Fe II 8.18 8.18

Fe III 2.50

0 III 0.78 2.61

-~q ;,,

RESPONSE UNCERTAINTIES DUE
TO CROSS-SECTIONUNCERTAIN-
TIES, IN z

[1AR

[1

m ~’
Ii_ F

x-sect
zone zone

23.80 I 23.80

10.33 I

10.52
I

Overall uncertainty = (9.482 + 28.542)* = 30.0%

1.96 I

11.72 11.72
I

I 28.54

* quadratic sums
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TABLE Xl). PREDICTED RESPONSE UNCERTAINTIES DUE TO ESTIMATED CROSS
SECTION AND SED UNCERTAINTIES IN A TWO-DIMENSIONALANALYSIS

CROSS RESPONSE UNCERTAINTIES DUE
SECTION ZONE TO SED UNCERTAINTIES, IN z

[1

AR

[1

AR*
T

element
K zone

zone

Fe II 8.17 8.17

=--Ju 2“’0
o 0.79 2.62

H 111

Cu Iv I 4.02 I 4.02

All* I I 9.47

RESPONSE UNCERTAINTIESDUE
TO CROSS-SECTIONUNCERTAIN-
TIES, IN x

[1

AR
r

element
zone

23.88

10.27

1.96

11.68

Overall uncertainty = (9.472 + 28.572)* = 30.1%

[1AR~ii-

zone

23.88

10.46

11.68

28.57

* quadratic sums
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5.2 Sample Problem /}2

A simple one-band

of the mesh spacing,

c-factor (mean number

profile. The band is

problem will be analyzed to study the influence

quadrature order, convergence precision, and the

of secondaries per collision) on the sensitivity

l-cm high and 20-cm wide. There are ten distinct

zones, each l-cm wide (Fig. 11), and all zones are made of the same

material. A three-group artificial cross-section set with a third-order

anisotropic scattering is used (Table XI). The PI, P2, and P3 compo-

nents of the scattering cross-section tables were chosen to be identical

with the P. component. A volumetric source with a

1 neutron/cm3 in group 1 is present in the first

cross-section sensitivity analysis will be performed,

sections in zone IV are perturbed, and the detector

source density of

zone. A standard

in which the cross

response is calcu-

lated in zones IX and X for a response function of 100 cm
-1

in each

group.

5.2.1 Influence of the quadrature order on the sensitivity profile

The detector response calculated by TRIDENT-CTR using EQ6, EQ12~

and EQ16 quadrature sets are compared in Table XII. For the first three

cases, the pointwise convergenceprecision was set to 10
-3 and each zone

contained four triangles (using automatic meshes). Five additional

cases are included in Table XII:
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#I #n a III u Iv

tone cone

#v Uvz # VII 4’VIII 4 IX ax
2

0.0 1.0 2.0 3.0 IJ.O 5.0 6.0 7.0 8.0 9.0 10.0m

REFL’=.CHNGBWNMRY

r-z geometry

All zones contain identical materials

3 neutron groups

Neutron source: 1 neutron / cm3 in zone I and group 1

Response function: 100 cm
-1

(all groups}

Figure 11. Two-dimensional model for sample problem #2
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TABLE XI: CROSS SECTION TABLE USED IN SAMPLE PROBLEM /}2
(mPO, PI, P2, AND P3 TABLES ARE IDENTICAL)

0.02

0.0

0.1

0.05

0.0

0.0

0.05

0.0

0.2

0.1

0.02

0.0

0.1

0.0

0.3

0.2”

0.05

0.01
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TABLE XII: INTEGRAL RESPONSE FOR SAMPLE PROBLEM /)2

Transport Quadrature Convergence Forward Adjoint
Code Set Precision # Triangles Response Response

TRIDENT-CTR EQ-62 10-3 40 593.968 592.256

TRIDENT-CTR EQ-12 10-3 40 592.826 591.659

TRIDENT-CTR EQ-16 10-3 40 593.659 592.476

TRIDENT-CTR EQ-12 10-4 40 593.659 593.148

TRIDENT-CTR Eq-12 10-4 80 593.688 593.208

ONEDANT S-123 10-4 40 593.855 590.370

ONEDANT S-32 10
-4

40 591.814 590.883

ONEDANT S-32 10
-4

80 592.055 590.900

1 # spatial intervals for ONEDANT.

2 equal-weight quadrature sets.

3 Gaussian quadrature sets.
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1.

2.

3.

4.

5.

integral response using an EQ12 quadrature set with conver-

-4
gence precision 10 ;

integral response using an EQ12 quadrature set with conver-

-4gence precision 10 and eight triangles

integral response calculated by ONEDANT

ture set, four intervals per zone and a

cision;,

per zone;

using an S12 quadra-

10
-4

convergence pre-

integral response calculated by ONEDANT, using an S32 quadra-

ture set, four intervals per zone and a 10
-4

convergencepre-

cision;

integral response calculated by ONEDANT, using an S32 quadra-

ture set, eight intervals per zone and a 10
-4

convergence pre-

cision.

The response functions in Table XII are in good agreement (maximum dif-

ference 0.6%). The standard cross-section sensitivityprofiles for the

EQ6, EQ12, and EQ16 calculations are reproduced in Tables XIIIa, XIIIb,

and XIIIC. The integral sensitivity for the EQ6 case is S% different

from the EQ12 case for AXS (absorption cross-section sensitivity pro-

file) and S% different for N-GAIN (outscattering cross-section sensi-

tivity profile). The results obtained from the EQ12 calculation are in

good agreement with those obtained from the EQ16 calculation. The sen-

-4
sitivity profiles for the EQ12 case (10 convergence precision) and the

EQ12 case (10
-4

convergence precision, eight triangles per zone) are not

shown. They are nearly identical with Table XIIIb.
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I

TABLE IIIa: STAiiDARDCROSS-SECTIONSENSITIVITYPROFILES
CALCL?LATEDBY SENSIT-2D FOR THE EQ-6 CASE
(CONVERGENCEPRECISION 0.001, 4 TRIANGLES
PER ZONE) FOR SAMPLE PROBLEM #2

—PURE LOSS TERNS—
GROUP UPPER-E [EV) DELTfl-U a%

~* PURE GIIIN TER~ ~b
NU-FISS

1 1.0i3eE+Ql 6.93E-B1
N-GRIN N-G171N(sED)

-4.632E-92 B. - 1.I%E-01 -2.316E-81
NG-!XIN

5. Q8fiE+E!B
1.549E-el

I .61 Efflo -4.532E-83 0.
1.155E-01 B.

: 1.68BEWE
-1. 359E-B2 -1.61 ZE-82

6.93E-81
1. IB6E-82

-1.142E-82 0.
2.196E-E2 0.

-2.2 E42-B2 -3. 426E-B2 2.264s-82 3. W7E-B2 8.
---------- ---------- --------.- -_ --------

INTEGRRL
---------- -----_---

-4.732E-02 5. -1.661E-B1 -2. 135E-B1 1.423E-B1 1.423E-01 8.

- NET PROFILES _
GROUP UPPER-E(EV) DELTR-U SEN SENT

6.93E-tll
; ;:%’%%

-3.839E-02 -7.671 E-Ei2
1.61E+ao -1.731E-83 -6.263E-83

3 1. e00Ei08 6.93E-01 3. Z52E-B6 -1.142E-B2
---------- ----------

lNTEGRRL -2. 3BSE-B2 -7. 116E-E12

TABLE XIIIb: STANDARD CROSS-SECTIONSENSITIVITY PROFILES
CALCULATED BY SENSIT-2D FOR THE EQ-12 CASE
(COIWERGENCEpREcIsIoN 0.001, 4 TRIAINGLES
PER.ZONE) FOR SAMPLE PROBLEM.#2

c~o~m~R-E(EV) DELTR-u

—PURE LOSS TERHS _
axs

_ PURE GRIN TERI’s mss
NU-F 1SS

l.eeeE+Ol 6.93E-E1
N-GFIIN N-GQIN(SED)

-4.329E-82 E!. -1. %E-E!l
NG-GfilN

2 s.wllxee 1.61E+OE
-2. 164S-81 1.45BE-B I 1. B75E-01 0.

-4.366E-B3 0. -1.318E-02
3 1.B80ET90 6.93E-B1

-1.746E-02 1. 14 SE-E2 2.125E-02 B.
-1.103E-B2 0. -2.206E-02 -3.310E-E2 2.287E-E2 3.761E-32 e.
---------- ---------- --—------ ---------- ---------- ---------- ----------

INTEGRCIL -4.46 BE-B2 B. -1.564E-B1 -2. EIIIE-BI 1.348 E-8 I 1.348E-81 0.

- NET PROFILES _
GRnuP UPPEP-E(EV) DEL7Q-U SEN SENT

1. Et18E~I 6.93E-01 -2.731 C-t12 -?. E6W-B2
: 5.eetl:*B 1.61 E+EK! -1.66BE-83 -6.034S-83
3 1 .886E*8 6.93E-01 8.2148E-87 -1. 1B3E-B2

---------- ----------

INTEGRI?L -2.161E-02 -6.629E-B2
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TABLE X1llC: STANDARD CROSS-SECTIONSENSITIVITYPROFILES
CALCULATED BY SENSIT-2D FOR THE EQ-16 CASE
(CONVERGENCEPRECISION 0.001, 4 TRIANGLES
PER ZONE) FOR SANPLE PROBLEN #2

—PURE LOSS TERIIS_
CROUP UPPER-E(EV) DELTI?-U as

~ PURE GIIIN TER~ m.++
W-F 1SS N-GRIN N-G91ti(SED)

l. OEe:+Ol 6.93E-01 -1. %E-EIl
NG-GRIN

-4.29 aE-e2 e.
;

-2. 145E-B1 1.443E-81
5.eeeE+oB 1.61E+eB

1.062E-BI Il.
-4.33 EE-B3 8.

3
-1.295E-E12 -1.732E-82

1.6E9E+W
1. 133E-B? 2.1 L39E-EQ 0.

6.93E-01 -1. E94E-B2 B. -2. 18 EE-E32 -3.281E-B2 2. 187E-B.? 3.732E-B2 0.
---------- ---—----- -— ------- —-------- ---------- ---------- ---------.

lNTEGIWL -4.429[-02 0. -1.55BE-01 -1.993E-01 1.334E-131 1.334s-81 e.

w NET PROFILES -
GROUP UPPEP-E(EV) DELT9-U SEN SENT

6.93E-81 -2.734S-02 -?.824:-02
: ;::%:2; 1.61E+ae -1.658E-B3 -5.988E-B3
3 1.E18EE+0B 6.93E-01 -1.4B4E-86 -1.094S-82

--------.- ----------

INTSGRQL -2. 162E-B2 -6.591 E-E12
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Note that the net sensitivity profiles SEN (= SXS + N-GAIN)

-6group 3 are respectively 3.252 x 10 , 8.040 x 10-7, and 1.484 x

for the EQ6, the EQ12, and the EQ16 case. The large discrepancies

can be attributed to the fact that those quantities result from

tracting two numbers that are nearly equal in magnitude.

for

10
-6

here

sub-

It can be concluded from Tables XII and XIII that even when the

integral responses differ by less than 0.4%, the sensitivity profiles

can differ by as much as S% between an EQ6 and an EQ12 calculation. The

close agreement between the results from the EQ12 and the EQ16 calcula-

tion suggest that this difference is probably due to the fact that the

81angular fluxes in the EQ6 calculation are not yet fully converged.

Indeed, choosing the higher-order anisotropic scattering cross sections

equal to the isotropic components is unphysical. The convergence cri-

teria used in ONEDANT and TRIDENT-CTR do guarantee convergence for the

scalar fluxes, but not for the higher-order flux moments.

5.2.2 Comparison between the two-dimensionaland one-dimensional analy-
sys of sample problem #2

The cross-section sensitivity profiles resulting from a one-dimen-

sional analysis (S12 quadrature set, 10-4 convergence precision and four

-4intervals per zone; S32 quadrature set, 10 convergence precision and

eight intervals per zone) are compared with those obtained from a two-

dimensional analysis (EQ12 quadrature set, 10-4 convergence precision

and eight triangles per zone in Tables XIVa, ..IVb,and XIVC.
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TABLE XIVa: STANDARD CROSS-SECTIONSENSITIVITY PROFILES
CALCULATED BY SENSIT FOR THE S-12 CASE (CON-
VERGENCE PRECISION 0.0001, 4 INTERVALS PER
ZONE} FOR SAl@LE PROBLEM #2

● *--O ● u

** +0*000- ●ums m:lli Tcmas —

S-au* UP*C--CWW) DELT*-U mAs

N-rbnxN w-sntukscn> N8-6n1N

1 1.60uE*01 6.93c-01 -4.ZU4S-02
-01 1.351r-ol 9.9i?oc-02 o.

2 5.0001+00 1.61E+O0 -4.3S.7C-03
-02 1.14(lr-022.035E-02 O.

3 1.000r+oo 6.93E-01 -l.lUIC-02
-02 2.234c-02 3.733c-62 O.

.-------—-
--- ---------- ---—-..--= ----------
xNTE- -4.4&lE-oz

-01 1.274s-01 1.27+-01 O.

WE Loss T c m m s ●----*

NU-FXSS Sxs T.s

o. -1.713E-U1 -2. 1412E

o. -1.307C-OL -1.i’43r

o. -2.ZOEC-CE -3.303C

---------- ---------- -------

0. -1.551E-U1 -1. 954L

-* WET ● WILES —

Smnu- Wwcm-c(mw) DELT*-U SEW SENT

l.orlk+ol 6.5%-01 ‘3.bcWE-02 -7.51ic-62
; 5.000s+00 1.61c+O0 -1.bilK-03
3

-6. 01?6r-03
1.000s+66 6.93E-01 3.23<c-64 -1.065E-OZ

---------- ----------

xNTm~ ‘i?.7bi?E-02 ‘7.195E-02

TABLE XIVb: STANDARD CROSS-SECTIONSENSITIVITY PROFILES
CALCULATED BY SENSIT FOR THE S-32 CASE (CON-
VERGENCE PRECISION 0.0001, 8 INTERJ’ALSPER
ZONE) FOR SAMPLE PROBLEM42

u===Pu RE LOSS TER?lS -- — PuRE GRIN lERt?5 ex~=
GROUP IJPPER-E(EVI OELTR-U axs NU-FISS N-GO IN tWXIIl{(SED)

1 .aae:+ol 6.93E-01 -4.215E-E2 B. -1.%E-81
NL-GR ,!1

-2. lEi7E-01
; s. EIa3E+e8 1.61 Eff10

1.2Y9E-el
-4.277E-03 B.

9.517 E-E12 0.
-1 .2 E3E-E2

3
-1.711E-02 1. I?8E-B2

1.0E8EWE 6.93E-B1 -1. tJ81E-E12 B.
1.991E-82 0.

-2. 161E-02 -3.24?E-02 ?.221E-82 3.6B9E-02 0.-------— ---------- ---------- ---------- ---------- ---------- -_--------
INTEGR9L -4.359E-B2 B. -1.525E-B1 -1.961E-B1 1.226F-e I 1.236E-B1 8.

- NET PROFILES s=8
CROUP WP!ZR-E(EV) DELTR-U SEN SENT

l. BOBEiOl 6.93E-01 -3.871E-B2 -B. B86E-B2
; S.eaetee1.61E+W -1.551 E-Li3 -5. tJ29E-83
3 1.8BOE+W 6.93E-81 5.5B9E-e4 -1. B21E-B2

----—---- ----------

lN?EGRQL -2.891E-B2 -7.258E-02
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TABLE XIVC: STANDARD CROSS-SECTIONSENSITIVITY PROFILES CALCU
CALCULATED BY SENSIT-2D FOR THE EQ-12 CASE (CON-
VERGENCE PRECISION 0.0001, 8 TRIANGLES PER ZONE)
FOR SAMPLE PROBLEM #2

GROUP IJFPER-E(EV)
1 i.eBLIE*l
2 5. BWE+W
3 1. B8K+W

GROUP UPPER-E (EVI
1.81ME+0 1

; 5. EKW*EB
3 1. 886 E+L18

ULW481BIPURE LOSS TERn S_
DELTII-U

_ PuRE GRIN TERtS _
NU-FISS

-4.:%-02 0.
N-GRIN N-GRIN (SED)

6.93E-01
tc-tm IN

-1. %E-01 -2. 162E-81
1.61E+ao

1.457E-EI1 1.e?4E-@l 8.
-4.362E-03 0. -1 .3 E19E-02 - 1.i45E-E12

6.93E-B1
1. 14?E-E2 2.}23E-fJ2 8.

-1.162E-02 8. -2.2 E3E-B2 -3.365E-02 2. 2a3E-a2 3.755E-a2 e.---------- ---------- ---------- -- —------ -- —---- ---------- ----- ---- .
-4.463E-02 B. -1.562E-B1 -2. EI139E-81 1.346E-91 1.34GE-Eil 8.

w=K.? NET PROFILES _
DELT12-U SEN SENT
6.93E-B1 -2. 727E-E2 -7. e51F-e?
1.61E*a -1.662=-03 -C.03dE-E13
6.93E-01 7. YIBE-07 -1. 182c-e2

---------- --------—
-2.158E-02 -6.621E-B2INTEGR9L
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Note that the N-GAIN integral sensitivity differs by about 6X be-

tween Table XIV b and XIV c. The integral net sensitivity shows a 35X

difference for SEN (= SXS + N-GAIN) and a 10% difference for SENT

(= TXS + N-GAIN) between the one-dimensional and the two-dimensional

analysis. The bulk part of this large difference for the integral net

sensitivity results from the subtraction of two numbers that are nearly

equal in magnitude. A comparison of N-GAIN (integral) in Tables XIV a,

XIV b, and XIV c suggests that - even with an S32 quadrature set - the

one-dimensional calculation is not yet full~ converged.

5.3.2 Comparison between the x’s calculated from angular fluxes and the
X’s resulting from flux moments

The x’s (or the loss term of the cross-section sensitivity profile)

can be evaluated based on flux moments (Eq. 58) or based on angular

fluxes (Eq. 57). A calculation based on flux moments requires less com-

puting time, less computer memory, and less data transfer. To have an

idea of the order of expansion of the angular fluxes in flux moments

necessary to reach a reasonable accuracy, the x’s resulting from angular

fluxes are compared with those obtained from a P-O, P-1, P-2, . . .,P-17

spherical harmonics expansion of the angular fluxes (Table XV). It is

found that for any expansion of order greater

agreement (less than l% difference for I Xg).

g
harmonics expansions (P-15 and higher) there is

gence can be avoided by doing the computations

than P-O, there is good

For very high spherical

divergence. This diver-

in quadruple precision.
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TABLE XV: COMPARISON BETWEEN THE CHI’S CALCULATED FROM ANGULAR
FLUXES AND THE CHI’S CALCULATED FROM FLUX MOMENTS

Order of Expansion of X1= X2 X3 1%2( g .Xg)
the Angular Flux om

g
ang

I

angular fluxes

o

1

2

3

4

5

6

7

8

9

10

11

12

14

16

17

889.88

796.63

880.43

868.78

884.11

884.58

886.82

888.82

889.16

889.78

889.74

889.91

890.01

889.89

898.27

938.59

951.85

83.382

76.811

83.755

83.054

83.374

83.388

83.385

83.389

83.381

83.381

83.382

83.383

83.385

83.382

83.573

83.100

85.617

45.352

41.898

45.524

45.326

45.353

45.364

45.357

45.354

45.353

45.352

45.352

45.352

45.351

45.351

45.431

46.203

46.416

103.275

8.905

21.454

5.777

5.282

2.052

1.051

0.720

0.101

0.140

0.031

0.133

0.009

8.610

51.279

65.269

al
X mean X for group 1
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The small differences in Table XV indicate that the loss term of

the sensitivity profile can indeed be calculated based on a low-order

spherical harmonics expansion of the angular fluxes.

5.2.4 Evaluation of the loss term based on flux moments in the case of
low c——

The question whether the X’S

from Eq. (58) in the case of low

lision) was raised.8 Based on an

can be computed with adequate accuracy

c (mean number of secondaries per col-

analytical one-dimensional analysis of

the half-space problem (one group) with a mono-directional boundary

source, it was found that for c less than 0.8, a low-order spherical

harmonics expansion of the angular flux would

in the X’S.

In order to confirm the analytical study,

lead to erroneous results

sample problem /}2was re-

examined with a different cross-section table. The corresponding c’s

were 0.5 for the high-energy group, 0.4 for the second group, and 0.33

for the low-energy

still in agreement

a P-1 expansion).

group. The x’s calculated based on flux moments were

with those obtained from the angular fluxes (even for

An explanation for this paradoxical behavior is prob-

ably related to the use of a distributed volumetric source in sample

problem //2,whereas the conclusions drawn in the analytical evaluation

were based on the presence of a mono-directionalboundary source.
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5.3 Conclusions

The rigorous study of the two sample problems indicates that there

is good agreement between the one- and two-dimensionalanalysis. Wher-

ever discrepancies appear, a plausible explanation can be provided. Ul-

timately, the comparison between a one- and two-dimensional study proves

to be a sound debugging procedure for SENSIT-2D as well as for the

SENSIT code.

For the flux moments versus the angular fluxes comparison for the

evaluation of the x’s, there is a strong indication that the loss term

can be calculated from lower-order flux moments (P-1) as well as from

angular fluxes. By the same token, a P-1 sensitivity and uncertainty

analysis seems to provide sufficient accuracy.

The study of the influence of the quadrature sets on the sensi-

tivity profiles reveals the importance of the angular-flux convergence

in ONEDANT and TRIDENT-CTR. Furthermore, some doubts about the meaning-

fulness and practicality of the net sensitivity profile (SEN) can be

raised.
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6. SENSITIVITY AND UNCERTAINTY ANALYSIS OF THE HEATING IN THE TF COIL

FOR THE FED

In this part a secondary energy distribution and a vector cross-

section sensitivity and uncertainty analysis will be performed for the

heating of the TF coil in the inner shield of the FED. The results ob-

tained from the two-dimensional analysis will be compared with selected

results from a one-dimensionalmodel. The blanket design for the FED is

82,83currently in development at the General Atomic Company.

6.1 Two-DimensionalModel for the FED

The two-dimensional model for the FED in r-z geometry is illus-

trated in Fig. 12, and is documented in more detail in reference 84.

The ❑aterial composition is shown in Table XVI. In the forward TRIDENT-

CTR model, 84which was set up by W. T. Urban, the standard Los Alamos

42 coupled neutron/gamma-ray group structure was used.85 There are 30

neutron groups and 12 gamma-ray groups. The TRIDENT-CTR model84 (Fig.
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13) utilizes 2062 triangles, divided over 27 bands. The response func-

tions for calculating the heating in the TF coil, were prepared by the

TRANSXX code.72 Those response functions will be the sources for the

adjoint calculation. It was noted earlier that negative sources can

introduce instabilities in the sweeping algorithm for the adjoint

TRIDENT-CTR calculation. The negative kerma factors are therefore set

to zero. This will have a minor effect on the total heating calculated

in the TF-coil (less than 1%).

EQ-2 and EQ-8 quadrature sets are used for groups 1 and 2 respec-

tively, EQ-3 is used for groups 3, 4, and 5, while an EQ-4 quadrature

set is utilized for the remaining groups. The convergence precision is

-3
specified to be 10 . The gamma-ray groups contribute most to the heat-

ing in the TF coil (93%). The total heating in the TF coil is 823 x

10‘6 Mw.

The heating calculated by the adjoint TRIDENT-CTR calculation is

found to be 3X smaller than the heating resulting from the forward run.

The forward calculation required about one hour of c.p.u. time on a

CDC-7600 computer, while the adjoint run took about four hours. Groups

11 to 23 required significantly more inner iterations in the adjoint

mode than the other groups. No explanation of this behavior could be

found. Experience with other neutronics codes indicates that the ad-

joint mode for this type of calculation requires usually no more than

30% extra calculation time.
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6.2 Two-DimensionalSensitivity and Uncertainty Analysis for the Heating
in the TF Coil due to SED and Cross-SectionUncertainties

A secondary energy distribution and vector cross-sectionuncertain-

ty analysis was performed with SENSIT-2D using the forward and adjoint

angular flux files created by TRDSEN. A separate SENSIT-2D run is re-

quired for each zone. Because separate runs are necessary for a cross-

section and a SED analysis, a total of 22 SENSIT-2D cases were analyzed.

A total of 15 minutes c.p.u. time was used by SENSIT-2D. The bulk of

this time is consumed during input/outputmanipulations.

The median energies and fractional uncertainties for the SED uncer-

tainty calculationswere taken from Table II.45 A special cross-section

table was created - using TRANSX - for the SED analysis. COVFILS33 data

were used for generating the covariance matrices utilized in the cross-

section uncertainty evaluation. Only 0-16, C, Fe, Ni, Cr, and Cu were

considered for the SED uncertainties, while H, Fe, Cr, Ni, B-10, C, and

Cu were included for the cross-section uncertainties. With the excep-

tion of oxygen, no important materials were left out. It was found in

an earlier study that the cross-section uncertainties for oxygen caused

45an 8X uncertainty in the heating. The current version of SENSIT-2D

does not include the option to extract the covariance data for oxygen

from COVFILS.

The gamma-ray cross

neutron cross sections.

sections are generally better known than the

Therefore, only the uncertainties resulting
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from uncertainties in neutron cross sections are calculated. Throughout

this analysis a third order of anisotropic scattering is used.

The predicted uncertainties in the heating of the TF-coil are sum-

marized in Table XVII. It was assumed that the uncertainties for a par-

ticular element in the various SS316 zones (1, 3, 7, 11, and 12 in Fig.

12) are fully correlated, while all other uncertainties were assumed to

be noncorrelated. This implies that the uncertainties for a particular

element can be added over all SS313 zones, while all the other uncer-

tainties are added quadratically. The approach of either assuming full

correlation or assuming noncorrelation is rather simplistic. Trans-

lating the physics of this particular problem into a more sophisticated

correlation scheme would be a major study by itself. The uncertainties

resulting from the uncertainties in the cross sections for Cr, Fe, and

Ni in the SS316 zones are reproduced in Table XVIII.

From Table XVII it can be concluded that the cross-section uncer-

tainties (predicted to be 113%) tend to be more important than the SED

uncertainties (20%). Even when the overal uncertainty seems to be rela-

tively large (115?6),the blanket designer is able to set an upper bound

for the heating in the TF coil. The largest uncertainties are due to

uncertainties in the Cr cross sections. A more detailed look at the

computer listings generated by this analysis reveals that the largest

uncertainties are produced by uncertainties in the total Cr and the

elastic Cr scattering cross sections. The heating is less sensitive to

Cr than to Fe. This indicates that the calculated uncertainty is large-

ly due to the fact that Cr has very large covariances. A re-evaluation
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TABLE XVII: PREDICTED UNCERTAINTIES (STANDARDDEVIATION) DUE TO
ESTIMATED SED AND CROSS-SECTIONUNCERTAINTIES FOR
THE HEATING IN THE TF COIL (part 1)

Cross Section

Material Zone

Cr SS316
TFCOIL
SS304
SS312
ISDLC
ISDLB
ISDLA

Fe SS316
TFCOIL
SS304
SS312
ISDLC
ISDLB
ISDLA

Ni SS316
TFCOIL
SS304
SS312
ISDLC
ISDLB
ISDLA

SED Uncertainties in z

[1ARx Mat,region

3.8
0.2
0.1
0.0
0.2
0.8
3.0

14.8
0.1
0.0
0.2
0.5
2.7
10.8

1.5
0.7
0.0
0.0
0.0
0.4
1.2

4.9

18.4

4.3

XS Uncertainties in %

[1AR
[1

AR*
T

Mat,region T
-Mat

60.0
34.5
4.5
1.1 96.7
2.2
33.3
58.5

18.9
10.4
2.2

47.3
:::
23.6
34.5

18.6
11.8
0.9
0.4
1.3
13.4
18.0

31.4

* Quadratic Sums
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TABLE XVII: PREDICTED UNCERTAINTIES (STANDARDDEVIATION) DUE TO
ESTIMATED SED AND CROSS-SECTION UNCERTAINTIES FOR
THE HEATING IN THE TF-COIL (part 2)

Cross Section

Material Zone

H TFCOIL
ISDLC
ISDLB
ISDLA

o TFCOIL
ISDLC
ISDLB
ISDLA

c TFCOIL
C-region

B TFCOIL

Cu TFCOIL

Total*

SED Uncertainties in ‘% I XS Uncertainties in z

1.7
6.0 7.2
3.7
0.5

0.1
0.2 0.3
0.1
0.1

0.0 0.1
0.3 I 0.3 I 3.2 I 3.2

1- I 0.0 I 0.0

2.9 I 2.9 I 10.1 I 10.1

19.7 I 112.9

Total uncertainty due to cross-section uncertainties and SEDS = 114.6%.*

*
Quadratic Sums
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TABLE XVIII: PREDICTED SED AND CROSS-SECTION
TF COIL DUE TO UNCERTAINTIES IN

Cross Section SED Uncertainties in x

[1
*

Material Zone AR
x

Mat,regionF]RMat

UNCERTAINTIES IN THE
THE SS316 ZONES

XS Uncertainties in z

HARx Mat,region

Cr 1 0.1 12.0
3 0.7 45.5
7 0.0 3.8
11 3.0 ::!
12 0.0 0.4

Fe 0.5 2.3
; 3.1 11.3
7 0.1 14.8 0.7
11 11.0 4.3
12 0.1 0.3

Ni 1 0.0 3.6
3 0.3 12.8
7 0.0 1.5 0.3
11 1.2 1.8
12 0.0 1.1

HAR ‘:
x

Mat

60.0

18.9

18.6
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of the covariance data for Cr is highly recommended. If new covariance

data would not reduce the predicted uncertainty, new experiments for

measuring the Cr cross sections are suggested. The conclusions drawn

here are consistent with an earlier study of a similar design.45

The SED uncertainties, although less relevant to overall predicted

uncertainty, tend to become more important in the outboard shield

(region 11 in Table XVIII). An explanation for this behavior is related

with the fact that the heating in the TF coil will be very sensitive to

backscattering in this region. An SAD (secondaryangular distribution)

sensitivity and uncertainty analysis might lead to very interesting

results.

The x’s for the region near to the plasma in the outboard shield

are calculated for each group based on angular fluxes and based on flux

moments (Table XIX). Both methods lead generally to the same X’S. The

difference for the upper neutron groups might indicate that a third-

order spherical harmonics expansion of the angular flux tends to become

inadequate, due to the peaked shape of the angular flux close to the

source region. In this particular study no serious error in the calcu-

lation of the uncertainties would have been introduced if the loss term

of the sensitivity profile would have been calculated from flux moments.

For a situation where the angular flux would have a pronounced peaked

behavior, it would be highly desirable to evaluate the x’s based on

angular fluxes.
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It is obvious from Table XIX that some fluxes in the lower gamma-

ray groups (groups 41 and 42) are negative. Since only neutron sensi-

tivity profiles are utilized to calculate uncertainties, this will not

affect the results.

6.3 Comparison of the Two-DimensionalModel with a One-DimensionalRep-
resentation

The results obtained from the two-dimensional sensitivity and un-

certainty analysis will be compared with those of a one-dimensional

analysis in selected regions (Table XX). The uncertainties in the heat-

ing in the TF coil due to the uncertainties in the Cr, Ni, and Fe cross-

sections and secondary energy distributions will be calculated with

ONEDANT and SENSIT in zone 1 and zone 3 (Fig. 12). The one-dimensional

model for ONEDANT is straightforward. The total heating calculated in

the TF-coil is 1043 x 10-6 MW (compared to 823 x 10
-6

MW for the two-

dimensional model). In this comparison the uncertainties calculated by

SENSIT will be normalized to the response calculated in the two-dimen-

sional model.

It can be concluded from Table XII that the calculated uncertain-

ties agree reasonably well for zone 3. There are substantial differ-

ences for the results in zone 1. The reason for those differences is

probably related with the fact that the one-dimensional model is not

adequate for calculating the overall heating in the TF coil (especially
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TABLE XIX: COMPARISON BETWEEN THE X’S CALCULATED FROM ANGULAR
FLUXES (UPPER pART} &ND THE X‘s RESULTING FROM FLUX
MOMENTS (LOWER PART) FOR P.EGION11 (SS316)a

+ ● 6 TEST }’RXNTDUT FOR THE CWX’S ● ●

● **K = 1● **
0. . 13195E-05 .17957E-C16

.21326E-06 .19166E-06 .32175E-06

.2i’361E-05 .14093E-05 .18633E-u6

.86888E-08 .68189E-08 .28276E-W

.49433E-09 .26407E-09 .12122E-UY

.24385E-10 .71906E-10 .1209!E-u9

. 13096E-10 .22933E-11 .1485UE-12

.67647E-07 .86778E-07 .79271E-07

.40693E-136 .413797E-06 .1SW9E-05

.37795E-06 .10788E-O6 .17607E-07

. 178B6E-08 .126351E-CJ8 .541245E-09

.485?9E-10 .163I9E-10 .4i’290E-11

.66533E-10 .49747E-10 .26IS69E-10

.i%?953E-16 -.51897E-23 ‘.2B794E-48

++@@ti CH14S GENEM7ED FWW FLUX nnmENTS ~

+ ● + TEST ● RXN70U7 FOR THE CMI’S ● ● ●

●** = 1 ● +O

o. . ~o~=~E-o~ 17003E-u6 .W837E-07 .81854E-07 .78798E-07
.21318E-06 .19164E-06 :3216?E-Ub .4U669E-06 .48798E-06 . 1559~E-05
.22366E-05 .14096E-05 .18630E-u6 .37797E-06 .107WIE-O6 .17605E-07
.sfa385E-08 .68187E-08 .282?3E-u8 .17886E-08 .12638E-C18 .54232E-09
.4%424E-09 .26401E-09 .12118E-uY .48553E-10 .16304E-10 .47171E-11
.24438E-10 .71918E-10 .12068E-09 .’b6705E-10 .49@49E-10 .26296E-10
.13135E-10 .29048E-11 .18631E-12 .&!6240E-16 -.52915E-23 -.45116E-48

a The ~’s are ordered by group (high neutron energy to low

neutron energy; high gamma-ray energy to low gamma-ray energy)
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TABLE XX: PREDICTED UNCERTAINTIES (STANDARDDEVIATION) DUE TO
ESTIMATED SED AND CROSS-SECTIONUNCERTAINTIES IN
ZONES 1 AND 3 FOR THE HEATING IN THE TF-COIL

Cross Section SED Uncertainties in z XS Uncertainties in z

Material Zone [1AR [1AR* [1AR [1AR*x
Mat,zone

T
Mat x

Mat,zone
T

Mat
1-D 2-D 1-D 2-D

Cr 1 0.1 0.1 29.3 12.0

2 0.6 0.7 44.8 42.5

Fe 1 0.8 0.5 4.5 2.3

3 2.6 3.1 9.6 11.3

Ni 1 0.0 0.0 8.3 3.6

3 0.2 0.3 13.1 12.8
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the source region is poorly simulated in the one-dimensional representa-

tion). A more relevant sensitivity analysis would be to consider the

heating calculated at the hottest spot in the TF coil. The hottest spot

is in the center plane of the toroid. We would expect that the one-

dimensional model would be an adequate representation in this case.
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7. CONCLUSIONS AND RECOMMENDATIONS

Expressions for a two-dimensional SED (secondary energy distribu-

tion) and cross-section sensitivity and uncertainty analysis were de-

veloped. This Lkury was implemented by developing a two-dimensional

sensitivity and uncertainty analysis code SENSIT-2D. SENSIT-2D has a

design capability and has the option to calculate sensitivities and

uncertainties with respect to the response function itself. A rigorous

comparison between a one-dimensional and a two-dimensional analysis for

a problem which is one-dimensional from the neutronics point of view,

indicates that SENSIT-2D performs as intended. Algorithms for calculat-

ing the angular source distribution sensitivity and secondary angular

distribution sensitivity and uncertainty are explained.

The analysis of the FED (fusion engineering device) inboard shield

indicates that, although the calculated uncertainties in the 2-D model

are of the same order of magnitude as those resulting from the 1-D model,

there might be severe differences. This does not necessarily imply that

the overall conclusions from a 1-D study would not be valuable. The

more complex the geometry, the more compulsory a 2-D analysis becomes.
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The most serious source of discrepancies between a 1-D and a 2-D

study are related to the difficulty of describing a complex geometry

adequately in a one-dimensional model. However, several neutronics

related aspects might introduce differences. The use of different quad-

rature sets - especially when streaming might be involved - could lead

to different results. When the angular fluxes have a pronounced peaked

behavior, the angular flux option for calculating the loss term of the

sensitivity profile will provide a better answer than the flux moment

option. The different sweeping algorithms and code characteristicsused

by the 1-D and 2-D transport codes might be another cause of discrep-

ancies in the results. Needless to say, a meaningful transport calcu-

lation is compulsory in order to obtain reliable results from a sensi-

tivity and uncertainty analysis.

The results from the FED study suggest that the SED uncertainties

tend to be smaller than those generated by cross-section uncertainties.

It has been pointed out
45

that, because all secondary particle produc-

tion processes for a particular element are presently treated as one

single process, the simplicity of the hot-cold concept for SED sensi-

tivity might mask several causes of a larger uncertainty than calculated

by SENSIT or SENSIT-2D. A more elaborate algorithm for a SED analysis,

as an alternative to the hot-cold concept, a separate treatment for the

various particle production processes involved, or a combination of

both, would eliminate this deficiency. Even with the hot-cold model,

which might underestimate SED uncertainties, the SEDS might become the

dominant cause of the calculated uncertainty in the case that the
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response function is a threshold reaction or in the case that backscat-

tering becomes important. In this latter situation, an SAD (secondary

angular distribution) analysis might also contribute significantly to

the overall uncertainty estimate. At present, the required cross-

section data are not arranged in the proper format to do this type of

study.

Sensitivity and uncertainty analysis estimates the uncertainty to a

calculated response. It would be more meaningful to be able to imple-

ment those uncertainties with a confidence level. In order to do this,

we have to know how reliable the covariance data are, what the effects

of errors resulting from the transport calculations will be, and what

the limits of first-order perturbation theory are. It was assumed in

this study that the uncertainties, resulting from uncertainties in

different regions, were either fully correlated or not correlated at

all, depending on whether these regions have the same or a different

material constituency.

cients would be a major

The validity of an

The evaluation of reliable correlation coeffi-

effort by itself.

uncertainty analysis is often limited more due

to the lack of the proper cross-section covariance data, than due to the

lack of representative mathematical formalisms. Covariance data for

33
several materials are still missing, or just guesstimates (e.g., Cu) .

The fractional uncertainties required for an SED analysis are evaluated

for just a few materials and are not available for the various indi-

vidual particle production processes.
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The current version of SENSIT-2D cannot yet access all the covari-

ance data available in COVFILS,33 but will be able to do so in the

future. Even when SENSIT-2D does not require a lot of computing time,

the extra amount of c.p.u. time required by the adjoint TRIDENT-CTR run

makes a two-dimensional sensitivity and uncertainty analysis demanding

when it comes to computer resources. The development and implementation

of acceleration methods for TRIDENT-CTR are therefore desirable. A

sensitivity analysis involves a tremendous amount of data management. A

mechanization of the various steps required, by the development of an

interactive systems code, would provide a more elegant procedure for

sensitivity and uncertainty analysis.

The algorithms to perform a higher order sensitivity analysis have

been developed, but are still too complicated to be built into a com-

puter program for general applicability. The increasing number of

transport equations to be solved prohibits the incorporation of present

higher order sensitivity schemes in a two-dimensional code. An effort

to develop simple algorithms for higher order sensitivity can certainly

be justified, however.

It becomes obvious that several flaws can be found in the state of

the art of sensitivity and uncertainty analysis. Removing any one of

them would require a major commitment.
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APPENDIX A

SENSIT-2D SOURCE CODE LISTING

In this appendix a source listing of the SENSIT-2D code is repro-

duced. The source listing is documented by many comments.

A source listing of the SENSIT-2D code can also be obtained from

the NMFECC by typing the command

FILEM$READ 5043 .SENS2D SSSS$END
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Los Alamos IdentificationNo. LP-1390,

32 C

33 1040 FO-nf(lm *OXTYP = TYPE 0= SIINS. -UNCCm T.--RL. * O-XS* l-D ES ICN*$
34 n ● ,2-vEc?mD-xs, 3-srD*, 16x, lM=, :4, /
35 n ● mnvwmn = M* AI MUM NUMBER 0= M05DS w m FXLC X 1000~*
36 c 35x* lH=*14c/
37 s ● MrdPm = W-X. NUUSC- PLUXCS/DUmDWT*S~XV lU=S 14$/
38 = - UNCL = inn*. NUM&C- OF CTa LSUCLSOP50BP 1,+=$ 14, /

39 F ● x~mc~ = ● 9EPmB FL UXTWCS WSU1=D? 0/1 NO~VCS ● 935x!
40 e 10+= s14?/
41 K ● .rT = NUMSE~ or SXNXJS*S60XS lH=S 14*Z
42 L ● JTunx = ?vlazmum NumBEm OF 7m1nNuRs XN ● s
43 m ● *NY ONE •@h?@*o~~XJ lu=$ X4PZ
44 N ● 18- = TXITnL NUMDCW ~ RMEOSV GU3@S*?~X$ tbi=~ X4$ ~
45 n ● NCOUPL = NVMBCW OF NEuTmow 6nouPs XN C*L. C*LC. , ZERO*9
46 ● ● POP NELJTXOWS ONLY*$ 13> sJl+=s:40/
47 m ● LU*X = M*X. ● -L omxmm DF CROSS SE CT XXIWS*,43X* lN=* X49 N
48 m ● ZTcsr = TEST ● m1W70UT FLX: O-NONE* l- XS?i?-NOWC*O
49 s ● *3-vEc70a-xs*?iax! :@-) 14? z
50 7 * Jzmax = M*K = 0?- ZONES IN nNY ONE snuD~*45xt lM=C 140/)
51 c
52 umTE(6\ 1050) :XS7~C, NPCn XS0 XDCS?KSZ*UPZ*KXS1 INT9 1-?

53 1 DE TCOW*NSEDI XOU7PUT*USU?ICOW
54 c
y6 1050 Fo-mnf (1M **t XT**c = Souncs OF XWPU7 cnoss-smcTxows: o-c-m* ● *

n ● 1-TfiPE4~2-TWC 10e V19*Sl M=* X4,/
m ● r4FEmxs ,= N“uMSED OF SUCCKSSXVR CmSES# fiLSO NO. OF XlU*UT*@

:; c ● Xs-sc?s To BE mcm~o, llX*l M=, :49/

59 n ● IDES ● fiSSUmCD 1 ● cn CKNT DS?4SXTY XUcxsasc XW ● cmr. *v
60 R ● 2s. FM SC S.-SEW. o lJ/1-pm/yes*, O:x, Iw=, 14/

61 v ● KDZ = NUMBCm D- DITCC7W ZDNCS*051X0 lN-014!~
62 s ● Wpz = Numscm xw ● Em7u9me D zoNcs*e50xelu=t :4s/
63 N ● KXs = X?bPU7 XS-FOXm*T $ ()-IF 17YP=~0 1 ‘LmSL8 i?-OWL**
64 1 3zx*1n-*x4#/
65 .l ● XM7 = ● BSXTXON W TOTA CmOSS SE CTXOU XN XS-T*DLCS*?
66 u 31x Blw=, x4*/
67 L ● :* - ● OS X7XOU w assos@7xou Cmoss-sscrxou Xw XS-**
68 w ● TnsLcs*,26xs lw=, 140/
69 N ● Vr?cow . Ozl = so *7,~o =as Co”aaxacdcg mxTmxx rw**
?0 o ● m(s)0,28, ,l
71 ● ● NSCD . 0/1 m no w~,/go **S :“7=- sED.LmcRmTnlw*,
72 ● ● 7XCS *oi?7x*lM=, :4,/
73 m ● XOUTPUT = OUTPUT ● mZNT SST-XL: O-sum OWE- ● CWT. ZOMSS*O
74 s ● OMLY) i- *LSO XNDXV. ● tmT. ZS.O)OIX,lM=$ X4!/
75 T ● MSUMCOV = NO. OF mss P.-w~l WCCS S-SD FOS ST TP=f?v+#

?6 u ● z~na rom XTYP=(J, 1,30, 14 X,1 A=, :4,/)
77- c
70 *I TR (60 1055) :CMXMOtlt xwT, IsToP, Iss001aP3
79 c
t?.~ lo~f FO-MR7 ‘lM ** ICNIMDM = CM Y-S GC_tdEX#,Ttm F@OM FLUX MOMCUTS*,
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89 c

90 c SET
91 c
9i?
93
94 c
95
96 C

97 c
98 c SS.T
99 c
,(IO
,01
,02
,03
,04
,05
06
07
00
09
10
11
12
13
14
15
16
17
18

E
21
Z2
123

● DzMTcms vow Summour X* SCorl

LXTZ = LVCLU + XSM
LIXT = LXTZ + JT
LNTPZ = LXXT + JT
LMF’Z = LNTPZ + .lT*.xzmmx
LWDZ = LWPZ + KPZ
L ZXIZ = LNXIZ + KDZ

LN* XDZ = .LXDZ + JT*JZMmX
LNXIXSZ = LNPIDZ + .XT*.7ZWX

LX*CL2 = LNXIXnZ + ,XT*JZMRX
L XDEL2 = L XPCL2 + KPZ
LPT = LIDSLi? + KDZ

LXIT = LPT + .lT-uPZ

LK’?P = LDT + JT-DZ
L~TD = LMTP + JTOXPZ

LuELP 1 = LKTD + .7TOKDZ
LKCL*2 = LKCLP1 + JT-SCPZ

LwELDl = LMCLP2 + JT~PZ
L*.ELDI? = LhCLDl + JT.UXJZ
LCOVR = LMCLXI~ + JT*VZ

L6ST = LCOM + XSW*X~

CALL ccowcac <L XTZ) sac W: XT) onc (LUT?Z) .ac UUPZ) .nc UmSZ) ,*c (L:DZ, ,

136 c SCT ● O: NTCWS vom SUSMUTINS SWCOP4 *XI SUBSOUTIWE m-s

137 c
138 c
139 r.mOMnB=mnnwaDol 000
140
141
142 LKT*=L*ST
143 LUT = LW7* + X8W*5 + ;
144 LMM= L-T + :S+!
145 AZSM = L* + xc-
146 LM*W = Lasw + ZSm
147 LNuP = LNPD + 4
146 LnST = LWUP + WNEL-
149
150 XCc = 1

151 XCrl = XCr * 4*1.lMP@*le
152 XLnST = XCM ● 4*MNP~*IK
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161 C

16i?

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
1?’3
100
181
1b2
183
104
105
186
1e7

z2e c
229 c SET
230 c
231 145
232
233
234
235
236

237 C SET

236
i?39
a4 o
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253
254
255
256 155
Z57
258
259
i?6O 157
261
262 C

263 C

264
~tj= c ● M
~g~ c *O*

267
268 C
~~q c ● **
~7rJ c ● *

271 150
272
273
274
275 c SC7
i?76
277
278
279
2e o
281 1060
2e2
2e3 1070
264

312
313 c SET
314
31s
316
317
316
319
31?o

CaLL susSkc(xxs) * xcmo :7LtUULOLMnX*XXS7-C07:7LCSLC(:XS1))
Poxuls.ms rnn SK CONSI Cmoss SCCTIOU SC?
XXssns - XXs
XF(X?YP. NC.1) ● 0 TO 180
IF<t DC S.CB.1) SO TO ;80
:xSD- = lXS ● NUJ
Xxsl 9 Ixsmw
xrcwxs. cD.2) XXS1 = XXSSH ● *J
XLmS7 = SXS1 ● -~
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33!3 c ● **
339 c ● **
340
341
342
343
344
345
346
347
346
349
350
351
35?
353
354
355
356
357 c
358 C ● -*
355 c ***

360 C
361
362
363 190
364
365 200
366
367
368 1126

XN O-DER TO CDZT SCB● WOFXLCS WI/ COMPUTE SCD UNCCPTfi XNTXCS

To Pmx NT SSNSXTXVXTV
-I LDDP TMXOUGM nLL

J:-1
MW:TE (6$1120)
FD_T(lM )

● *OF XLES ● C- 20NS
OUTPUT mourxwfis

369 i?lo cot- Xwuc
370 lF(MBS.WS.0) 60 To 2??0
371 lF((J1. NE.l). oa. {M.67. 0)) so 7s 2Z(J
372 C ..* FOP XS-SCNSXTZVXTT CAL CUL*TXONS ● mlMT A LXS7 DT DEFXNX7XONS
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408
409
410
411
412 250
413
414
415
416 2% o
417
418 c SET
419
4i?o
421
422
423
424 2’?0
4i?5
426
427
428
429 Ze o
430 c
431 290
432 C
433 c ● **
434 c O*O
435 c ● **
436 c ● **
437 c ● eo
43e c
439
440
441 1130

XF(JIONC. l) 60 70 250
xGM1=16m
.Tl=NcOUPL+l
80 To 220
CDN7XNUC
lF(iou7PU7. El?.0) SO TO 26(J
xrh.~e.upz> so TO 260
60 70 200
XFt.lcownm. ca. 0> so To 270
LEwCOV=XGR*l SW
● O Iwcms pow covwxnucc mn7mzx
XCOVR = XL*ST
lLaS7 = 2covm + LCNCOV

LFSUP! = LmST

LeST = LFSU?I + 10M

C*IS sum9\Lc tIc0v9) .ac {LSCM) .nc CLFSUM) s :CW, LC CLDCLU) >

$4ss = MXs + 1
xr(Nxs. L7. wEmxs) Sn 70 150

STOP

CON71NUC

W’IIS SC CTXON ● EUOD?lS - COMPLETC SCWSZT:VXTY nWXI UNCCIJTn XNTV tie-
L~szs o- 7UE bEc709 Cmass SECTIONS
THE COX!E TwCN DE DuIMS * COL,*D1+CE FILE 70 SC GIVEN IN L*SL CXFZ
FDD”*T UPIICM Cowln:ws ● n:ms or vcc Ton CDOSS SE CT ZDWS MIT- ‘rbtsxn

*r. sPcc TIvr co. a-xnNcK $!n TnI&.

Ncov = N*cmxs

Mwa TE(6r 1130) NCDV
F0DM*7 (1U S.*h VECTDW C@ OS S-SC C7XON UNCC, Ta:N7Y WRYSIS MILL*,

442 1 ● SE.,

4?2 C
472 c ● **
474 c ● **
475 c ● **
476 C
477
47e c
479
460 c 0s0
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481 c
4ez c
4b3
4e4
4135 c
4136 c
487 C
48b C
489 c
490 c
491 c
492 c
493
494 c
4 ~:, c

490 c
497 c
498 c
499 c
500 c
501 c
502
503
504 c
s 05
506
507
308
509
310
511
512
513
514
515
516
517
518 c
519
520
521
522
%? 3
524
51?5
%?6
527
528
529
S30
531
532
533

s 34
535
536
537
53e
535
5,40
341
542
543
544 c
545 c

120

130

140
150
410
420
43C0
440
450
4t.rJ
470
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561 c
562 c
563 C
564 C
565 c
566 c
567 C
56~ C
569 c
570 c
571 c
572 c
57’3 C**
574 c
575 c
576 C
577 c
S78 c
579 c
Zeo c
581 c
Sei? c
583 C

601
602
603
604
605
6.06
607
6 (I6
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
626
G?9
630
631
632
633
634
635

Vn 120 W- I*K*Z
lPCL2<K)=0
Zm 120 .r=ls.m
UTP CJ?u)=o

120 CONTINUE
mu 125 W=l VMDZ
XDELL?<U)=O

125 CDN7:NUS

DO Z1O J=lo JT

J.7=XTZ <J>

VD 130 X2=1*JJ
NFIz/Z(Jt XZ)=o

130 uDXDZ<J*XZ>=o

140

150
160

170

180
636
637 190
636 zoo
639 Zlu
640 C

2-s
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721
7C’2
723
724
71?5
726
727
7ze
729
730
731
732
733
734
735
736 C
?37 c
738 c
739 c

740 c
741
742
743
744
745
746
747
748
749
7s o
7s 1
752
753
754 c
755 c
756
757
758
759
760
761
761? C
763 c
764
765
766
767
76B
769
770
771
772
773
774 c
775 c
776
777
778
779
780
781
7ez
7e 3
7$4
785
786
767
788
789 c
790 c
791
792
793
794

● MSEN1 au vim

-Z Dr7CCTOX

-OLLO& X

79s 210 COMTIMUS
796 220 coNTx-
797 c
79e c cnLcuLaTc SCWSXTSWXTV ● WXL=S
799 MmITc(60S25)
bOO so (?40 S-1*1M
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801
e 02
803
e 04
e 05
806
607 230
e 08 i?4o
80’3 c
810 c SET
811
812
813
e14 2s o
815
616
817
Sle 26 (I
tl19
820 270
821 Cc <6)-c (c)
e22 2eo CONTXNUS
e23 c
e24 c EDIT SCUSXTXVXTV ● WILCS Summsn OVER *L mc7. z-s
ezs 290
bc?6
e27
828
e29
e30
e3 I
832 300
e33
834
*3S c
636 c no uwcEm7fi2wrv mmaLvszs x- DCSIRSD
e37 XF(ZZTCOV.NC.1) GO 70 310
e3e CRLL SU*9<COWRPSENVFSUU_@ X~DBRLU>
e39 c
640 C CBZT SCNSXTXVIY> ● WFXLES -O= XNSIWXSIUU ZOWSS
e41 316
642
643
)344
$45 320
e46 330
e47
b4e
e49
es o
Es 1
K12
e53
e54
ess 340
e56
e57
e5e 350

e7e 360 mKTW
e79 8uD
ebcl c
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881 c
13E.2c
13$s c

ee4 c
ees
886
eE7
eee c
ee’? c
fjgo c
eql =
~gi c
e93 c
%94
895 c
896 C
E’97 c
898 c
e99 c
900 c
901 c
902 c
903
904
905
906
90?
908
909
910
911
912
913
914
91s
916
917
91e
919
920
921
92/?
923
9L?4
92s
9.26
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
’344
945
946
947
94&
949
950
951
95i?
933
954
935
956 C
957 c
95k c
959 c
gb O

210
220
230

i?4o

250

255

Z6 O
270
260
290
410
4i?o
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961
56.2
%3
964
965
966
%7
968
969
970
971
972
973
974
975
976
977
978
979
9&o
981
982
983
984
985
9&6
987
988
989
990
991
992

993
994

995
’996 C

997 c
998
999
1000
1001
106I?
1CI(13
1004
loos
1006
1007
1606
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1(IZO
1021
1022
1023
1U24
1025
1026
1027
10?8
1(J29
1030
IU31
1032
1033
1034
3035
1036
1037
;038
1039
1040

120

130

146

150

160

170

lbI)

190

zoo

210

220

230

1 xnPT)

LEVEL Z* cm * CM

B:MENslaN cwt*Pm,4r])scc(mwot4r l)8wTtl) sNuP(WL~l)s WL (4)s
1XELSLS)* SW<4)*N*S <1>> 1SW(1) *NM(1)

S:MEMSXON u4(3)s u6(6)0 Utf(ltl)t ulU(i5)S u12(21)9 u14G?6)0 u16c36)

zNTE6cm ●

nRTn u21.5773503H
sn7n u4/.862@9tI3s.35OO2l2O .35uu%12z
r/nTn u6,.93iG646r .6G15646~ .bti13b4b~ .2561425* .i2663443e .2561429/
DRTn u6/ .9<.63506s .6065370v.UUb5570* .3512958*. 5773503v.551293E!*

1. 1971380s.2133981!.2133981 ?.19?1380 z
Bn?n ulo~ .5730212?.6721024s.8/<1 U24*.6961286V .7212773V .6961266,

1.4567576s .4&57749* .4b97749v.456f376v .1631408*.17%5273, .1?53273,
2. 1755273s. 1631408 Z

z)n7a u12/ .9e10344s .9081J52?s.Yuuu322~ .7827706- .6030727? .7627706,
1.6C140252V .64CI0755* .6400733s .6U4U252..391 1744*.4i13515* .4249785s
2.4213515s .3911744t .1370611* .14Yf456P. 1497456s.1497456s. 1457456,
3.1370611 z
D~T~ u14/ .9855865* .9314033*.%1403S* .8362916* .8521252*.8362916,
1.701O923..73242SO-.732425UF .7u1uYZ30.5326134*.5691623C .5773503,
2.5691623s .5326134* .33S19Z36V .3?VU359,.37361 06, .3736106s .3700559,
3.3399636* .}196230~.130151 OF .13U1310? .13O151O,.I3O131 0,.1301510,
4.1196230 z
CInTn u16/ .9S2.9102, .9464163, .Y4b4163, .8727534, .8e55877~ .8727534,

1.7657351,.7525089, .?9250@9u.?b5?351 ,.6327389,.6666774, .6752671,
2.6666774v.b3i7365v .4743523s.51u(319# .5Z15431*.5.215431* .5107319s
3.4742S259 .3016701 #.3i134313s .dz.tc’9U6*.3332906S .3332906#.3i64315#
4.3u16701-.IO5O159!. 1152880~.l13<88ur.l15Zb80* .l15Z86tI~.l15Z8800
5. 1152seoC.lo50;59 z

xATn swl. o?-l. oo-l. ool. o~

mEaxl(s,440) (XSN(6)*C=I*XSM)
Dn 350 6=1$1-

ZID 140 L=1s4
NPD<L)=I
CC(1*L*6>=SU<L>-V2
MT(e>=O.25
CON?ZNUS
an TO 290
so 160 L=Is4
WPU(L)=3
so 160 M=103
CECM9L9G)= SW< L) UCM>
WT<S>=O.06333333
CDNT INus
● D TO 290
S0 18(I L=1s4
NPOCL)-6
so 160 M=106 .
cc(ms L* G)-sNk)*6cM)
bIT(G)=fJ. (J4166667
CDNTXMUE
Gn 70 Z90
Do 200 L-1*4
w-w (L>=l o
DD 200 W=ISIO
CC(m,L,8)=SN (L).u8(u>
uTcs)=.025
CDUTZW
co TO 290
DO 220 L=1*4
N-eu)-ls
DD 220 w=1B15
CC(Mr LSC)=SW(L>~l O(M>
WT<8>=0. 01666667
COW?8NU
en rn 290
VD 240 L=104
NPVCL>=21
mm 240 PI=1*21
CC <-.L,*)-SM(L)*12<M>
MT(c)-O. 01190476
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1041
1642
1043
1(144

1045
1046
I[147

1048
1049
1050
1051
1032
2053
1054
1055
10S6
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
10?4
1075
1076
107?
io:e c
1079
1080
loel
1082
1oe3
1084
1085
1oe6
1067
1068
1065
1090
1091
1092
1093 c
1094
1095
1096 C
1097 c
lo9e c
l(JyJ c

1100 c
1101 c
1102 c
1103
1104
1105
1106
1107
1108
1109
1110
1111
llli?
1113
1114 c
1115 c
1116 C
1117 c
llle c
1119 c
lli?o c

F?4o

250

260

270

260
290

300

310

320

330
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llI?I c s
1122 c K*D

1123
1124 c + + ● OUTPUT COUMCN7S
1125 C m<mmpmm<=>>
1126 C
1127 c
113’8
1129 ME L= XSM<S)42
1130 XF=2*L*X+1
1131 c..——
1132 c GEUCHTC cUTOXXRS

1133 c
1134 Tcl)=l. o
1135 DO 100 J=2* XF
1136 TGX)=t J-l) OTt J-i>

1137 100 cotdTiNus
1138 UP=O
1139 Do 210 Lm=l*4
1140 mPu=mm w) /4
1141 c
1142 c GEMS-TC mi
1143 c
1144 Do 110 m=l **e
1145 ● HHI <M>=o. socwx
1146 zr(cE\m! Lo*6). wE. 0.0) ● MWl CM)=n7- ~S-l C1.O-CM~*SLe CG)-2

1160
1161 120
1162 130
1163
1164
1165 C
1166 c
1167 C
1168
1169
1170
1171
l17f?
1173 140
1174 150
1175
117’6 160
1177 c
1178 c
1179 c
11216
11131
1182
1183
1164
1165
1166 c
1167
Ileb 170
lle5 c
1190 c
1191 c
I191?
1193 180
1194
1195
1196
1197
1196
1195
1200
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1201
Iaoi?

1203
1i?04
1205
1206
1207
1208
1209
1210
1211
1212
1213 c
1214
1215
1216
1217
1218
1219
12$?0
121?1
1222
1223
1224
1225
1226
1227
1228
1229 c
1230
1231
123I?
1233
1234 C
1235 c
1236 c
1237 C
1236
1239
1240
1241
1?42 c
1243 C
IZ44 c
11?45 c
1246 C

li?47 c
1248 c
1249 C
1250 c
Ii?%l c
1252 C
1253 C
1254 C
1255 C
1256
li?57 c
1258 c
1255 c
1260 C
1261 C
li?6Z C
1263 C
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1Z75 c
1276
1277
127e
1279
1280

190

200

220

230
235

240
210

500
42 (J

aETuau

CMB

SU8WU72 WE FLUX-UP! 6CNEMTS. S 70+S FLUk MDMSWTS
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i2133
1?84 100
12B5

12%?
1~93 120
1294

1295
1296

1302
1303
1304
1305
1~ [,6

1307
1308
1309
1310
1311
1312
1313
:314

131s
1316

1317
1318

GO TO 160

190

1319 c zwz TxaLxzc WLUX MOWSMTS
13i?o
132’1 Vn 205 .7=1 *.71

1322 XT.X=ZXT <J>
1323 Xlo 205 XT-1* X7.X
1324 so 200 IN=l *NM
1~~~ 200 PU%(IWPJ, XT>=O.

1226 205 vmxJr.l(.l*xTJ=o
,327 JJT=i?*JT

1328

13i9 DO 605 J=ls JJT

1330

] ~~1 C nERD -6uL- PLUXCS

133Z
1333 Zcowl=l
1334 .7J=.l

1335 XF(J.67. JT) J.t=t?0J7-J+l

1336 Z17J=ZX T< JJ>CWM’!C.2

1337 x7 J=x:7 (JJ)

1338 mMP=mni?/2
1339 so Zio W.tx=l?w’w
1340 XCOUNZ= XCOUN1+XTJ-1
1341 a~nncxl) IN
1342 mEas<uMl) (F-CUB cxcouN) 3xcow=xco*i$xcnw2>
1343 XCOUN1-XCOUN2*1
1344 210 cowT2Muc
1345 c IF(wnB. Ea. l>wa Tc(7?420) (F-LUW(:COM> tiCOW=XCDMl?XCOW~>

1346 aF(wnz. Nc. l.oP.1*3. cm.1) co To 230
1347 c IMS1TC(IOS430) wax?
1340 CnLL UDXSW(UU~V FPLUX. XXTJ. Km XT>
1349 uaxl-wmx T+lx TJ
1350 230 Xcouwl-1
1351 so 220 *I=l*MMX
1352 lCDUNI?- lCOUU1+JTJ-1
1353 mcnx,(uwl) SW
1354 mcnn \uNl) <FLUW (XCOUN) oXCOUM=XCOW1 o1COUN2)
1353 XCXXUW1=XCOUN2+1
1356 220 COWTZWUS
1357 c xrCmns. cm.1)-x7m(7s 420) tFLUXt: CM) C:C_=: CO-l SlCDW2J
135B xF(wnz. w.l. on.1-3. cm.1) 60 To 250
1359 c MD: TC(10*43O) Wmxr
1360 C*LL MZXSMtm30=LUX OXs TJ*ua XT)
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1361 Kml-r=Mal T+xt TJ
136Z
1~6.~ C CaLCULA7Z ~Lu> MOMENTS XW ● C_ TMDCD ZOMSS
13A
1365
1366
1367
136e
1369
1370
1371
1372
1373
1374
1375
1376
1377
13:8
1379
1380
1381
1282
13s3
1384

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394

139s
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1416
1411
1412
1413
1414
1415
1416
1417
1416
1419
!4!?0
14i?l
1422
1423
1424
1425
14i?6
14.?7

i?50 iF<.x.67. JT) 60 70 3i?0

no 315 W=l*WPZ
XFCW7PG7JVW>.-.6> SD TO 313

XT1=*ELP1 (J.xsk)
xT2=hcLP2 GXJSW>
UMI=W%?.2
XCOUNT=O
XCXXUN=XT1
Do 280 ZM=l*IW1
ma 270 XT=XT1*XT2
DD 260 XN=1ONI’I

260 FLIX(XWDJSOXT> = FUX(XNr.lJ*17) + M(6/-tXM,XM>*FLUX(IC0W)

XCLXUN=XCXXW+l
270 COWTXWUS

XCXXUNT=XCDUUT+XTJ
Icouw=icouwT*xTl

2s0 CONTXNUS
XCDUNT=O

Xcautd=xrl

mml=mmi?/2+ 1
DO 310 1M=ww1cMW2
Do 300 XT=ITI*XT2
nn 290 XN=lSNI.I

290 FuY(XN$JJ!X7) = FUXtXNOJJOXT) + N(C)-(XN*IM)-LUX(ICOUN)

XCOUN=XCOUN+l
300 CONTXNU

XCOUWT=XCOUNT+XT.X

1clxuN=xc0uNr+x71
310 CON71WW
315 Cowrxwua

60 To 390
320 SO 385 K=ISWPZ

XP(X7PW.?,K1.C9. o) 60 70 ~h

xTl=Mc.@l [JJ*W)

x7i?=McLC~WJ SM)

Xcoutm=o

Xcnuw=xrl
nm3=nniz+l

330

340

350

360

370

3b O
365

39(I

. —
mm4=3w.?/2
Xlo 350 XM-3SWM4
no 340 XT=IT1$IT2
Do 330 XN=l*M-I
~uY(XUOJJOXT) = FUW(XNOJJO XT) + U(C)O-(XNJIM)QF-LUX tXCOUUI
Xcoum=xcouw + 1
CONTINUS
XCXW?4T=XCOUNT+ZTJ

Xctxuw=xcown+xrl
COM7XUW

XCXXUNT-O

XCOUN=X71
UU4=I.IW4+I
+!!!5-- (6)
DO ~60 XW=W4SHM5
Xlo 370 XT-X71*X72
DO 360 XN=l-MU
Fux(XN$JJSIT) = FUXr(XN~SJOIT) + M[G)*-(XN)XW)*FLUX \XCOUN~
Xcnurd=xcow+ 1
CONTXWUR
XCOUNT=ICOUUT+ XTJ
ICOUN=XCOUN7+IT1
CDN7 ZNUS
CDUT lNUC

XF(wnD.wC.0) 80 TO 605
14Z8 C
1429 C CqCULaTC SCRH PLUXCS XM SCTCCT- M6:ON
1430 c
1431 -
1432
1433
1434
143s
1436
1437
1438
1439
1440

164



1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
14s3
1454
1455
1456
1457
14513

1459
1460
1461
146i?
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
14s0
14el
14EZ?
14e3
14e4
1485
14b6
14e7
;4ee
14e9
1490 c.

510

%2 o

530

540
550

560

565

570

580

550
600
605

FWOWG?J, X7) = FRO- (.IJ, 17) + M \G)*-FLu> ( :COl.JU>

2 COUN= lCOW+ 1
CDN1 2NUE

1 COUNT= 1 COUNT* ZTa

1c0uN=1mWtdT+171

CONTX?IUS

XC DUNT=O

lCOUN= 2 T 1

mHl=Hm2/2+1
Do 340 XM=f.lmloN-2
Zo 530 :7=111 ?172
FMDM(JJ, lT)=r PIOM(SJ$ XT) + M(6) 0rLux(lc0w)

Zcmmd=:could+l

COWTXWUC

1 COUNT= 1 c0uN7+XTJ

1 CDUW= 1cO*T*x ‘? 1

CDWT XNUR

cow? lNLK

GO TO 60S
no 600 K= I*KDZ
XF(h TD(JJoh). KO. o) 60 70 60u
XT I= WELD1 L?.ISM)
X12= RELDZ(JJ*K>
XCOW7=0
JCOUN=ITI
MM3=MMZ* 1
wn4=30nm2/2
rlo 570 IM=FW13*!TW4
DO 565 x7=171 ?xT2
Fmom (JJ* 17) =-mom (J.t OXT)+U (6).SFUIX C*COW)

ZCourd=icow+l

CONY ZWus

Z COUNT= XCOWT+ XTJ

1 CoUN= XCOWT+l T1

cow? lNUE

ZCOUWT=O

ICOUN=271

wu4=nm4+l
?m5=uu (6)
X.o 59CJ xm=-4*mP15
DO seo XT=171t XT2
TMOI.I(J.1,XT)=F~ (JJ, XT) + M <6)●FLUX (ZCOM)
Xcouu= Icow+ 1
CONT :Wus
ZCDUNT-XCOUUT+ZTJ
JCOUN=l COUNY+XT1
cOMT1mLJs
CONT IMult
CDNTZNUC

1452 C

1493
1494
1493
1456
1497
149e
1459 610
1500 620
1501
1502
1503
1504
1505
1506
isu7

1508 630 COM71WW

1:09 640 CONTXNUS

1510 c

i~ll C CLOSR T-CS 2- NSCCSSRmY
151Z c
1513 656
1514
1515
1516
1517 4rJcl
Isle
1%19
1520 410
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1521 4.20 FomanT(6c12.5>
ISLE’ 430 FaRmA7Cl M 06mMaz T =$16)
1523 mETumN
1524 END
1525 c
15.26 C
152? c SUm!QOU7XNS CMIS C-LCUL-TSS TM CHZ-S
1528 c

,534 c
,335 c
,536 C
,537 c
1538 c
,539 c
1540 c
1541 c
1542 c
,543 c
,344 c
;545 c
,546 C
,54? c
,548 C

1549 c
1550

X7 SUM

1590 c
1551
1592
1593
1594
1595
1596
1597
1598
1599
1600 95

VD 180 J=1sJ3T
.T.?=J

xr (J. s7. J7) aJ-2*JT-@l

XTJ=X XT (JJ)

X X7J=lT~_=

mn 170 X-192
Mm XT= Wmi T-X XTJ

X/o 95 Xm=l s-w
mEF4D(uwI) XM
mEnn(uwl> <FLUX C:TO :td ,x7-;? XTJ)
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1601
1602
1603 c
1604 c
1605 C

1606
1607 C
160S c
1609 c
1610
1611
1612
1613
1614
1615
1616
1617
161S C
1619 C

1620
1621
1622
1623
161?4 C

1625 C
1626 c
1627 C

1626
1629
1630
1631
1632
1633 c
1634
1635
1636
1637 C

1636 c

1639
1640
1641
164.2
1643
1644 c
1645 C
1646 C
1647
1648
1649
1650 c
1651 c
1652 C
16S3 c
1654
1655
1656
16s7
1658
1659
1660
1661
1662 C
1663 C
1664 C
1665
1666
1667
1666
1665
1670
16,71
1672
1673
1674
1675
1676 aE?uau
1677 Swn

167e C
1679 C
16B0 C SUBmOUTXMS ● OXNT4D SS7S TwE -PeWXmTE ● OX WTCWS F- THE FLUX BTMS
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1681 C *XIJDXWT FLUX -D TMS PSZ’S
662 C
,683
6e4
685
,666
,687 C
,6S8 C ● ●

,689 c
,690 c
,691 C
692 C
693 C**
694 C
695 C
696 C
697
698
699
700 110
701
702
703
704 120
705 130
706
707
708

1709 c

1744
1745 XF(XGCO. CW.1) CPY=l. O

1746 xr<xaP*. cc.2) WXTRC 6,400>
1747 c aMx T2nLxzs ● SI’S
1748 so 320 G=lcxcm
1749 xF(x PasP. NS.0) ● 0 7a 251
1750 X/o 140 6P=lsz-
1751 SO 130 L=l*LMAXP
1752 DO 120 W= IBKPZP
1753 ● s: C6PSLOM)=0.
$754 120 COUTXNUS
17:5 130 cau7xx
1756 140 COUTINW
1757 c O*RW T-m xv Nsccss-v
1758 WI-MT- (4,s)
1759 Xr<WTN(40C> .W. WT_(4CC-1) .Om. C. S@.1> C*L nSSI~(WU1OOS -3)
1760 C REnD TMS FLUX m~HTs
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Iml
1842
le43 c
1644
1645
1646
le47
1848
ie49
1s50
lesl
Ie52 c
Ie53
1854
11355
1856 c
1857
1esa
1859
1860
1861
1862
1863
1664 c
le~s
1666
1e67
le6e
1669 c
]870
1871
1872
16?3
1e74
1675
1676
1877
1e7e
11379

leeo

leel

I etiz

iee3

I 8e4

lees c

lee6 c

1687 c

leee c

lee5

1890 c
le91 c

1892 C

1893 c
le54 c

1895 c

1896 C
1897 c
le9e c
1899 c
1500 c
1901 c
190i?
1903
1904
1905
1906
1907
190e
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CUD1921
1922 C
1923 c
1%?4 c
1925 C
1926 C
1927
1%?8 c
1%?9 c
1930
1931
1932
1933
J934

1935
1936
]937

1936
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

1950
1951 c
1952 c ● **

1953
1954
1$lSs

1956
1957
195s
1959
1960
1961
1962
i9f33
1964
1965
19e6
1967
1968
1969
1970
1971

197Z
1973
1974
1975
19?6
1577
1978
1979
1980
1981
1582
1963

1

i?

~

303

6

301
10

300

305

304
302
910
900
995

1964 C
1985 500
1966
1967 c*-
19!?.5C****
19a5
1990 C*
1991
1992 C*
1993

MWITS.(6,305>
Poamn7 (1M ,*xS ● -Iu7CS ONLY MMSN ZTCS1=l ! 0M177CS F- ‘7MXS C*SC*)
60 To 910
UP XTE (60302) ‘((XN2<I, J* LL)IJ=l, NCTL)S x=lt Nc6)
ra-ny(lc.( ,6\2x, lPcli?.5))
CON7 IN(JE
CON? IMUS
M TUau
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2001
2002
i?oo3 510
2064 SO(J7
2005
2006 c.~

2007
2008 5001
2009
2010 soot?
2011
2012 5003
2013 c**
2014
2015 SO04
2016 C**
2017
2018

2032 C

2fJ33 40 an 9999 Lw- 1sLL*X
2034 50 XF(MC)121OI21S31
2035 12’1 mc*x,~Ns*ll) UCCOPLCOMP?-I
2036 11 rnmmn7 (216, 10A)
2037 NCXD = ● LCOWP + i
2030 MCI- NCXD
2039 XF<wcc> 22*22*21
2040 21 XF (wcc-2) 249 22*24
2041 22 .X=O
2042 NCOUWT=NCSS91CTL
2043 622 -mD (N5*6) CIN(X)OW M(X), V(X>, X=1,6)0 (M(x> ,x=1,12)

2044 6 FnxT(6(x20 al, r9.0)*Tlc6t4x, eH))

2045 DO 635 x=106

2046 :FcbcM(x)-JaL-) 700, E1O,7OIJ

2047 C No mEPca7s

2046 810 XPWCZ*X-l>. SB.XSL- .-Z. MW*I>. CB. XSL-)60 To 800

2049 .7=.7+ 1

2030 XN1 <J* LN~=v (x>

2051 so To 800

20s? c mc~car
2053
2054

2055
2056
2057
2056
2659
2060
?061
2062
2063
2064
2065
2066
2067
206e
2069
2070
2071
Z(J72
2073
2074
2075
Z076
2077
207e
2079
2080

700 L= XN(X>

DO 809 wR1?L
J-J+ 1

805 X% I(JOLM)=V<X)

~00 XF(J-NCOUNT) 635,24,24
635 CDNTXw

● n Tn 622
24 NC=]

XF<NCC-7>31S25031

i?~ NC1=32767

xF(Ncl-NTl )31t26031

26 mcwmu

31 xr(M71-Ncl >43*41*43
43 NC-O

W.o

so 120 Y=l*NCC
DD 120 J= fsNC7L

K=v+l

120 YM2CX$J?LN~=XNl(K*LN>

XF <I?CST. NS.1) 6070 51
MPx TE(N6e 201> NCSe NC TL#tiCC*KXD*LM* -l

201 FO-T( %1 No G= x3.3x. 9WT. LCNGTM= X303 D*6XONT~. X3 V3X# 19nNcxt.=w
● lsu-MaT. No. =x403 xs13w-mDcxL+l=x20 3x?10n4)

51 *1=1
tiw2=e
TEST. @LXXXT<NC8)@. o +.999
LmA*=T8s T

mO 143 L=l?L_X
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2081
2082
2083
2084
2085
20@6
2007
2688
20s9
2090
2091
2092
2093

IF (NN2-NC6) 232s 232* 233
233 mu.?= WCG
232 IF (17 EsT. Ns.1> tJDTO 49

umx TE @6,245) <x8Js.X=MNIS~>

245 Fom-nT(7M-Pns wT. b(6x*a4~ x3))
X/O 241 z=1!Nc7L

241 MmTC (u6,202> ItLNr(xNZ(J.X.LN) ,.7=.c+MI,NN2)

201? Fo?mnT(2x4s lP6s13.5)

49 NN1= *2+;

14S MN2=NU1+7

XF ti7cs7.wE. i) ● OTO 9999
MmxTc (N6075>

75 F0DM*7tlM(l)

i?094 9999 CON7ZWM
2095 41 Go To so
2096 C
2097 499 msTumN
Z 098 SWD

2099 C
2100 c
2101 c
2102 c
2103 C
2104 SUBROUTXMS
2105 ●

2106 c ● ** cnLcuLaTcs

SUB6<DSTVDSL*XSSXSBM0 ZISn8XTL#fi*S#ShS#DSLFD#SYSNG,
NCOUPLVFZSXS* ZXWS>

DST-V nSL- mN1. *nS-_YSr WV S5LFD-_Y
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2161
2162’
Z16.3 50
2164 60
2165
2166 c ● **
2167

2168 204

2169

2170

2171

2172

2173 201

2174

2175 200

i?176 202

2177

so 50 ● =10:s+!

GP = Xn?+s-x+l
Sxs (x) = Sxs (x) + XSC6*6P01>

c0wmsc7 D1nso- sums ~om M=UT--SXS ST Suarwcrxw OF S>SN6

Do 204 ●=l)XU’I
Sxswccs>=o. o
NG I=MCOWL+ 1
mn 200 6=l*NcauPL
=0 201 6P-N61?1SW
X= IHT+W-C+l
S>SNC tG)=SESNS ~8)+xS (S-O I* 1)
Sxs (G)=Sxs <S)-SXSN6 <s>
CONT xWus
XF(ITCST. MS.1) so TO 26
MRXTC c6J105O)
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2241
2242
2243
Z244
2245
21?46
2247
2246
2249
2250

22s 1
2252
2253

2254
2255
2256
2257
2258
2259

2260
2i?61
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2205
22e6
22e7
2286
2289
2290
2291
2292
2293
2294 C

2.295 C

2296 C

2297 C

2298 C

2299

2300 c

2301 c
23 (I2
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2310
2319
2320

175

—



i?321
2322
2323
2324
2325
i?326
2327
2328
2329
2330
e331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346

2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
236? c
2366 C
2369 c
2370 C
e371 c
2372
2373
2374
2375
2376
2377

2378
2379
2380
2381
2382
2383
23e4
2325 410
2386
E387 1014
2388 C
23e9 c SET
2390
2391
2392
2393 255
2394
2395
2396
2397 260
2396
2399 250
2400

176



2401 265
2402 C
z4rJ3 c ●.*
2404 205
2405
2406
E407
2408 s
2409 C
2410 C ++.
2411
2412
2413
2414
2415 %
24~6 99
Z417
241%
2419 C
2420 C ***
2421 c
2422
2423
2424
242S
2426
2427
2428 $EI
2429 130Z
i?430
2431 S$l
2432 1303
2433
2434
2435
2436 c
2437 c ...
2438
2439
2440

2441

2442
2443
Z444
2445
2446
2447
2448
2449
2450
2451
24s2
2453
2454
2455
2456
2457
2436
E459
2460
2461

● ✌

2462 1105 FO*nnT (qsr*SCNSXTXVITY CDE=FICXCNT -m TDTnL ●CW7UWSnT10N: ● ,4*,
2463 1 ●F*D = ● SI*XIZ.5*3=**MF8 - o,l Pc 12.5*/// )
2464 80 To 73
I?4155 70 XP(JI.WC.1> ●D TO 72
2466 ldnj7c (6*1106) 0(
2467 11 CJ6somwnl clw s●CDWTRXDUTXOUS TO DCLX-mD nun DCLX-VD wum VC-TU-BCD
246b 1 ●ZOWC H=., x3/ )
Z46.9 timXTC (601107) DcLXr DELX=D
2470 1107 Fo*nT (5D0--CJM wcuTac+l G-o-s BMLYI *,1 oh*
2471 1 ●DE LX-nD\W) = •riPC12.b?~mS*VCLl-WD LN> = *c IPR 12.5?. )
2472 60 70 73
2473 72 MDXTC (6s 1106> DEL:! DCL:FS
2474 11 Oe PO-*T (5P *-s-n MLJTwOti ●LUS e-h -w=: *.48*
2475 1 ●DEL X-aD - ● ,1*c12.5,5*00Dc L X-TD - ● ,lPK12.5#// )
2476 73 cOwTxuus
2477 C ●*+ CMD CD X’TZM6 DCSX~ SCNS:TXVXTV ZNP~TXON
2470 C
2479 80 To 900
24e0 100 CDNTXNUS
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-.. .
2500 942

2501
2!s02
2503
2504
2505 1080
25 [16 10s.?
2307 10G1
250e 1063
2509 C ●**
2510 c ●-

2511 C ~~
2512
2513
2514
2515
2516
2517
251e
2519
2520
2521
2522
2523
25Z4
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2S36
2537 2
2538
2539
2540 C ●**
2541
2542
2543
2544
2545
2546 e 02
2547
254 B
2549
25s o e rJ4
2551 eooo
?452 c ●**
2553
2554
2555 11

COMTZNUS

●mrN7 mcurmou ●mOcx Lss (: NcL. M-6awwn )

XF(J1. MS.1) 80 TO 2001
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2576 13
2S77
2578 201
2579
2580 15
2s81
2582

~=

2583
2564 16
2s85

2590 202
2591

2592 19
2593

2554 2001
2595 c ●*o

2596

2597 20

2tzo 900 CONT x-
i?621 mcrumu
2622 RNV
26.23 C

26Z4 c
262S C

2626 C

26i?7 C

2628 suDmouTINs SUD1 1

2629 1
2630 2
2631 C

2632

2633

2634

2635

Z%36

2637

2638

2639
2640
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26
i?6
3’6
26
26
26
26
26
26
26

11 c
,2 c ● *O

13

14

Is

16
17

18

19

iO

2651
2652 :
2653 C
2654 C ●*
2655
2656
2657
2658 5
2659

Zcm mu? TMS mu —Vs
SD 2 6=!sX8M1

● SCDGP(C)= 0.0
●SC D6t6) = 0.0
SSEXIw> = 0.0
swOT (s> = 0.0
SCOL.DL6) = 0.0
D-S CD(G) = 0.0
SD 1 GP=1OSSM1
●SC DWP*S) = 0.0
cnNT XNw

COMPUTC nLL —vS TO SC EDITED

DO ~ L=lm LL
IF (WXS. CD.2) TLUILMI (L)=l. cl
IF (KxS. NE. ~) TMOLM~ (L)== LXMT(2R-1)

CONTINUE

DO 33 GP=J1OXW1

2664 32
2665 33
2666
2667 c
266F3 C ●**
2669 so
2670
2671 51
2672 52
2673 C .6*
2674
2675
3676 61
2677 62
2678 C ●*O
2679
2680
2681
2662
2683
2684
2685 71
2686
2687 72
26E8 c -**
2689
2690
2691
2692
2693
2654 81
2695
2656 82
2697 C ●-
2698
2699
2700
2701
2702
2703
2704
2703
i?706 c ●o+
Z707
2708
2709
2710 91
2711 92
2712 C ●*O
2713 93
2714
2715
2716
2717
2716 94
2719 C
2720 C ●00
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5?25
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2743
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
~757

2758
2759
2760
2761

241
i?4z

243

244

2763 XF (WSCD. M.0) GO TO 249
2764 umxrc (60Z45)
i?765 245 F~T(l M e~~9tiD SCD UWCCWT*IWTY ~VSIS N6S •EW~D FOX ● ,
i?766 1 ●LACW OF XUPUT ZI*T**OzS* USEZ 1S ZE~ ON XNPUT FZLC*S/l Ml)

2767 CD 70 999
276i3 C ● o* ED17 SED LP4CC*?*XUTY XNFDWTXm

2769
2770
2771
2772
2773
i?774
2775
2776
2777
2??8
2779
2780
2781
2782
2783
2784
i?785
2766
2787
278e
27e9
i?790
2791
2792
2793
2794
Z795
2796
Z797
279B
2799
2800
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2801 4 ● Gmcm (c) MUST Mun*s SC c-s.nTc- Dx aOunL To G C*Z*
Zb 02 5 ● Cnwnccl ZUPUT sln7n! ● >
2E.03 995 COU7 INus

i?e04 nETuxw
Ze 05 CUD

2606 C
2807 c
28(I8 c
2609 c
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2961 C
2962 c
2963 c
2964 c

2965 SuBnDuTx Nc sua YIJ(BasO*Ncov*NsLmcw>
2966 C
2967 c ●** TMZS DOUTZNE COMPUT=S Dm-OVC--m FO- TMS Sum OF *L

296e c ●** nssumlws Wo CD-ML*’TZOUS ●CTNSCW TM XWSIL.ZS.UAL >s
2969 c *+* IN -V *ND ALL ❑F TM NCOW COI.WZ-CE w*Tn:CCS.
29?0 c
2971 ZIMENSXON DmS8(i)
2972 xNTE6s.m SLMSTW7* SUMCND
2973 XF <Wsuwcov.cm.o> w To 20
2974 WP17C (601400)

xs-uNccmlrlN1xc

E*=S sPcclP:g

2975
2976
2977
2978
2979
2980
2981
29S2
2983
2984
2985
2986
2987
2988
29B9
2990

1400 coIDnnTtlMls36~lMo>** •~7X* SUMS ❑r MS~DNSC UWCCnT*INTZCS .,
1 36(IM.)zz)
Nsum - 0

30 Nsum = NsLm + 1
mEmD (5s 1300) SUMSTW7* SUMSUD

1300 r01wa7c2x6>
uNcOnsO = 0.0
VD 40 .l=SLJWSTmTVSMUD

4(J lJNCORSm = UUCOmSD + DRSWW)
Urwcom = SDWT (UNCO-SW)
●EncT = lrJo.o*Nccw
MWXTC <6u1500> SUMST*TSSUWSND

13001=owma7(lu c ●nssumzN6 NO cO-.sLa7xcm nmow~ 704s s7mxMs OF XN.UT 0,
● cob.* m;-CCs$ ● ?.0* TME ~ESPONSE UWCCP1*; N71ES D“c 70 +,

2 ● INPUT S=euc Ncc Uumacms ● ,22, + 7*OU6M ● ,12,0 M*”E S=CH *,
3 ●SUMMED *ND YIELD ● Sz)

rwrzms wccm7maw7v aunL*z .

xNxJxvx DuaL vcc7m ● ,
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3041
304?
3043
3044
3045
3046
3047
3048
3(I49

3050
3051
3052
3053
3054
305s
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065 C

WE*II (NXWS i 0) ID? mKwlo DCN~
10 FnxmnT(x6? 6x,2c12.5)

CaLL COV*D {XDcO$VXSiOUXS~sCW,;Ol)
:F[ITCS7. NC.3) 60 70 40
u~17E (WOUTS 20> NGP, *71

20 Fxxmwn7(lm ** WUL7:6MUP cow-z-cc SaTa Iw ●X3*
1 ● GaOuPs Fom Mnll = +14)

UW:TE (WJur, so) $471

50 Fo?-al(lm 90 Mlcxoscwzc c-ass SCCTZDW5 Fox $WI = ●X3)
UPITE waxuT,30) <VXS1<W)?M=l*-)
Mm 1TC WOUT s60> MT2

60 FOmnTCln *C MlcnoscoPlc Caoss SSCTZONS -ox mT2 = ●X3)
uP17E (NOU7D 30) <VXS2 (~) sW=l ON*J
Mnl Tti W.MJU1*70> ?WITID?!TIVMTZ

70 FOIW’I*7[IW ** mCLm71VC COW- I*CC -TmXX - M*T1 = ●:4)
1 ● MT1= ●1300 MTi? = .13)
bxn:7E (NOUT,30) ((cOv(J sJ), J=lse)sx=lo Rw)
Mml’fc (UOU7$ 80) mn71*wTl, w7k

80 rOw.ln7(l M ** nasOLuTc Covnxx-cc -7-1 * r- m: CWSCWXC**
1 ● Cmoss SC CIIONS or M*71 = ●14s
1 ● m71= ●2390 W12 = ●X3)

M~lTc (NOU7* 30) ((cc2(x 8s)9J=lc-)?I=19Ne)
30 Fo-n7 (IP1OCI2.3>
46 COWT IWUS

● ** TPnusr- “~c~ Xs ~~la “Rcmsc-xc Xs

3066 so 90 N=l*JSM1
3067
3068
3069
3070
3071
3072 C
3073 c
3074 c
3075 c
3076 C
3077
3070 c
3079 c
3060 c
3081 c
3002 c
3083
3064
3085
30e6
3087
3086 c
3009
3090
3091
3092 C
3093 c
3094 c
3095 c
3096 C
3097 c
3056 c
3099 c
3100 c
3101 c
3102 C
3103 c
3104 c
3105 c
3106 C
3107 c
3108 c
3109 c
3110 c
3111 c
3112 c
3113 c
3114 c
3115 c
3116 C
3117 c
3118 c
3119 c
3120 C

Uxsl (N) = SEMI ● Uxsl (N)
L.XS2m) = C’EW2 ● L.-XS2(w)

90 COMTXWUS
mr7uaN
RWD

Suswou-rawc COVWD 6mvv, uom9*sn. xsaeccl. Xsul>

aOUTINEPC-Z. COWM:nMCS X.-la IN CND--LIICC F~T OUTPUT ST

N.IOY *NXI TDti SF-S X 1 TO T-l FOm_T.
m-x = 7-1 xx. EN71FIRm
won = ASS. Cov. rLns. =oc Ycs =lSUX.

Maz-axx

J@ O=MXX

C*LL SCTXD

SC?ZB SCTS w XNDCXSS TO GET SC SIXSD -S SRT.

Tns Lc rom DC FZNZTXOM w ZD-MOS :N TE*S or SPCCIFICATXOM =

C*OSS SC C7ZOU Cownxzawccs. MOTE IN TMIS wE~S1ON, tUi71-M*72

mnrl
----

30s
305
305
305
305
305
306
306
306
306
306
324
324
324
3Z4
324
324
324
326
326
326

MnT2 MT 1
---- ---

305 1
305 1
305
305 :
305
305 10;
306 1
306
306 i
306 4
306 107
324 1
324 1
324 2
324 2
324 4
324
324 10;
326 1
326 1
326 1

M72’
---

1

10;
e’

1u?
1o?

1
2
i?
4

107
1
z
~

4
●

10<
1u<

1
z

1llz

Cmnss SECT row Cob’ns lawcR
--------------------- ---

sIU T07nL M:TM s1O TOT*

Blo To7nL MZTW Slo cLns71c

Dlu ToTnL MIT* Slo (M*nLPMn)

81(I cLns?xc MIT* Blo SL*STSC

●lu ELas7xc &XxTM Slo <N O**-)
Slo 0’#9nL*mn) MZTW ●lo ww*nLPMn)
c TOT*L MZ7M c TmTnL
c ToTnL UXTM c cLasTlc
c RL*STXC UX7M C CLnSTXC
C :WEL-S71C MXTM C IMCLnSTXC
c cN,aL**> UITM c OdoaLPmn)
cm 7DTnL MX7M cm 707%

cm T07aL MXTM cm cLaslxc

Cm ~L_STIC MX7M Cm SL*STJC

cm cL*s Tac MIT* cm lMSL*STXC

cm zwELasT:c NXTM cm xMELns TJc

Cm XNKLmSTIC MXTW Cm C-T-

cm C*P7WS U:TM cm C* T-
Vs T07* Nx TN F* TOT*

FE TOT*L UXTM FE mLns71c

Fs’ TOT* UXTM F= c-rums
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3121 c
3122 C
3123 C
3124 c
3125 C
3126 C
3127 C
3128 C
3129 C
3130 c
3131 c
3132 c
3133 c
3134 c
3135 c
3136 C
3137 c
3138 c
3139 c
3140 c
3141 c
3142 C
3143 c
3144 c
3145 c
3146 C
3147 c
3148 c
3149 c
3150 c
3151 c
3152 C
3153 c
3154 c
3155 c
3156 c
3157 c
3158 c
3159 c
3160 C
3161 C
3162
3163
3164
3165 C
3166
3167
3166
3169
3170
3171
3172
3173
3174
3175
3176
3177
317e
3179
3180
3181
3162
3183
3184
3185
31b6
3167

J?2

z
i?s
26
27

::

::
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

326
326
326
326
326
326
326
326
326
326
326
328
328
328
328
329
329
329
329
329
329
329
329
329
329
329
382
382
382
382
382
382
382
362

1301
1301
1301

326 2
326 2
326 2
326 4
326 4
326 4
3Z6 4
3i6 102
326 103
326 107
328
326 ;
328
326 10;
328 103
329 1
329
329 ;
329 2
329 4
329 4
329 4
329 4
329 102
329 103
329 107
382 1
382 1
382
382 ;
3S2 2
382 4
382
382 10:

1301 1
1301
1301 :

2
4

1Oz
4

1w’
1U3
107
1LIZ
1U3
107

1
z
4

102’
103

:
~

4
4

1lJ2
1U3
107
102
103
107

1
i?

1(I2
z
4

10:
1K&

:
i?

mFl=3# -2=33

mll-mr-ta Fom szsmm-

mFm- 1

HTn-451
WEUZWD MD2

*?112-7 No FOm sisnn-2.
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3??01
3202
3203
3204
3205
3206
320?
32 OS
3209
3210
3211
3212
3213
3214
321s
3216

120

125

130

140

150

3217
3218
3219
3A? o 155
3221 C
3222 160
3223
3224
3225
3226
3227
3220 170
3229
3230
3231
3232
3233
3234 leo
3235
3236
3237 C
3238 C
3239
3240
3241
3242
3Z43
3t?44
3245
3246
3247
3240
3??49
3250
3251
3252
3253
3254
3255
3256
3257
3258
3i?59
3260
3261
3262
3263
3264
3265
3266
3t?67
31?68
3.265
3270
3271
3272 C
3273 C
3274 c
3275 C

250

190

IF <m7.cm.m72) so To 140
MWITC tNDuTs60> MDT!MFoMT
CDN7 ZUus
mcnn (ND2,90) CXS2(X>S; =1 SWCP)
CmNr xWus

200 xc @lTX. LT. MT2) GO TO 170
x- (MTX:CS. M72) 80 TO 210
URZTC GIIOU?S60> WDTWWSMT
Srn*

210 coNTz-
2!0 230 M=ls?Os@
Ww =W6P-W+ 1
Xsn (Mw)-xsl ($(>
Xss CKM)-XS2 (M>
DO220 M=lSX
WW=NG*-U+ 1
cc 1 <KbloMN) -cam (USN)

220 CON7 ZMJs
230 CWTINUS

xr G40DI.6T.0> Mruau
DO240 w=IJ*
DO 240 N=l *we
CC2 (**W) -ccl CWCN).YS* (M)*XSD @J~

240 CONT lWUS

msruau

Run

3?76 C
3277 su8m0u7z- S~TXD
3278 c
3279 c Sumnmuyx- SS7S cosascT waT*w, wl 8xuaw ma
3280 c

187



3281
3262 C
3283
3z&4
3205
3286
3287
3280
3289
3290
3291
3292
3293

3294
3~95

3256
3297
3298

3299
3300
3301
3302
3303
3304
3305
3306
3307
33 OS

3309
3310
3211
3312
3313
3314
3215
3316
3317
3318
3319
3320
3321
33I?2
3323
3324
3325
3326
3327
33i?8
3329
333r)
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
33S2
3353

3354
3355
3356
3357

cOmmnN, cwDF. MT*w*m? #uv7*J-B *-T1*wl* w2*mT1*wT2 *m T2*wu T*NBz

mm, =.lmw
?IFI=3 S PIF2=33 S maDmw=6
xv tMnx. GT.6) sn rn 20
Mn71=305
1P (mm. .sT.3> so To 10
Wrl=l s MT2=1
XF inn> .CO.2> WT2=2
XF cmm.. cm.3> mT2=107
mK7unN

10 CDNTIMUC
r!Tl=2 s WT2=2
XF @Ire>.a.5> MT2=107
IF <HRX. EO.6> MT1=I07
n= Tunu

20 cnNTxtuJc
x= G!nx.rr.11> so To 40
PInTl=306
1P CWRX.CT.OB) co To 30
?!71=1 s ?!72=1
IF CPWx.cm.e) mT2=2
WCTURU

30 CON7ZNUC

MT1=2 s ?lT2-2
1P CMnx.co.lo) MT1-4
lr [?!Pw.cII.1O> ?IT2W4
IF Qw,.co.11) M71=107
XF (mmh.cm.11) MT2=107
mET-

40 CON7XNUC
XF Olmx.8T.18) so To 70
mnTl=324
:F tMw.oGT.13) 80 70 so
m?l=l s MT2=1
IF (mnx.c=.13) mT2=2
ms Tww

so CONTINU
XF (mnR.8T.15) 80 TO 60
?!71=2 s mT2=2
XF CmPB.cm.ls) mTj?=4
mcruw

60 CONTXNIJC
mTl=4 S mT2=4
XF (mmz.6E. 17) M12=102
Xr (Mmaore. le> WT1=I02
mcTuww

70 COWTXNW
XT @lmx.61.31) co To 110
MnT 1=326
Jr CMPR.6T.21> ●D To 60
M71=1 s WTi?=l
XF WP..C=.2O) MT2-2
xr (Mm>. cm.21) M72=102
aE7uatd

so CDNTIWM
IF cMm..8T.24> 80 TO 90
mTl=2 S mri?=i
x- (mwx.En.23) mT2=4
IF <FIRX.CB.24) MT2=102
mETvaw

90 COMTXUUC
Xr [?I=X.9T.28> 60 To 100
?471=4 S mT2=4
IF <Mma.Eo.Z6) MT2=I02
:= hms.cm.27> MT2=103
IF (MDX.CD.28) MT2=I07
mc Tuou

100 COMT:NUR
MT1=102 s MT2=102
Xr ~m@8.cm.30) M71=103
IF (mw..ro.3O) MT2=103
Xr <Mm*.cO.31> WT.2=107
Xr cmwx.cm.31) WT1=107
mE7m

110 CONTXNUC
:r <MRJi.c?.36> ●0 TO 120

335e mm71.32E

3359 m71=l s WT2=1
3360 1- Wn#.Cm.33) w?1=2

188



3361
3362
3363
3364
3365
3366
3367
3366
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379

33s0
3381
3302
3383
33(34

3385
3386
33e7
33E@
3309

3390
3391
3392
3393
3394
3395
3396
3397
339%
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
34.?o
3421
3422
3423
3424

xc <mmx. Rm.33) -72-2
XF @R X.Em.34) mT2=4
IF @19a. cm. 34) MT1=4
IF <MP, .RO. 35) MT1=I02
IF G.W.. CLI.35) M?3’=102
XF cmm..Era.36) mTi?=103
x- (mIDx.ce.36) M?1=103
wETuON

120 CONTXNUS
IF <WIQX.GT.47> GO TO 160
MmTl=3r?9
XF cmmx.cT.3e) so rn 130
?!71=1 s mT2=l
IF <MPX.CO.38) mT2-2
RETURW

130 CON7XNUS
IF (MRX.CT.40) 60 To 140
UT1=2 s W12-2
aF (mmx.EB.40) MT2=4
nETe

140 CONT:NUS
:F imwx.6r.44) so TO 150
MTI=4 s ?!72+
IF (PWX.CD.4?) M72=102

IF (FWK.CO.43) MT2=103
XF (WWXOEEI .44) MT2=107
mcTuON

lso CONTXNUS
MT1=I02 s MT2=I02
IF (Mm..sDo46) MT1=103
x- cmm..cm.46> MT2=103
Xr (MD..CCI.47> MT1-107
XF <mmx.Rw.47> mT2=107
RrT1.10u

160 CWTSWUS
XF (MBX.*7.5S) ●O To 190
mnTl=3B2
XF WWX.67.SO) 80 To 170
I’111=1s MT2=1
IF <mm..cm.49> MT2-2
XF (Hax.cm.so) M72=102
mc’ruw

170 COWTSWM
IF WR>. GT.52) 60 To 181J
Mrl=e s mT2=2
IF (max.ca.52> Wfi?=4
mr7uau

180 CDWIZNUS
WTI=4 S ur2-4
xv <?W..CC.54) MT2=I02
XF (M-a.cm.ss) mTl=lo2
mE1uau

190 CSNTINIM
IF cmm..6T.58) 60 70 200
mn?l=1301
MTl=l s mT2=l
x- <MWS.SS.57) Wrz=2
x= <nmO.cm.S8) M71-2

mrTw

zoo CONTZNUS
Xr (Mwx.g?.maxnx) Wm:rc (NouT#5101 mwa*-xm9

510 r~T(lM S* mmx-*a3s* Gnc*Tcn 7- tixmx=*x3)
STOP
RWD

189



APPENDIX B

TRDSEN

This appendix was provided by T. J. Seed and is a summary of the

changes made in TRIDENT-CTR in order to obtain angular fluxes compatible

with SENSIT-2D. In order to make a distinction between this version of

TRIDENT-CTR and the normal version, it was renamed TRDSEN.

190



First UPDATE
●1D SEN517
●1 SEEKTLEI.2
C SENSIT

CO~N
C SENSIT

&ENST/ FNSEN (20). MOLTH (23)

*D CD2.4
C SENSIT

2LTUH. 1P)6. LTC. lPCT.LTKT.LT)6. IPFSM. IPFSI’W LTFS. IPSEN.L~N
C SENSIT
●1 TRIDBD.26
C SENSIT

DIITIl FNSENfiHSNSml.6HSNSm2,6HSHS~3,6MSNS~4.6HSNST05,6HSNSm6.
1 6HSMSm7.6HStlST88,6HSN5 T09,6HSNST10,6MSNSTl l.6HSNST li, LHSflSTJ3.
2 6NSNST14.6HSNST 15,6HSNST16,6HSNSTl 7,6HSNST19,6NSN2 fl:I.6NSNS~0 /

C SENSIT
=1 lNPuT1l. B4
c SEMSIT

EOUIVRLEHCE
C SENSIT
81- lwqJTI1.z3e
C SENSIT

lHOLTN(l) =
IHOLTN(2) =
IHOLTN(3) ●

IHOLTN[4) -
IHOLTN(5) =

C SENSIT

(1~(164),,LSEN)

4NTR1D
4N-SEN
4NSIT
4NL INK
4

●1 INPuTII.243
C SENSIT

lF(K.NE.1) CO TO 1s8
DO 155 1 = 1, Ie
IHOLTN( 1+5) = lDUSE(l)

1s5 CONT 1NUE
159 CONTINUE
C SENS IT
=D INPUT 11.682
C SENSIT

LsEH=LFL +3= Ntl*ITmx
LTLtl ● LSEN + 3 ● ITIIRX

C SENSIT
●D lNPuTII. E17
C SENSIT

LTSEN = 3 ● NTC ● lTM
lpSEN = IPFStR + NGFSB ● Lrs
LfISTEC . lPSEN + LTSEN + 51Z
lF(l TN. EO. E) IPSEN = IPPI

C SENS I T
●D INPuT1l .912. INPUT1l.913
C SENSIT
528 -FoRtt?T(7eH TN I S c(!SE MS PROCESSED BY TNE TR lDENT-CTR SENSI T P

lROCESSOR w .2X. RIB)
C SENS IT
SD INpUTI I. :024
C SENSIT
750 FORrnT[//lX.37WR lDENT-cTR SENS IT PROCESSC4?.
C SENS I T

mTE

● I GEOCON. 14
C SENS IT

EOUIWLENCE (IQ(l) .ITN)
C SENS I T
=1 GEOCON.59
C SENSIT

IF(ITN. EO.8) RETSH?N
DO 120 J ● 1. JT
CfiLL LREED(R(LIP) .fl[LIPO). Pl. J.l.3. IPPI. JT)
l~x - IT(J)
DO 118 1 . 1. Imx
VI = PI(l.1) + P1(2.1) +PJt3.1)
DollEIK-1#3
P1(K.1) = P1(K, I) /V1

I Ie CONTINUE
taLL LRITs(RfL1p) .a(LIPc).pl.J.l .3.lPsEM.Jn

120 CONTINUE
C SEHS IT 33
SD GRIND20. SZORlND20.73
C SENS IT
81 OUTER .19
C SENSIT
UXLL INSTAL
c

. nlw)

191



81
S2
63
a4
BS
86

::
89
90
91

X
94

%
97
9s

1=
101
102
103
184
Ins
106
18?
108
189
118
111
112

113
114
115
116
11?
110
119
120
121
122
123
124
125
126
;2?
12e
129
138
131
132
133
134
135
136
137
138
139
14s
141
142
143
M4
14s

:%
14B
149
158
1s1
152
153
154
155
156
157
15B
159
162.
161
162
163
164
165
1ss
167
:68

WRLL SEEKTLD
C SENSIT
*I OUTER .23
C SENS IT

DIMSNS1ON JPilRtl( 1O).ESEN(5)
C SENS IT
81 OUTER .35
C SENS 1T

EOUIVRLENCE (19(63 ). NTc). (l@(lS5).NSNST) .(111 (166) .JSEN)
C SENS IT
● I oUTER.51
C SENSIT

DfITR ESEW6N7U0 m. 6HNY SEN.6HS IT DU. 6HfP
C SEtlSIT
●D fM’ER.68.OLITER.?O
C SEtiSIT

1DOLD = O
HJDS=NTC*WPO
NGSD - mXTIW / tlAOS
IF INGSD. LT. 1) NGSD ● 1
MuDS = NGSD ● fl.M + 33 + S12
NSDK = fIGri - 1) / NGSD + I
IF (NSDK. GT.28) CfILL ERROR( 1. ESEN. S.)
NGLO ● lGtl - (NDSK-1) * NGSD
NUDLD * NCLD x tSJDS + 33 + S12

.
b

JPfIRtl( 1) - ITN
JPFIRM[2) = ml
JPaRrl(3) = JT
JP9Rri(4) - m
JPARrl(5) = fwPo
JPilRH(6) o NSDK

JPARfl(7) . NGSD
JPRRll(B) - FS.OS

C SENSIT
*I 0UT2R. IB1
C SENS IT

lDSDK ● (G - 1)/ ffiSD+l
l~(IDSDK. EO. IDOLDI GO m 13B
lFtlDSDK. EO.1) CO TO 137
CilLL FILLU( 1.FNSEN( IDSOK-1) .FNSEN( IDSDK-1)
CilLL SRITE(NSMST. ITEfW,8. EI. e,4. JSEN)
CnLL SEEK (FNSEN( lDsDK-1). 1VERS,NSNST,4

13? CONTINUE
NuDS 1 = MUDS
lF(lDSDK. EO. tlSDK) NLWSl = NLOLD
lWRS . lDSDK

FIL ,.6HES

,.rsmsl)

JPi?RM(9) = MUDS I
JPFIRn( ie) = IOSDK
t31LL FILLU(l,FNSEN( lDSDK). FNSEN(lDSDK).MS1)
CRLL F ILLU(2. FtiSEN( lDSDK) .FNSENC IDSDK) .S.)
CRLL SEEK (FNSEN( lDSDK) . IWRS, NSNST. 1)
JSEN . e
C$lLL SRITE(NSNST. IWILTN. O. CI.23. I. JSENI
CfiLL SRITE [NSNST, JPIIRtl.0, 1EJ,8, l. JSEIi)

139 CONTINUE
C SENSIT ‘-
●D OUTER .393,0L!TER.321
C SENSIT
8i0uiiR.324. ouIER.334
C SENS IT
●D OUTER. 337. OUTER. 379
C SENSIT
~ INNER. ?0
C SEN; IT
~ INNER.81
C 6ENSIT
SD INNER .94

iD–iMiiiR.97. !MR. 115
C SENS IT

JFS . 1
C SENS I T
●D lNflER.2L!l. IwER.2B7
C SENSIT
UfRNK NELQB.@BSDRB
81 SLEEP.32”
C SEtiSIT

EOUIVRLENCE (111 flS4).LSEN)
C SENSIT
SD SLEEP.9B
C SENSIT

CRLL lRsNsT(RF( l.2).ns.9(LsEN).
C SEM51T
=D SLEEP.1~
C SENSIT

C9LL WMTtW11.2).RS.0( L=Nl.
c 6ENSIT

m

ITI

192



169 =D SKEP .249. SLEEP. 254
1?8 C SEN5 IT
1?1 =1 SLEEP.259
172 SUBROUTINE LRSNST(IIF. CF. SEN. IT)
173 c
174 c VtlL~ RvERRGES nNGULtlR FLUMES 8ND LR 17SS lLl SEOIENTML
1?5 c FILE
176 C
177 iCRLL B IIW
l?e c
1?9 WRLL CD2
fall r
IEI - DIf71NSION RF(3.1). SEN(3.1).CF(I)
182 c
183 EOUIWLENtE riR(165). NsNs7). r113(166).JsENI
la4 c
itis - ~lO1=l. IT
186 CF(l) = 0.s
187 DO IBK=I.3
lBB CF(I) . CF(]I + W(KO]) s s~(K,l)
109 CONTINUE
19B :0
191 - CQLL S$/17S (NSNST. CF. IT,8. D.2. JsEN)
192 C
193 RETURN
194 END
195 = TRDCTR.SETBCI

Second U?DATE

16 C SCNSZT

17 C*LL LmCCD(n<LZP),a<LX~S> ,n<LS&W,,J,l,~,,PSSWo JT>
16 c SCNSXT
19 ●Jj I“w”.;eo

26 C SCMSYT

21 ●D SUEC*.269
2Z ●C TwDssu.sgrmcx

193
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