CIC-14 REPORT COLLECTION REPRODUCTION COPY

Los Alamos National Laboratory is operated by the Unlversity of Californla for the United States Department of Energy under contract W-7405-ENG-36.

POPCYCLE: A Computer Code
Nuclear and Fossil Plant

	mex
	Leveltzea Life-Cycle Power Costs
	过,
	$\underline{*}$
	-
	+atay

Edited by Kyle Thorn

Photocomposition by E. Katherine Valdez warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefuliness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

POPCYCLE: A Computer Code for Calculating
 Nuclear and Fossil Plant Levelized Life-Cycle Power Costs

R. W. Hardie

CONTENTS

ABSTRACT 1
I. INTRODUCTION 1
II. METHODOLOGY 1
A. Derivation of Levelized Life-Cycle Power Cost Equations 2
B. Treatment of Inflation 7
C. Capital Costs 9
D. Operation and Maintenance Costs 11
E. Fuel Cycle Costs 12
F. Cash Flow Schedule Assumptions 14
III. INPUT INSTRUCTIONS 15
IV. SAMPLE CASE 19
A. Sample Case Input 19
B. Sample Case Output 19
REFERENCES 35

POPCYCLE: A COMPUTER CODE FOR CALCULATING NUCLEAR AND FOSSIL PLANT LEVELIZED LIFE-CYCLE POWER COSTS

by
R. W. Hardie

Abstract

This report describes POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants. Included in this report are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

I. INTRODUCTION

The POPCYCLE computer code is designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants. In addition to total levelized life-cycle costs, the code gives the capital, operation and maintenance, and fuel components making up the total. For nuclear plants, the various subcomponents making up the fuel component are also given. These subcomponents include fabrication, $\mathrm{U}_{3} \mathrm{O}_{8}$, enrichment, Th_{2}, plutonium, ${ }^{233} \mathrm{U}$, and fuel back-end costs.
POPCYCLE calculates levelized life-cycle power costs using what is called the "proportional debt repayment" method. This method assumes that the ratio of outstanding debt capital to outstanding equity capital remains constant throughout the lifetime of the plant. To account for income tax effects resulting from inflation, the calculations are performed using inflated (current) dollar parameters and the results are then converted to deflated (constant) dollars.

This report presents derivations of the equations used by POPCYCLE, discusses the methodology that the code is based on, and describes the input instructions to the code. Also included is a sample case for a nuclear power plant and for a coal-fired power plant.

II. METHODOLOGY

The cost of producing electricity from a generating plant normally can be expected to vary during the lifetime of the plant. However, the rates at which the costs vary usually are not the same for different types of generating plants or for the various cost components of any particular plant.

This leads to a couple of difficulties with calculating total power costs that vary with time. One example occurs when electricity from one plant type is more expensive than electricity from another plant type during part of its lifetime and less expensive during another part. For such a case, it may be difficult to determine which plant type produces the lesser expensive electricity over the total lifetime of the plants.

Another difficulty with varying total power costs is that it is hard to compare the relative contributions of the various cost components because the components may be varying at different rates.

For these reasons, levelized (that is, constant) life-cycle costs usually are used for comparing electrical generating costs because the total power cost is then characterized by a single number. Although levelized life-cycle costs can be calculated for any production process, the discussion in this report will be limited to electrical generating plants.

1
Figure 1 gives an example of time-dependent product costs for three plant types and illustrates the difficulty with determining which plant type produces the least expensive product. For the same three plants, Fig. 2 gives the levelized life-cycle product cost and illustrates the advantage of comparing levelized costs.

A. Derivation of Levelized Life-Cycle Power Cost Equations

The underlying principle in computing levelized life-cycle costs is that the income over the lifetime of a project must balance the expenses associated with the project. For electrical generating plants, income is

Fig. 1. Time-dependent product cost.

Fig. 2. Levelized life-cycle product cost.
derived from the revenue received from the sale of electricity. Expenses include net fuel costs, operation and maintenance costs, taxes, interest, return on the investment, recovery of the investment, and any other costs associated with the project.

The expression for levelized life-cycle costs depends on the method of debt capital repayment that is assumed. POPCYCLE uses what is called "proportional debt repayment," which assumes that the debt capital and equity capital are paid off in a constant ratio. Therefore, throughout the lifetime of a project, the ratio of outstanding debt to outstanding equity is constant.

Another method that is sometimes used is called "fixed-schedule repayment." This method assumes that the entire schedule of debt repayment is fixed in advance, and all expenses that occur after the start of the project come from equity capital. ${ }^{1}$

Projects that are part of an overall corporate financial structure probably are better represented by the proportional case. For such projects, all funds come from a pool of capital where the ratio of debt to equity is held constant. On the other hand, single projects that have their own independent debt structure probably are better represented by the fixed-schedule case. A comparison of the expressions for levelized life-cycle costs for both methods is given in Refs. 1 and 2.

The derivation of the levelized life-cycle cost expression for the proportional case can be started by tabulating a balance sheet for an arbitary year k of the project. The amount towards reducing the outstanding capital investment in year k is equal to the revenue received in year k minus the expenses in year k. All terms are defined in Table I.

TABLE I. Definition of Terms

Nonannual Quantities		Annual Quantities	
Term	Definition	Term	Definition
	Equity fraction Cost of equity	I_{k}	Total investment outstanding at start of year k
	Debt fraction	R_{k}	Revenue received at end of year k
	Cost of debt	E_{k}	Quantity of electricity produced in year k
	Cost of money	$\mathrm{fch}_{\text {k }}$	Fixed charges for year k
	$=\mathrm{e} \times \mathrm{i}_{\mathrm{e}}+\mathrm{b} \times \mathrm{i}_{\mathrm{b}}$	oam $_{\text {k }}$	Operation and maintenance costs for year k
	Tax adjusted cost of money	fuel $_{\text {k }}$	Fuel cost for year k
	$=\mathrm{i}-\mathrm{t} \times \mathrm{b} \times \mathrm{i}_{\mathrm{b}}$	$\mathrm{rev}_{\mathbf{k}}$	Gross revenue taxes for year \mathbf{k}
	Levelized life-cycle	$\mathrm{dep}_{\mathrm{k}}$	Depreciation on capital for year k
	electrical power cost	$\mathrm{fdep}_{\mathrm{k}}$	Depreciation on fuel for year k
	Gross revenue tax rate		$=$ fuel $_{k_{k}}$ for fossil plants
	Income tax rate	$\mathrm{tdep}_{\mathrm{k}}$	Total depreciation for year k
	Investment tax credit rate		$=\mathrm{dep}_{\mathrm{k}}+\mathrm{fdep}_{\mathrm{k}}$
	Net salvage value	$\mathrm{bin}_{\mathrm{k}}$	Bond interest for year k
	Project lifetime		$=\mathrm{b} \times \mathrm{i}_{\mathrm{b}} \times \mathrm{I}_{\mathrm{k}}$
		tot $_{\text {k }}$	Total operating costs for year \mathbf{k} $=\mathrm{fch}_{\mathbf{k}}+\mathrm{oam}_{\mathbf{k}}+\mathrm{fuel}_{\mathbf{k}}$
		$\operatorname{tnf} \mathrm{f}_{\mathrm{k}}$	Total nonfuel operating costs for year \mathbf{k} $=\mathrm{fch}_{\mathrm{k}}+\mathrm{oam}_{\mathrm{k}}$
		itc $_{\text {k }}$	$\begin{aligned} & \text { Investment tax credit } \\ & =\mathbf{c} \times I_{1} \text { for } k=1 \text {, } \\ & =0 \text { for } k>1 \end{aligned}$
		$\mathrm{cap}_{\mathrm{k}}$	Annualized capital investment in year k

1. Balance Sheet for Year k.

Return on debt
and equity for \quad total investment
$\begin{aligned} & \underset{\text { year } k}{\text { (assuming }} \\ & \text { proportional }\end{aligned}=\left(\begin{array}{c}\text { cost of } \\ \text { equity }\end{array} \times \underset{\text { fraction }}{\text { equity }}+\begin{array}{c}\text { cost of } \\ \text { debt }\end{array} \times \begin{array}{c}\text { debt } \\ \text { fraction }\end{array}\right) \times \begin{aligned} & \begin{array}{l}\text { outstanding } \\ \text { at start of } \\ \text { year } k\end{array}\end{aligned}$
debt repayment)
$=\left(e \times i_{e}+b \times i_{b}\right) I_{k}$
$=\mathrm{i} \times \mathrm{I}_{\mathrm{k}}$.
$\underset{\text { taxes for year } k}{\text { Gross revenue }}=\begin{gathered}\text { gross revenue } \\ \text { tax rate }\end{gathered} \times$ revenue in year k

$$
\begin{equation*}
=g \times R_{k} \tag{3}
\end{equation*}
$$

$\begin{gathered}\text { Income taxes } \\ \text { for year } k\end{gathered} \quad=\begin{gathered}\text { income tax } \\ \text { rate }\end{gathered} \times\left(\begin{array}{c}\text { revenue } \\ \text { in year } k\end{array} \quad \begin{array}{c}\text { deductible expenses } \\ \text { in year } k\end{array}\right)-\begin{gathered}\text { investment } \\ \text { tax credits }\end{gathered}$

$$
\begin{equation*}
=t\left(\mathbf{R}_{k}-\operatorname{tnf} f_{k}-\operatorname{tdep} p_{k}-\operatorname{bin}_{k}-g \times \mathbf{R}_{k}\right)-i t c_{k} . \tag{4}
\end{equation*}
$$

For proportional debt repayment,

$$
\begin{equation*}
\operatorname{bin}_{k}=b \times i_{b} \times I_{k} \tag{5}
\end{equation*}
$$

Combining Eqs. (1)-(5) yields
amount towards $=R_{k}-$ tot $_{k}-i \times I_{k}-g \times R_{k}$
reduction of $\quad-t\left(R_{k}-\operatorname{tnf}_{k}-\operatorname{tdep}_{k}-b \times i_{b} \times I_{k}-g \times R_{k}\right)+i t c_{k}$
investment in
year k

$$
\begin{align*}
= & R_{k}(1-g)(1-t)-\operatorname{tot}_{k}+t\left(\operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right) \tag{6}\\
& +I_{k}\left(t \times b \times i_{b}-i\right)+i t c_{k} .
\end{align*}
$$

The investment
outstanding at $=I_{k+1}$
end of year k

$$
\begin{aligned}
& =\text { the investment } \\
& \begin{array}{l}
\text { outstanding at } \\
\text { beginning of year } k
\end{array} \quad-\quad \begin{array}{l}
\text { reduction of amount towards } \\
\text { investment in year } k .
\end{array}
\end{aligned}
$$

Substituting Eq. (6) in the above expression yields

$$
\begin{aligned}
I_{k+1} & =I_{k}-\left[R_{k}(1-g)(1-t)-\operatorname{tot}_{k}+t\left(\operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right)+I_{k}\left(t \times b \times i_{b}-i\right)+i t c_{k}\right] \\
& =I_{k}\left(1+i-t \times b \times i_{b}\right)-\left[R_{k}(1-g)(1-t)-\operatorname{tot}_{k}+t\left(\operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right)+i t c_{k}\right] .
\end{aligned}
$$

Let

$$
\mathrm{i}^{\prime}=\mathrm{i}-\mathrm{t} \times \mathrm{b} \times \mathrm{i}_{\mathrm{b}} .
$$

Then,

$$
\mathbf{I}_{\mathbf{k}+1}=\mathbf{I}_{\mathbf{k}}\left(1+\mathrm{i}^{\prime}\right)-\left[R_{\mathbf{k}}(1-g)(1-t)-\operatorname{tot}_{\mathbf{k}}+\mathrm{t}\left(\operatorname{tnf}_{\mathbf{k}}+\operatorname{tdep}_{\mathbf{k}}\right)+i \mathrm{itc}_{\mathbf{k}}\right] .
$$

Using the above expression for years $1,2,3$, and K of the project, we obtain the following.
2. Balance Sheet for Year 1.
$\mathrm{I}_{2}=\mathrm{I}_{1}\left(1+\mathrm{i}^{\prime}\right)-\left[\mathrm{R}_{1}(1-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{1}+\mathrm{t}\left(\operatorname{tnf}_{1}+\mathrm{tdep}_{1}\right)+\mathrm{itc} \mathrm{c}_{1}\right]$.
3. Balance Sheet for Year 2.

$$
\begin{aligned}
& \mathrm{I}_{3}=\mathrm{I}_{2}(1+\mathrm{i})-\left[\mathrm{R}_{2}(1-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{2}+\mathrm{t}\left(\operatorname{tnf}_{2}+\mathrm{tdep}_{2}\right)+\mathrm{itc} \mathrm{C}_{2}\right] \\
& =\mathrm{I}_{1}(1+\mathrm{i})^{2} \\
& -(1+i)\left[R_{1}(1-g)(1-t)-\operatorname{tot}_{1}+t\left(\operatorname{tnf}_{1}+\text { tdep }_{1}\right)+\mathrm{itc}_{1}\right] \\
& -\left[R_{2}(1-g)(1-t)-\operatorname{tot}_{2}+t\left(\operatorname{tnf}_{2}+\text { tdep }_{2}\right)+i t c_{2}\right] .
\end{aligned}
$$

4. Balance Sheet for Year 3.

$$
\begin{aligned}
\mathrm{I}_{4}= & I_{3}\left(1+\mathrm{i}^{\prime}\right)-\left[\mathrm{R}_{3}(1-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{3}+\mathrm{t}\left(\operatorname{tnf}_{3}+\operatorname{tdep}_{3}\right)+\mathrm{itc}_{3}\right] \\
== & \mathrm{I}_{1}\left(1+\mathrm{i}^{3}\right)^{3} \\
& -\left(1+\mathrm{i}^{2}\right)^{2}\left[R_{1}(1-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{1}+\mathrm{t}\left(\operatorname{tnf}_{1}+\operatorname{tdep}_{1}\right)+\mathrm{itc}_{1}\right] \\
& \left.-\left(1+\mathrm{i}^{\prime}\right)\left[R_{2}(1-g)(1-\mathrm{t})-\operatorname{tot}_{2}+\mathrm{t} \operatorname{tnf}_{2}+\operatorname{tdep}_{2}\right)+\mathrm{itc}_{2}\right] \\
& -\left[\mathrm{R}_{3}(1-g)(1-t)-\operatorname{tot}_{3}+\mathrm{t}\left(\operatorname{tnf}_{3}+\operatorname{tdep}_{3}\right)+\mathrm{itc}_{3}\right] .
\end{aligned}
$$

5. Balance Sheet for Year K. Because the capital investment is fully recovered at the end of the project, except for the salvage value,

$$
\begin{align*}
& \mathrm{I}_{\mathrm{K}+1}=\mathbf{S} \\
& =\mathrm{I}_{\mathbf{K}}\left(1+\mathrm{i}^{\prime}\right)-\left[\mathrm{R}_{\mathbf{K}}(1-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{\mathrm{K}}+\mathrm{t}\left(\operatorname{tnf}_{\mathrm{K}}+\mathrm{tdep}_{\mathrm{K}}\right)+\mathrm{itc} \mathrm{~K}_{\mathrm{K}}\right] \\
& =\mathrm{I}_{1}(1+\mathrm{i})^{\mathrm{K}} \\
& -(1+\mathrm{i})^{\mathrm{K}-1}\left[\mathrm{R}_{1}(1-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{1}+\mathrm{t}\left(\operatorname{tnf}_{1}+\operatorname{tdep}_{1}\right)+\mathrm{itc}_{1}\right] \\
& -(1+\mathrm{i})^{\mathrm{K}-2}\left[\mathrm{R}_{2}(1-\mathrm{g})(1-\mathrm{t})-\text { tot }_{2}+\mathrm{t}\left(\operatorname{tnf}_{2}+\mathrm{tdep}_{2}+\mathrm{itc} \mathrm{c}_{2}\right]\right. \\
& -\ldots .\left[\mathrm{R}_{\mathrm{K}}(\mathrm{l}-\mathrm{g})(1-\mathrm{t})-\operatorname{tot}_{\mathrm{K}}+\mathrm{t}\left(\operatorname{tnf}_{\mathrm{K}}+\mathrm{tdep}_{\mathrm{K}}\right)+\mathrm{it} \mathrm{c}_{\mathrm{K}}\right] . \tag{7}
\end{align*}
$$

Dividing Eq. (7) by $(1+\mathrm{i})^{\mathrm{K}}$ and rearranging yields

$$
I_{1}-\frac{S}{(1+i)^{K}}=\sum_{k=1}^{K} \frac{R_{k}(1-g)(1-t)-\operatorname{tot}_{k}+t\left(\operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right)+i t c_{k}}{\left(1+i^{\prime}\right)^{k}}
$$

or

$$
\begin{equation*}
\sum_{k=1}^{k} \frac{R_{k}}{(1+i)^{k}}=\frac{I_{1}-\frac{S}{(1+i)^{K}}}{(1-g)(1-t)}+\sum_{k=1}^{K} \frac{\operatorname{tot}_{k}-t\left(\operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right)-i t c_{k}}{(1-g)(1-t)(1+i)^{k}} . \tag{8}
\end{equation*}
$$

Equation (8) confirms that the revenues over the lifetime of the project (the left side of the equation) are equal to the expenses over the lifetime of the project (the right side of the equation). The revenue in year k is equal to the quantity of product produced in that year, E_{k}, times the price of the product. The levelized life-cycle power cost, L , is the constant cost of electricity over the plant's lifetime. Therefore, $R_{k}=L \times E_{k}$ for all values of k and

$$
\begin{equation*}
L=\frac{\sum_{k=1}^{K} \frac{R_{k}}{(1+i)^{k}}}{\sum_{k=1}^{K} \frac{E_{k}}{\left(1+i^{\prime}\right)^{k}}} \tag{9}
\end{equation*}
$$

Combining Eqs. (8) and (9) yields

$$
\begin{equation*}
L=\frac{I_{1}-\frac{S}{(1+i)^{K}}+\sum_{k=1}^{K} \frac{\operatorname{tot}_{k}-t\left(t \operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right)-i t c_{k}}{(1+i)^{k}}}{(1-g)(1-t) \sum_{k=1}^{K} \frac{E_{k}}{(1+i)^{k}}} \tag{10}
\end{equation*}
$$

The capital investment can be represented as a uniform annual payment over the lifetime K using the capital recovery factor $\operatorname{crf}\left(\mathrm{i}^{\prime}, \mathrm{K}\right)$.

$$
\begin{equation*}
\operatorname{cap}_{k}=\left[I_{1}-\frac{S}{\left(1+i^{\prime}\right)^{K}}\right] \times \operatorname{crf}\left(i^{\prime}, \mathrm{K}\right) \tag{11}
\end{equation*}
$$

where

$$
\operatorname{crf}\left(i^{\prime}, K\right)=\left[\frac{i^{\prime}(1+i)^{K}}{\left(1+i^{\prime}\right)^{K}-1}\right]
$$

Substituting Eq. (11) in the expression for L [Eq. (10)] yields

$$
\begin{equation*}
L=\frac{\sum_{k=1}^{K} \frac{\operatorname{cap}_{k}+\operatorname{tot}_{k}-t\left(\operatorname{tnf}_{k}+\operatorname{tdep}_{k}\right)-i t c_{k}}{(1+i)^{k}}}{(1-g)(1-t) \sum_{k=1}^{K} \frac{E_{k}}{(1+i)^{k}}} \tag{12}
\end{equation*}
$$

If the expressions for tot ${ }_{k}, \operatorname{tnf}_{k}$, and tdep_{k} are substituted in Eq. (12), we get

The levelized life-cycle cost can be expressed as a function of each of the following components.

$$
\begin{aligned}
& \left.\mathrm{L}=\frac{\left.\sum_{\mathrm{k}=1}^{\mathrm{k}} \frac{\operatorname{cap}_{\mathrm{k}}+\mathrm{fch}_{\mathrm{k}}+(\mathrm{t} / 1-\mathrm{t})\left(\mathrm{cap}_{\mathrm{k}}-\operatorname{dep}_{\mathrm{k}}\right)-[\mathrm{itc}}{\mathrm{k}} /(1-\mathrm{t})\right]}{\left(1+\mathrm{i}^{\prime}\right)^{\mathrm{k}}}\right\} \begin{array}{c}
\text { capital related costs plus income } \\
\text { caxes on capital minus investment }
\end{array} \\
& \left.\mathrm{L}=\frac{\left(1+\mathrm{i}^{\prime}\right)^{\mathrm{k}}}{\mathrm{~L}_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{E}_{\mathrm{k}}}\right\} \begin{array}{c}
\text { capital related costs plus income } \\
\text { taxes on capital minus investment }
\end{array} \\
& \sum_{k=1}^{K} \frac{E_{k}}{(1+i)^{k}} \\
& \left.+\frac{\sum_{k=1}^{K} \frac{\text { oam }_{k}}{(1+i)^{k}}}{\sum_{k=1}^{K} \frac{E_{k}}{(1+i)^{k}}}\right\} \text { operation and maintenance charges } \\
& \left.+\frac{\sum_{k=1}^{K} \frac{\text { fuel }_{k}+(t / 1-t)\left(\text { fuel }_{k}-\text { fdep }_{k}\right)}{\left(1+\mathrm{i}^{\mathrm{i}}\right)^{\mathrm{k}}}}{\mathrm{~K}_{\mathrm{k}}}\right\} \begin{array}{l}
\text { fuel costs plus income taxes } \\
\text { on fuel, if any }
\end{array} \\
& +\sum_{k=1}^{K} \frac{E_{k}}{\left(1+i^{\prime}\right)^{k}} \\
& \left.+\frac{\frac{g}{1-g} \sum_{k=1}^{K} \frac{\text { cap }_{k}+\text { fch }_{k}+\text { oam }_{k}+\text { fuel }_{k}-t\left(\text { fch }_{k}+\text { oam }_{k}+\text { dep }_{k}+\text { fdep }_{k}\right)-i t c_{k}}{\left(1+i^{\prime}\right)^{k}}}{(1-t) \sum_{k=1}^{K} \frac{E_{k}}{(1+i)^{k}}}\right\} \\
& \text { gross revenue taxes . }
\end{aligned}
$$

The parameter denoted with an " i " " which is the weighted average of the cost of equity and the cost of debt, commonly is referred to as the "cost of money." Similarly, "i"" usually is referred to as the "tax adjusted cost of money." This is because i^{\prime} accounts for the fact that interest on capital is tax deductible and therefore lowers the effective cost of money. As seen by the above equations, the "discount rate," which is used to translate the value of money over time, is equal to i^{\prime} for proportional debt repayment. The discount rate for fixed-schedule repayment, as shown in Refs. 1 and 2 , is simply equal to the cost of equity, i_{e}.

B. Treatment of Inflation

1. Current and Constant Dollar Costs. A common error in economic analyses is to improperly mix inflated (current dollar) and deflated (constant dollar) parameters. For example, inflated money costs are frequently used with deflated expenses, or vice-versa. The general form for the levelized life-cycle cost equation is

$$
\begin{equation*}
L=\frac{\sum_{k=1}^{K} \frac{C_{k}}{(1+j)^{k}}}{\sum_{k=1}^{K} \frac{E_{k}}{(1+j)^{k}}}, \tag{13}
\end{equation*}
$$

where
$\mathrm{C}_{\mathrm{k}}=$ expenditures in year k
$\mathrm{E}_{\mathrm{k}}=$ quantity of electricity produced in year k ,
$\mathrm{j}=$ discount rate, and
$K=$ project lifetime.
If the expenditures and the discount rate are both inflated parameters, then L is the inflated levelized life-cyle cost. The trouble with such a parameter is that it is difficult to have a "feel" for such a value because it is not in today's dollars.

One solution is to use deflated parameters for both the expenditures and the discount rate. This gives levelized costs that are in deflated dollars, but there are income tax related effects that result in this method being in error if inflation really does occur.
Starting with the following expression yields a more satisfactory solution.

$$
\begin{aligned}
\text { income } & =\sum_{k=1}^{K} \frac{E_{k} \times L_{\text {ln }}}{\left(1+j_{l n}\right)^{k}} \\
& =\sum_{k=1}^{K} \frac{E_{k} \times L_{d e}(1+z)^{k}}{\left(1+j_{l n}\right)^{k}},
\end{aligned}
$$

where
$\mathrm{L}_{\text {in }}=$ inflated levelized cost,
$\mathrm{L}_{\mathrm{de}}=$ deflated levelized cost,
$\mathrm{j}_{\mathrm{ln}}=$ inflated discount rate, and
$z=$ inflation rate.
Solving this equation for L_{de},
$L_{d e}=\frac{\left.L_{4 n} \sum_{k=1}^{K} \frac{E_{k}}{\left(1+j_{1 n}\right.}\right)^{k}}{\sum_{k=1}^{K} \frac{E_{k}(1+z)^{k}}{\left(1+j_{1 n}\right)^{k}}}$.
Substituting Eq. (13) into Eq. (14), where inflated parameters are used in Eq. (13), yields

$$
\begin{equation*}
L_{d e}=\frac{\sum_{k=1}^{k} \frac{C_{k}^{\ln }}{\left(1+j_{n n}\right)^{k}}}{\sum_{k=1}^{k} \frac{E_{k}(1+z)^{k}}{\left(1+j_{n}\right)^{k}}} . \tag{15}
\end{equation*}
$$

The denominator of Eq. (15) is frequently written as

$$
\sum_{k=1}^{K} \frac{E_{k}}{\left(1+j_{d e}\right)^{k}},
$$

where $j_{d e}$ is the deflated discount rate. The expression for $j_{d e}$ is given by

$$
\mathrm{j}_{\mathrm{de}}=\frac{\left(1+\mathrm{j}_{\mathrm{n}}\right)}{(1+\mathrm{z})}-1 .
$$

This approach gives levelized life-cycle costs in deflated, or constant, dollars, but takes the impact of inflation on income taxes into account. All input costs to POPCYCLE must be in the same year's dollars-referred to as "price-year" dollars. If an inflation rate is specified, POPCYCLE then inflates the costs to current year's dollars.
2. Inflation Versus Escalation. Another common error in economic analyses is to confuse inflation and escalation. Inflation is a general loss of purchasing power usually measured using the "gross national product price deflators." Escalation, on the other hand, is a real price increase above inflation. As an example, suppose the price in current dollars of a piece of equipment increased by 15% in a year when the inflation rate was 10%. The escalation rate for that piece of equipment would then be $1.15 / 1.10=0.045$, or 4.5%. That is,

$$
\begin{aligned}
& \text { constant dollar } \\
& \text { price in year } n+1
\end{aligned}=\begin{gathered}
\text { constant dollar } \\
\text { price in year } n
\end{gathered} \times\binom{ 1+\text { escalation }}{\text { rate }}
$$

and
$\underset{\text { price in year } n+1}{\text { current dollar }}=\underset{\text { price in year } n}{\text { current dollar }} \times\binom{ 1+$ inflation }{ rate }$\binom{1+$ escalation }{ rate }.

C. Capital Costs

The initial capital investment, I_{1}, is one of the most important input parameters to POPCYCLE. Because capital investments frequently are given on many different bases, this section outlines the method that should be used in determining I_{1} for use in POPCYCLE. The expression for calculating I_{1}, including interest during construction (IDC), is

$$
I_{1}=\sum_{n=1}^{N} G_{n}(1+i)^{N-n},
$$

where
$\mathrm{G}_{\mathrm{n}}=$ capital cost outlay in year n of construction,
$\mathrm{i}=$ interest rate during construction, and
$\mathrm{N}=$ number of years for capital construction.
If i is the inflated interest rate and G_{n} the inflated capital cost outlay, then the above expression calculates the total capital cost in "year of commercial operation" dollars (that is, year $\mathbf{N}+1$). To convert these to "price-year" dollars, the above must be divided by $(1+z)^{N Y}$, where z is the inflation rate and $N Y$ is the first year of commercialization minus the price year.

Therefore, the general form of the expression for calculating the total capital investment, including IDC, in "price-year" dollars is

$$
I_{1}=\frac{1}{(1+z)^{N Y}} \sum_{n=1}^{N} G_{n}(1+i)^{N-n},
$$

and the expression for IDC in "price-year" dollars is

$$
\text { IDC }=\frac{1}{(1+z)^{N Y}} \sum_{n=1}^{N}\left[G_{n}(1+i)^{N-n}-G_{n}\right] .
$$

Frequently, capital cost data are given on a "build today, operate today" basis. The relationship between G_{n} and capital costs on this basis is

$$
\mathrm{G}_{n}^{\prime}=\mathrm{G}_{n}(1+e)^{N-n}(1+z)^{N-n},
$$

where e is the capital cost escalation rate, and $\mathrm{G}_{\mathrm{a}}^{\prime}$ is the capital cost outlay in year n of construction escalated and inflated to the start-up date.

1. Capital Investment Annuity. In inflated dollars, the expression for the capital investment annuity amortized over the lifetime of the plant, cap ${ }_{k}$, becomes

$$
\text { cap }_{k}=\left[I_{1}-\frac{S(1+z)^{K}}{\left(1+i_{n}^{\prime}\right)^{K}}\right] \times\left[\frac{i_{1 n}^{\prime}\left(1+i_{n}^{\prime}\right)^{K}}{\left(1+i_{1 n}^{\prime}\right)^{K}-1}\right],
$$

where
$\mathrm{I}_{1}=$ initial capital investment (\$) in constant, price-year dollars,
$\mathbf{S}=$ salvage value of the plant $(\$)$ at the end of life in constant, price-year dollars, and
$\mathrm{i}_{\mathrm{in}}^{\prime}=$ inflated, tax adjusted cost of money.
If the decommissioning cost exceeds the salvage value, then \mathbf{S} is set equal to zero and the decommissioning cost is added to the fixed charges discussed below.
2. Fixed Charges. Costs included in the "fixed charges" category include property insurance, property taxes, capital replacements, and decommissioning costs. The expression for fixed charges in year K in inflated dollars, $\mathrm{fch}_{\mathrm{k}}$, is

$$
\mathrm{fch}_{\mathrm{k}}=\left[(\mathrm{pir}+\mathrm{ptr}+\mathrm{crr}) \times \mathrm{I}_{1}+\mathrm{dcom}\right] \times(1+\mathrm{z})^{\mathrm{k}},
$$

where

```
    pir = property insurance rate (fraction/year),
    ptr = property tax rate (fraction/year),
    crr = capital replacement rate (fraction/year),
    I
dcom = decommissioning cost in constant, price-year dollars ($)-only added to fch }\mp@subsup{\textrm{F}}{\mathbf{k}}{}\mathrm{ for
        k = K.
```

3. Income Taxes on Capital. The general expression for the calculation of income taxes for year k is
income tax rate \times (revenue in year k - deductible expense in year k).
Depending on the relative magnitude and time dependence of the revenues and expenses, there may be cases where deductible expenses exceed revenues during some years of a project's lifetime. However, POPCYCLE takes the entire deduction in the year in which it occurs. This should more closely approximate the real world where additional deductions from a project can be used to reduce income tax liabilities for other projects. This would not be a good assumption, of course, if the entire income for the corporation results from a single project.
4. Capital Depreciation Allowance. Two methods of calculating the capital depreciation for income tax purposes are included in POPCYCLE-straight-line depreciation and sum-of digits depreciation. The expression for the depreciation allowance, dep $_{k}$, for each method is given below.
$\left.\operatorname{dep}_{\mathrm{k}}=\frac{\mathrm{I}_{1}-\mathbf{S} \times(1+\mathbf{z})^{\mathbf{K}}}{\mathrm{K}}\right\}$ straight-line depreciation
$\left.\operatorname{dep}_{k}=\frac{\left[I_{1}-\mathbf{S} \times(1+\mathbf{z})^{K}\right](K+1-k)}{\sum_{\mathbf{k}^{\prime}=1}^{K} k^{\prime}}\right\}$ sum-of-digits depreciation ,
where
$\mathrm{I}_{1}=$ initial capital investment $(\$)$ in constant, price-year dollars, and
$\mathbf{S}=$ salvage value (\$) in constant, price-year dollars.
5. Investment Tax Credits. The investment tax credit is a credit against the income tax liabilities in the year the capital investment occurs. Its magnitude is equal to the investment tax credit rate multiplied by the capital investment. Because the credit is assumed to be taken in the first year of plant operation, its effect on the levelized life-cycle cost is large.

The U.S. Master Tax Guide (Sec. 1179) provides the following regulation regarding the maximum investment tax credit.
"The investment tax credit may not exceed tax liability (see $\mathbb{I} 1178$). If tax liability exceeds $\$ 25,000$, the tax credit may not exceed $\$ 25,000$ plus 50% of the tax liability over that amount (Code Sec. 46(a)(3); Reg. § 1.46-1)."
For a capital intensive project, it is very likely that the investment tax credit for the first year of operation will exceed 50% of the income tax liability plus $\$ 25,000$ and could even exceed the entire tax liability. Nevertheless, POPCYCLE takes the entire investment tax credit in the first year of plant operation. Using logic similar to that described above, this assumes that these additional credits could be used to reduce the income tax liabilities for other projects.

Even though a project may have income tax liabilities on both capital and fuel, the entire investment tax credit is included in the capital portion of the total power costs printout.

D. Operation and Maintenance Costs

Operation and maintenance costs consist of two types, fixed and variable, plus nuclear liability insurance. Fixed costs are independent of the capacity factor whereas variable costs are proportional to
the capacity factor. The expression for operation and maintenance costs in year k in inflated dollars, oam ${ }_{k}$, is

$$
\text { oam }_{k}=\left(\text { foam }_{k}+\text { voam }_{k} \times \text { capf }_{k}+\text { rnli }_{k}\right) \times(1+z)^{\mathbf{k}},
$$

where
foam ${ }_{\mathrm{k}}=$ fixed operation and maintenance costs in constant, price year dollars in year k , voam $_{k}=$ variable operation and maintenance costs in constant, price-year dollars in year k, capf $_{\mathrm{k}}=$ capacity factor in year k , and rnli $_{\mathrm{k}}=$ nuclear liability insurance costs in year k in constant, price-year dollars.

E. Fuel Cycle Costs

1. Fuel Cycle Model. A schematic diagram of the nuclear fuel cycle model in POPCYCLE is shown in Fig. 3. Not all nuclear power plants will have all of the steps shown in this figure. For example, the Light Water Reactor on the once-through cycle will not incur the reprocessing and waste shipping and storage costs-nor will it receive the fuel credits resulting from reprocessing the spent fuel. Similarly, a plutonium fueled Fast Breeder Reactor will not incur the $\mathrm{U}_{3} \mathrm{O}_{8}$ related costs.

POPCYCLE uses reactor charge and discharge data plus other fuel cycle information described below to calculate the nuclear fuel cycle cost components.

Reactor charge and discharge data are specified for each year of the plant's lifetime and for as many fuel cycle zones as desired. For example, charge and discharge data for three zones (the core, axial blanket, and radial blanket) may be specified for a Fast Breeder Reactor. All charges are assumed to occur at the beginning of the year, and all discharges at the end of the year. The six types of charge and discharge data that must be specified for a nuclear plant, and their corresponding units of measure, are

1. ${ }^{232} \mathrm{Th}(\mathrm{kg} /$ year $)$
2. ${ }^{233} \mathrm{U}(\mathrm{kg} /$ year $)$
3. ${ }^{235} \mathrm{U}(\mathrm{kg} /$ year $)$
4. ${ }^{238} \mathrm{U}(\mathrm{kg} /$ year $)$
5. Fissile plutonium (kg/year)
6. Total nuclear fuel heavy metal ($\mathrm{kg} /$ year).

Other types of nuclear cycle information that are required include

1. Enrichment cost by year ($\$ / \mathrm{kg}$ of SWU)*
2. Tails composition by year (\%)
3. ThO_{2} cost by year $(\$ / \mathrm{lb})$
4. ${ }^{233} \mathrm{U}$ cost by year $(\mathrm{S} / \mathrm{kg})$
5. $\mathrm{U}_{3} \mathrm{O}_{8}$ cost by year ($\$ / \mathrm{lb}$)
6. Fissile plutonium cost by year $(\$ / \mathrm{kg})$
7. Fabrication cost by year ($\$ / \mathrm{kg}$ heavy metal)
8. Back-end fuel cost by year ($\$ / \mathrm{kg}$ heavy metal)**
9. Fabrication loss fraction \dagger

[^0]

Fig. 3. Nuclear fuel cycle model.
10. Reprocessing loss fraction*
11. Fabrication lead time (years)**
12. Back-end lag time (years) \dagger

The ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ charge and discharge data, along with the tails composition and loss fractions, are used to compute $\mathrm{U}_{3} \mathrm{O}_{8}$ and enrichment requirements. These requirements and the $\mathrm{U}_{3} \mathrm{O}_{8}$ and enrichment costs are then used to calculate the $\mathrm{U}_{3} \mathrm{O}_{8}$ and enrichment subcomponents of the fuel cycle component.

Similarly, the ${ }^{233} \mathrm{U}$, fissile plutonium, and ThO_{2} subcomponents are obtained using the charge and discharge information and the costs of these materials. The fabrication and back-end cost subcomponents are obtained using the fabrication and back-end costs and the total heavy metal throughput data.

For fossil plants, the fuel cycle cost in year k is simply the quantity of fuel required in year k times the cost per quantity in year k . The three fossil fuel types considered, and their units of measure, are shown below.

1. Coal (tons/year)

2. Oil (barrels/year)
3. Gas ($10^{3} \mathrm{scf} /$ year)
4. Income Taxes on Fuel. POPCYCLE uses the "unit of production" method for calculating nuclear fuel depreciation allowances for income tax purposes, which is probably the most widely used method for determining such allowances. ${ }^{3}$ Using this method, the project's total lifetime fuel expenses are apportioned by year according to the amount of energy produced in each year.

The expression for the fuel depreciation allowance, fdep $_{k}$, using this method is

$$
\operatorname{fdep}_{k}=\frac{\mathrm{E}_{\mathrm{k}}}{\sum_{\mathbf{k}^{\prime}=1}^{\mathrm{K}}} \mathrm{E}_{\mathrm{k}}^{\prime} \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{fuel}_{\mathrm{k}}^{\prime}
$$

As an option, the code will also assume that the nuclear fuel depreciation allowance is taken in the year that the expense occurs (that is, fdep $_{k}=$ fuel $_{k}$). A description of several nuclear fuel depreciation schemes appears in Ref. 4. For fossil plants, the fuel costs are treated in POPCYCLE as an expense item, so there aren't any fuel-related income taxes for such plants.

F. Cash Flow Schedule Assumptions

The cost model used in POPCYCLE makes several assumptions regarding when costs occur and when credits are received. First, POPCYCLE assumes that plants begin operation at the beginning of year 1 and end operation at the end of year K . The total initial capital cost, including interest during construction, is assumed to occur at the beginning of year 1 . Amortization payments, fixed charges, income taxes, investment tax credits, operation and maintenance costs, and gross revenue taxes are all assumed to occur at the end of each year.

Fuel feed charges occur at the beginning of each year minus any lead time. Fuel discharge credits are received at the end of each year plus any lag time. Revenue from the sale of electricity is received at the end of each year.

[^1]
III. INPUT INSTRUCTIONS

The following pages present the input instructions to POPCYCLE. There are four basic types of input to the code:
(1) Hollerith data;
(2) integer data (nonsubscripted)-this type of data is read in using 6 -column fields;
(3) floating point data (nonsubscripted)-this type of data is read in using 12 -column fields; and
(4) floating point data (subscripted).

Subscripted floating point data in POPCYCLE are read in using a generalized input subroutine. The format for data read in through the generalized input subroutine must adhere to the following form. All cards contain 6 data fields of 12 columns each (I1, I2, E9.0). Columns 4-12 of each field contain the data, D, associated with the particular field (see exception below); columns 2.3 of each field contain an integer, N , from 0 to 99 . The first column of each field must contain one of the following.

Character	Instructions
0 or blank	no effect
1	repeat associated data entry N times
2	do \mathbf{N} linear interpolations between associated data entry and succeeding data entry
3	terminate reading of this array with previous data entry
4	repeat previous \mathbf{D} data entries \mathbf{N} times (if D is a floating point number, code converts to an integer)
5	ignore (skip) this data field
6	fill the remaining locations of this array with associated data entry
7	do N geometric interpolations between associated data entry and succeeding data entry
8	repeat previous N data entries and scale by D

PLANT INDEPENDENT DATA

CARD 1: FORMAT (12A6)
$\mathrm{ID}(\mathrm{L}), \mathrm{L}=1,12 \quad$ Identification card.

CARD 2: FORMAT (716)

IP	Number of plant types in this case. Number of years in the problem over which plants can be built.
KLFE	Number of years plants operate. Method of depreciating capital costs $(0 / 1=$ straight line/sum of years digits).
MD	Print option $(0 / 1 / 2=$ mini/midi/maxi $)$. Start-up year for midi- and maxi-print options (detailed yearly nuclear requirements are given for a plant starting up in this year).
NPRT	Nuclear fuel accounting method $(0 / 1=$ direct expense/unit of MSPRT
production $).$	

CARD 3: FORMAT (6E12.6)

FIB	Fraction of investment in bonds.
BIR	Inflated bond interest rate (fraction/year).
EIR	Inflated equity return rate (fraction/year).
CTR	Combined federal and state income tax rate (fraction/year).
PTR	Property tax rate (fraction/year).
GTR	Gross revenue tax rate (fraction/year).

CARD 4: FORMAT (6E12.6)

PIR	Property insurance rate (fraction/year).
CRR	Capital replacement rate (fraction/year).
CONV	Cost of converting $\mathrm{U}_{3} \mathrm{O}_{8}$ to $\mathrm{UF}_{6}(\$ / \mathrm{kg}$ of uranium).
SD	Starting date-first year in the problem that a plant can be
	built (year A.D.).
RITC	Investment tax credit rate (fraction/year).
RINFL	Inflation rate (fraction/year).

CARD 5: FORMAT [6(I 1,12,E9.0)]*
$\operatorname{CSWU}(\mathrm{K}), \mathrm{K}=1, \mathrm{KY} \quad$ Enrichment cost in year K in constant, price-year dollars (\$/kg SWU).

CARD 6: FORMAT [6(I1,12,E9.0)]
$\operatorname{TCOM}(\mathrm{K}), \mathrm{K}=1, \mathrm{KY} \quad$ Enrichment plant tails composition in year K (fraction).
CARD 7: FORMAT [6(11,I2,E9.0)]
WTHO2(K), $\mathrm{K}=1, \mathrm{KY} \quad \mathrm{ThO}_{2}$ price in year K in constant, price-year dollars ($\mathbb{\$} / \mathrm{lb}$ of ThO_{2}).

CARD 8: FORMAT [6(I 1,I2,E9.0)]

$\mathrm{WU} 233(\mathrm{~K}), \mathrm{K}=1, \mathrm{KY} \quad$	Uranium-233 price in year K in constant, price-year dollars
$\left(\$ / \mathrm{kg}\right.$ of $\left.{ }^{233} \mathrm{U}\right)$.	

CARD 9: FORMAT [6(I1,12,E9.0)]
WU308(K), $\mathrm{K}=1, \mathrm{KY} \quad \mathrm{U}_{3} \mathrm{O}_{8}$ price in year K in constant, price-year dollars (S / lb of $\mathrm{U}_{3} \mathrm{O}_{8}$).

CARD 10: FORMAT [6(I 1, $12, \mathrm{E} 9.0)$]
WFSPU(K), K = $\mathbf{~}, \mathrm{KY}$
Fissile plutonium price in year K in constant, price-year dollars ($\$ / \mathrm{kg}$ of fissile plutonium).

CARD 11: FORMAT [6(I1,I2,E9.0)]
WCOAL(K), $K=1, K Y \quad$ Coal price in year K in constant, price-year dollars
($\$ /$ short ton of coal).

[^2]CARD 12: FORMAT [6(I1,I2,E9.0)]
WOIL (K), K = 1, KY $\quad \begin{gathered}\text { Oil price in year } \mathrm{K} \text { in constant, price-year dollars } \\ \text { (} \$ / \text { barrel of oil). }\end{gathered}$
CARD 13: FORMAT [6(I1,12,E9.0)]
WGAS(K), $K=1, K Y \quad$ Gas price in year K in constant, price-year dollars ($\$ / 10^{3}$ standard cubic feet of gas).

CARD 14: FORMAT [6(11,12,E9.0)]
$\operatorname{CAPF}(\mathrm{KK}), \mathrm{KK}=1, \mathrm{KLFE} \quad$ Capacity factor in year KK of plant lifetime (fraction).
PLANT DEPENDENT DATA*

CARD P1: FORMAT (8A6)
$\operatorname{TEM}(\mathrm{I}), \mathrm{I}=1,8 \quad$ Plant identification card.

CARD P2: FORMAT (A6, 2I6)

NAME	Plant name.
NTYP	Plant type $(0 / 1=$ fossil plant/nuclear plant $)$.
NZN	Number of fuel cycle zones.

CARD P3: FORMAT (5E12.6)

POW	Plant power level (kWe). SALV Negative/positive $=$ decommissioning cost/salvage value at end of plant life in constant, price-year dollars $(\$ / \mathrm{kWe})$.
FOMC	Fixed operation and maintenance charges in constant, price -year dollars $(\$ /$ year). Variable operation and maintenance charges at 100% capacity factor in constant, price- year dollars (\$/year) RNLI
	Nuclear liability insurance in constant, price-year dollars (\$/year)

CARD P4: FORMAT (4E 12.6)
FRL Fabrication losses (fraction).

REL Reprocessing losses (fraction).
FLT Fabrication lead time (years).
RLT Fuel cycle back-end lag time (years).
CARD P5: FORMAT [6(I1,I2,E9.0)]

$\operatorname{DCAP}(\mathrm{K}), \mathrm{K}=1, \mathrm{KY} \quad$| Capital cost, including interest and escalation during |
| :--- |
| construction, in constant, price- year dollars for a plant |
| starting in year $\mathrm{K}(\$ / \mathrm{kWe})$. |

[^3]FSCAL(K,I), $K=1, K Y \quad$ Fossil cost scaling factors in year K for coal ($I=1$), oil
$\mathrm{I}=1,3$ $(I=2)$, and gas $(I=3)$. These factors are multiplied by the fuel prices in cards 11-13 to give the effective fuel price for this plant type.

CARD P7: FORMAT [6(I1,I2,E9.0)] (OPTIONAL, REQUIRED IF NTYP > 0)
FMOD(M), $\mathbf{M}=1, N Z N$
$\mathrm{U}_{3} \mathrm{O}_{8}$ and enrichment feed modifiers for fuel cycle zone M . The calculated $\mathrm{U}_{3} \mathrm{O}_{8}$ and enrichment feed requirements are multiplied by these modifiers to give the effective feed requirements This modifier can be used to account for ${ }^{236} \mathrm{U}$ poisoning, for example.

CARD P8: FORMAT [6(I1,I2,E9.0)] (OPTIONAL, REQUIRED IF NTYP > 0)

DMOD(M), M = $1, N Z N \quad$| $U_{3} \mathrm{O}_{8}$ and enrichment discharge modifiers for fuel cycle zone |
| :--- |
| |
| M. The calculated $\mathrm{U}_{3} \mathrm{O}_{8}$ and enrichment discharge credits |
| are multiplied by these modifiers to give the effective |
| discharge credits. |

CARD P9: FORMAT [6(I1,I2,E9.0)] (OPTIONAL, REQUIRED IF NTYP >0)
$\operatorname{FABR}(\mathrm{K}, \mathrm{M}), \mathrm{K}=1, \mathrm{KY}$
$\mathbf{M}=1, \mathrm{NZN}$
Fuel fabrication cost in constant, price-year dollars for plant in year K and fuel cycle zone M ($\$ / \mathrm{kg}$ of heavy metal).

CARD P10: FORMAT [6(I1,I2,E9.0)] (OPTIONAL, REQUIRED IF NTYP > 0)
$\operatorname{REPR}(\mathrm{K}, \mathrm{M}), \mathrm{K}=1, \mathrm{KY}$
$\mathbf{M}=1, \mathrm{NZN}$

Fuel back-end cost in constant, price-year dollars for plant in year K and fuel cycle zone $\mathrm{M}(\$ / \mathrm{kg}$ of heavy metal). The back-end costs include all costs incurred after the fuel is discharged from the reactor, such as spent fuel shipping, reprocessing, waste shipping, and waste storage costs.

CARD P11: FORMAT [6(I1,I2,E9.0)]
$\operatorname{FEED}(\mathrm{L}, \mathrm{KK}, \mathrm{M}), \mathrm{L}=1,9$
$\mathrm{KK}=1, \mathrm{KLFE}$
$\mathrm{M}=1, \mathrm{NZN}$

Feed rate of fuel cycle item L in year KK of plant life for fuel cycle zone M. The type of fuel and unit of measure for each L is listed below.

L	Fuel Type	Unit of Measure
1	${ }^{232}$ Th	kg/year
2	${ }^{233} \mathrm{U}$	kg/year
3	${ }^{235} \mathrm{U}$	kg/year
4	${ }^{238} \mathrm{U}$	kg/year
5	Fissile plutonium	kg/year
6	Total heavy metal	kg/year
7	Coal	ton/year
8	Oil	bbl/year
9	Gas	$10^{3} \mathrm{scf} / \mathrm{year}$

For a nuclear plant, of course, fuel cycle items 7.9 will be zero, and for a fossil plant, fuel cycle items 1-6 will be zero.

$$
\begin{aligned}
\mathrm{KK} & =1, \mathrm{KLFE} \\
\mathrm{M} & =\mathrm{NZN}
\end{aligned}
$$

IV. SAMPLE CASE

This section presents the input data and print-out for a sample case consisting of two plant types-a Light Water Reactor on the once-through cycle and a coal-fired power plant.

A. Sample Case Input

Table II lists the input deck for the sample case. Note that the card number for nonsubscripted input and the variable names for subscripted arrays are punched in columns 73-80. This is not required because the code does not read these columns but was done to facilitate comparing the sample case input with the input instructions in Sec. III.
This sample case also provides examples of all of the generalized input options discussed in Sec. IL except option 8 (repeat previous N data entries...).

B. Sample Case Output

Table III is a computer print-out for the sample case. The first part of the POPCYCLE print-out just prints out the input data in the order it is read in. For the nonsubscripted data, the variable name is printed on the left, a definition of the variable appears in the middle, and the input value is along the right.

For each subscripted data array, the first line is the definition of the variable, the second line is the variable name and the length of the array, and the next line (or lines) contains the input values as stored by the code. These parameters can be compared with the input data to see how the various options are used by the generalized input routine. For example, the fuel worth of coal array, FWCOAL, varies from 1.0 to 2.6388 over 50 years at $2 \% /$ year. This array was input using option 7 (do N geometric interpolations...).

The rest of the print-out is self-explanatory. The columns headed by capital, operation and maintenance, fuel, and gross revenues taxes correspond to the expressions in Sec. II.

TABLE II. Sample Case Input

TABLE III. Sample Case Output

PDPCYCLE DOCUMENT SAMPLE CASE * PDPCYCLE * * * *

STARTUP YEAR 10/1/2=AINI/MIDLMAXII (OII=STRAIGHT LINE/SUM OF DIGITSI
nuclear fuel accounting meitido ion
$\begin{aligned} & \text { SHU COST BY YEAR } \\ & \text { CSHU } \text { (\$/KG SWU) }\end{aligned}$
INFLATEO BONO INTEREST IN BONOS
INFLATED EOUITY INTEREST RATE (FRACTION/YEARI
COMBINED INCDME TAX RATE RATE IFRACTION/YEAR) PROPERTY TAX RATE (FRACTION/YEARI /YEARI
PROPERTY
CAPITAL REPLACEMENT RATE (FRACTION/YEAR)
COST OF CONYERTING RATE (FRACTION/YEAR)
INVESTMENT TAX CREARIT. D.I ISKKG OF UI

SNU 50 11679E+03
$\cdot 13957 E+03-14737 E+03 \quad 11913 E+03$
$17014 E+03 \quad 14237 E+03 \quad-14521 E+03 \quad 12151 E+0$
$-17014 E+03-17354 E+03$

$.25787 E+03 \quad .21578 E+03$
$.12151 E+0$
$.14812 E+03$
$.18055 E+03$
$.22009 E+03$
$.26829 E+03$ tails Compositian by year (fraction 2000 TCOM 50
$.20000 \mathrm{E}-02.20000 \mathrm{E}-02$. 20000E-02
$\begin{array}{ccc}.20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 \\ .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02\end{array}$
$.20000 \mathrm{E}-02$.20000E-02 .20000E-02 .20000E-02
$\begin{array}{ccc}.20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 \\ .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02\end{array}$
.20000 E-02 $.20000 \mathrm{E}-02 \quad .20000 \mathrm{E}-02$

THAZ 50 IS/L8 THOZ:
$.15000 \mathrm{E}+02 \quad .15000 \mathrm{E}+02 \quad .15000 \mathrm{E}+02$
$\begin{array}{lll}-15000 E+02 & -15000 E+02 & -15000 E+02 \\ .15000 E+02 & 15000 E+02\end{array}$
$15000 E+02 \quad .15000 E+02 \quad .15000 E+02$
$\bullet-15000 \mathrm{E}+02 \quad \cdot 15000 \mathrm{E}+02 \quad \cdot 15000 \mathrm{E}+02$
$-15000 \mathrm{E}+02 \quad .15000 \mathrm{E}+02 \quad .15000 \mathrm{E}+02$ $-15000 E+0$
FUEL WORTH OF U233
U233
$.80538+05$
$.885338 E+05$
(s/kg U233)
$\begin{array}{rr}.88538 E+05 & .88538 E+05 \\ .88538 E+05 & .86538 E+05\end{array}$
$.88538 \mathrm{E}+05 \quad .88538 \mathrm{E}+05$
$.88538 \mathrm{E}+05 \quad .88538 \mathrm{E}+05$ - $88538 \mathrm{E}+05$
$.88538 \mathrm{E}+05 \quad .88538 \mathrm{E}+05 \quad .8853 \mathrm{BE}+05$
FUEL WORTH OF U308
U308 50
U 30 B
$0 \mathrm{OE}+02$
(18/L8 U308)
2

$.20000 \mathrm{E}-02$
$.20000 \mathrm{E}-02$
$.20000 \mathrm{E}-02$
20002

$.20000 \mathrm{E}-02$

$.15000 E+02$.150
$.15000 \mathrm{E}+02$.150
$.15000 \mathrm{E}+02$.150
.15000 t 2 O	.150
$.15000 \mathrm{E}+02$.150

$.88538 \mathrm{~F}+05$
$.88538 \mathrm{~F}+05$
$.8853 \mathrm{C}+05$
$.88538 \mathrm{E}+05$
$\cdot 88538 \mathrm{~F}+05$
$.88538 \mathrm{t}+05$
$.88538 \mathrm{E}+05$ $.88538 E+05$
$.88538 E+05$ $\begin{array}{ll}.88538 \mathrm{E}+05 & .88538 \mathrm{E}+05 \\ .88538 \mathrm{~F}+05 & .88538 \mathrm{E}+05 \\ .88538 \mathrm{t}+05 & .88538 \mathrm{t}+05 \\ .88538 \mathrm{t}+05 & .88538 \mathrm{t}+05\end{array}$ $.88539 E+05$
$.88538 E 05$ $.88538 \mathrm{E}+05$
20000E-0220000E-0220000E-02$20000 \mathrm{E}-0$
$.12394 \mathrm{E}+03$
$.15108 \mathrm{E}+03$
$.18416 \mathrm{E}+03$
$.22450 \mathrm{E}+03$

$.12642 E+03$
$.15410 \mathrm{~F}+03 \quad .12895 E+03 \quad .13152 \mathrm{E}+03$ $\begin{array}{llll}.15410 \mathrm{~F}+03 & .15718 E+03 & .13152 \mathrm{E}+03 \\ 18785 \mathrm{t}+03 & .13415 \mathrm{E}+03\end{array}$

$.23824 E+0$

$$
\begin{aligned}
& .16353 E+03 \\
& .19935 E+03
\end{aligned}
$$

$$
\begin{array}{r}
.16 \\
.19 \\
.24
\end{array}
$$

$-13684 E+03$ $.16680 E+03$ $.16680 E+03$
$.20333 E+03$ $.24786 E+03$ $\cdot 30214 E+03$
$.20000 E-02$

$\begin{array}{ccc}.20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 \\ .20000 \mathrm{E}-02 & \cdot 2000 \mathrm{E}-02 & 2000 \mathrm{E}-02\end{array}$ $\begin{array}{ccc}.20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 \\ .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02 & .20000 \mathrm{E}-02\end{array}$ $.20000 \mathrm{E}-02 \stackrel{.20000 E-02}{.20000 E-02}$
$.20000 \mathrm{E}-02$ $.20000 \mathrm{E}-02$ $.20000 \mathrm{E}-02$ $.20000 \mathrm{E}-02$
-15000E+02$-15000 E+02$$.15000 E+02$- $15000 \mathrm{E}+02$
$-88538 \mathrm{E}+05$
. $88538 \mathrm{E}+05$

$$
\begin{aligned}
& 88538 E+0 \\
& .8853 \mathrm{BE}+0
\end{aligned}
$$

$$
\begin{aligned}
& .8853 \mathrm{BE}+0 \\
& .8853 \mathrm{AR}
\end{aligned}
$$

$.8853 \mathrm{BE}+05$

$$
.88538 E+05
$$ $.88538 E+05$

$$
\begin{aligned}
& .88538 E+05 \\
& .8853 \mathrm{BE} \rightarrow 05
\end{aligned}
$$

$.88538 E+05$
$.8853 \mathrm{AE}+05$ $-88538 \mathrm{E}+05$ $.88538 E+05$
$.86538+05$ $.86538 \mathrm{E}+05$
5.5000E-01
$1.1093 \mathrm{E}-01$
$1.5593 \mathrm{E}-01$
$5.0000 \mathrm{E}-01$
2. $5000 \mathrm{E}-02$
2.5000E-03 3.5000E-03
$6.6000 E+00$
$1.9810 E+03$
1.0000E-01
.0000E-02
$40856 E+0$

$$
.41673 E+02
$$

TABLE III. (cont)

FUEL WORTH DF COAL (\$/TON COAL)

$C O A L$	50			
$.10000 E+01$	$.10200 E+01$	$.10404 E+01$	$.10612 E+01$	
$.12190 E+01$	$.12434 E+01$	$.12682 E+01$	$.12936 E+01$	-
$.14859 E+01$	$.15157 E+01$	$.15460 E+01$	$.15769 E+01$	
$.18114 E+01$	$.18476 E+01$	$.18845 E+01$	$.19222 E+01$	

$\begin{array}{llll}.18114 E+01 & .18476 E+01 & .18845 E+01 & .19222 E+01 \\ .220 B O E+01 & .22522 E+01 & .22972 E+01 & .23432 E+01\end{array}$
FUEL WORTH OF OIL (s/8ARREL OIL)

OIL	50
.10000E+01	-10000E+01
. 10000E +01	. 10000E+01
. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$
. 10000E+01	. $10000 \mathrm{E}+01$
. 10000E+ 01	. 10000E+01

FUEL HORTH OF GAS	$\begin{array}{r} \text { GAS } \\ 50 \end{array}$	MCF GAS)	
. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$.10000E+01	. $10000 \mathrm{E}+01$
. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$
. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$. 10000E +01	-10000E+01
. $10000 \mathrm{E}+01$. $10000 \mathrm{E}+01$. 10000E+01	. $10000 \mathrm{E}+01$
-10000E +01	. $10000 \mathrm{E}+01$. 10000E*01	. $10000 \mathrm{E}+01$

CAPACITY FACTOR DURING EACH YEAR OF PLANT LIFF			
CAPF	30		
$.70000 E+00$	$.70000 E+00$	$.70000 E+00$	$.70000 E+00$
$.70000 E+00$	$.70000 E+00$	$.70000 E+00$	$.70000 E+00$
$.70000 E+00$	$.70000 E+00$	$.70000 E+00$	$.70000 E+00$

$.50799 \mathrm{E}+07.51815 \mathrm{E}+02$ $.49803 E+02$ $.74004 E+02$ $.90209 E+02$
$.15676 E+06$ $.15676 E+06$
$.15676 E+06$ $.1567 \mathrm{hE}+06$.1567 hE +06 .1567 GE + 06
$\begin{array}{ll}.50799 E+07 & .51815 E+02 \\ .61974 E+07 & .63162 E+02\end{array}$
$\begin{array}{rr}. h 1974 E+07 \\ .75484 E+02 & .76162 E+02 \\ .7693 E+02\end{array}$
$\begin{array}{ll}.75484 E+02 & .76993 E+02 \\ .92014 E+n 2 & .93854 E+02\end{array}$
$.15676 E+06 \quad .15676 E+06$
$15676 E+06$ $.15676 E+06$
.15 h7hE +06 $.1567 \mathrm{hE}+06$ $.15676 E+06$
$.52852 E+02$
$.64425 E+02$
$.78533 E+02$ $.95731 E+02$
$.53909 E+02$
$.65714 E+02$ - $80104 \mathrm{E}+02$ $-7645 \mathrm{E}+02$
$67028 E+02 \quad .56086 E+02$ $67028 E+02 \quad .68368 E+02$
$81706 E+02 \quad .83340 E+02$ $.99598 E+02 \quad .10159 E+03$

$\begin{array}{lll}.15676 E+06 & .15676 E+06 \\ .15676 E+06 & .15676 E+06 & .15676 E+06\end{array}$
$\begin{array}{rrr}.15676 E+06 & .15676 E+06 & .15676 E+06 \\ .15676 E+06 & .15676 E+06 & .15676 E+06\end{array}$
$\begin{array}{lll}.15676 E+06 & .15676 E+06 & .15676 E+06 \\ .15676 E+06 & .15676 E+06 & .15676 E+06\end{array}$
$\begin{array}{ll}.15676 E+06 & .15676 E+06 \\ .15676 E+06 & .15676 E+06\end{array}$
$.15676 E+06$ $.15676 E+06$
$.15676 E+06$ $.15676 E+06$ $.15676 \mathrm{E}+06$
$11262 E+01.11487 E+01$ $13728 \mathrm{E}+01$ $.13728 E+01$
$.16734 E+01$ $16734 E+01 \quad .17069 E+0$ $.20399 E+01$
$.24866 E+01$

$.10000 \mathrm{E}+01$ $.10000 E+01$ $.10000 E+01$
$.10000 E+01$ $.10000 E+01$
$.10000 E+01$ $-10000 E+01$
$.10000 E+01$
$11717 E+01$.
$4282 E+01 \quad-11951 E+01$ $.17210 E+01 \quad .14568 E+01$
-174101 $\begin{array}{ll}.21223 E+01 & \cdot 2164758 \mathrm{E}+01 \\ -25871 \mathrm{~F}+01 & 2638 \mathrm{t}\end{array}$ $.25871 E+01 \quad .26388 E+01$

1 . 11
$.10824 E+01$
$.13195 \mathrm{E}+01$ $.13195 \mathrm{E}+01$ $\begin{array}{ll}16084 E+01 & -13459 E+01\end{array}$ $\begin{array}{ll}16084 E+01 & .16406 E+01\end{array}$ $\begin{array}{ll}.19607 E+01 & .19999 E+01 \\ .23900 E+01 & .24378 E+01\end{array}$

$\cdot 10000 \mathrm{E}+01 \quad .10000 \mathrm{E}+01$
-10000E+01 . 10000E +01

$.10000 E+01$					
$.10000 E+01$					
$.10000 E+01$					
$.10000 E+01$					
$.10000 E+01$					

(fraction)
$.10000 E+01$
$10000 \mathrm{E}+01$
$.10000 E+01$
$.10000 E+01$ $\begin{array}{ll}10000 E+01 & \quad .10000 E+01 \\ 10000 E+01 & .10000 E+01\end{array}$ $\begin{array}{ll}10000 E+01 & \quad 100000 E+01\end{array}$ $10000 \mathrm{E}+01 \quad .10000 \mathrm{E}+0$
 $70000 \mathrm{E}+00$
$.70000 \mathrm{E}+00$ $.70000 \mathrm{E}+00 \quad .70000 \mathrm{E}+\mathbf{7 0 0 0} \quad .70000 \mathrm{E}+00$
$.70000 E+00$ $.70000 E+00$ $.70000 \mathrm{E}+00$

* * * investment return rates
1.007E-01 average return on investment--inflateo ano tax aojusteo
1.312E-01 AVERAGE RETURN ON INVESTMENT--INFLATED
3.838E-02 AVERAGE RETURN ON INYESTMENT--DEFLATEO ANO TAX AOJUSTEO
6.716E-02 AVERAGE RETURN ON INVESTMENT--OEFLATEO

TABLE III. (cont)

TABLE III．（cont）

0.	0.	0.	．97700E＋03	． $31270 \mathrm{C}+05$	0.	． 32242 C 05	0.	0.	0.
0.	0.	．97200E＋ 03	$.31270 \mathrm{E}+05$	0.	． $32242 \mathrm{E}+05$	0.	0 ．	0.	0.
0.	． $97200 \mathrm{E}+03$	． $31270 \mathrm{C}+05$	0 ．	． $32242 \mathrm{~F}+05$	0.	0.	0.	0 ．	
．97200E＋03	． $31270 \mathrm{C}+05$	0.	． $32242 \mathrm{E}+05$	0.	0 。	0.	0.	0.	－97200E 403
． $31270 \mathrm{~F}+05$	0.	． 32242 C 05	0.	0 ．	0.	0.	0.	－97200E＋03	－31270E＋05
0.	．32242E＋05	0 ．	0 ．	0.	$0 \cdot$	0.	－97200E＋03	$0 \cdot 31270 \mathrm{E}+05$	0． $32242 \mathrm{E}+05$
．32242E＋05	0.	0 ．	0.	0.	$0.97200 E+0$	．97200E＋03	0．${ }^{-97270 E+05}$	0． $32242 \mathrm{E}+05$	$0.32242 E+05$
0.	0.	0 －	0.	$0.97200 \mathrm{t}+03$	－97200E＋03	0.0	0．32242E＋05	0.32242 t －	0.
0.	0.	0.	0． $97200 \mathrm{E}+0$	．97200E＋03	0.31270 ¢ 05	0．32242E＋05	0.322420	0.	0.
0.	0.	0.	－97200E＋03	－31270E＊	．32242E＋05	0.	0.	0.	0.
0.	0.	．37200E＋03	－31270E＋05	0．	，	0.	0.	0.	0.
0.	．97200E＋03	－31270E＋05	0.	－32242E＋05	O．	0.	0.	0.	．97200E＋03
．97200E403	． $31270 \mathrm{E}+05$	0.	．32242E＋05	0.	0.	0.	0.	． $97200 E+03$	．97200E＋03
．31270E＋05	0.	．32242E＋05	0.	0 ．	0.	0.	． $97200 \mathrm{E}+03$	． $31270 \mathrm{~F}+05$	0． $31270 E+05$
0.	．32242E＋05	0.	0.	0.	0.	$0 \cdot 97200 \mathrm{E}+03$		0.0	
． $32242 \mathrm{E}+05$	0.	0 ．	0 ．	0.	0.	－97200E＋03	－31270E＋05	0．32242E＋05	－32242E＋05
0.	0 ．	0.	0.	0.	200E＋03	－31270E＋05	．	－322426405	0.
0.	0 ．	0 ．	0.	．97200F＋03	－31270E＋05	0.	－32242E＋05	0.	0.
0.	0.	0.	．97200E＋03	．31270E＋05	0.	．32242E＋05	0.	0.	0.
OISCHARGE RAT	TE FOR EACH	FUEL CYCLE	TEM DURING	EACH YFAR OF	PLANT LIFE	IN EACH FUEL	CYCLE ZONE	FOR L－U5LO	（UNITS／YR）
OISC	270								
0.	0 ．	． $26300 \mathrm{E}+03$	－ $30526 E+05$	． $21300 \mathrm{E}+03$	－31198E＋05	$0 \cdot$	0.	．	
0.	$.26300 E+03$	． $30526 \mathrm{E}+05$	． 213 OOE＋ 03	． $31198 \mathrm{E}+05$	0.	0 －	0.	0.	
． $26300 \mathrm{E}+03$	． $30526 \mathrm{E}+05$	． $21300 \mathrm{E}+03$	． $31198 \mathrm{E}+05$	0 。	0 。	0.	0.	0． $26300 E+03$	$-26300 E+03$
． $30526 \mathrm{E}+05$	$.21300 \mathrm{E}+03$	． $31198 \mathrm{E}+05$	0.	0 ．	0 －	$0 \cdot$	0.	－26300E＋03	－30526E＋05
． $21300 \mathrm{E}+03$	． $3119 \mathrm{BE}+05$	0.	0 ．	0.	0.	0.	－26300E +03	－30526E＋05	－21300E 03
． $31198 \mathrm{E}+05$	0.	0 ．	0.	0.	0.	． $26300 \mathrm{E}+03$	－30526E＋0	． $21300 \mathrm{E}+03$	－31198E＋05
0.	0 ．	0.	0.	0.	． $26300 E+03$	－30526E405	－21300E＋03	－31198E＊05	$0 \cdot$
0.	0.	0.	0.	． $26300 \mathrm{E}+03$	－ $30526 E+05$	－21300F＋03	－3119RE＋05	0.	0.
0.	0.	0.	． 263 O0E＋ 03	－30576E405	－ 213 OOE＋03	． $3119 \mathrm{AE}+05$	0 －	$0 \cdot$	0.
0.	0.	． $26300 \mathrm{E}+03$	－ $30526 \mathrm{E}+05$	－ $21300 \mathrm{E}+03$	－31198E405	0 －	0.	$0 \cdot$	$0 \cdot$
0.	． $26.300 \mathrm{E}+03$	．30526E＋05	． $21300 \mathrm{t}+03$	． $31198 \mathrm{C}+$ O5	0.	0.	0.	0.	
．26300E +03	－ $30526 \mathrm{E}+05$	． $21300 \mathrm{E}+03$	－ $31198 \mathrm{E}+05$	0 ．	0 。	0.	0.	0．26300E +03	－． $36326 \mathrm{EF}+03$
． $30526 E+05$	$.21300 \mathrm{E}+03$	． $31198 \mathrm{E}+05$	0.	0 ．	0.	0.	$0 \cdot 26300 \mathrm{E}+$	－26300E＋03	－30526E＋05
． $21300 \mathrm{E}+03$	． $31198 \mathrm{C}+05$	0.	0 ．	0.	0.	0.	－26300E＋03	－30526E＋05	－21300E 03
． $31198 \mathrm{E}+05$	0.	0.	0.	0.	0.	． $26300 \mathrm{E}+03$	－30526E＋05	－ $21300 \mathrm{E}+03$	－31198E＋05
0.	0.	0.	0.	0.	． $26300 E+03$	－30526E405	－ $21300 \mathrm{t}+03$	－31198E＋05	－
0.	0.	0.	0.	． $26300 \mathrm{E}+03$	－ $30526 \mathrm{E}+05$	－ $21300 \mathrm{E}+03$	－31198E＋05	$0 \cdot$	0.
0 ．	0.	0.	． 263 00E +03	－30526E＋05	－21300E＋03	． $3119 \mathrm{BE}+05$	0.	0 ．	0.
0.	0.	． $26300 \mathrm{E}+03$	－ $3052 \mathrm{hE}+05$	． $21300 \mathrm{E}+03$	． $3119 \mathrm{AE}+05$	0.	0.	$0 \cdot$	0.
0.	． $26300 \mathrm{E}+03$	－ $30526 \mathrm{E}+05$	． $21300 \mathrm{E}+03$	． $3119 \mathrm{AE}+05$	0 ．	0 －	0.	$0 \cdot$	0.
． $26300 \mathrm{E}+03$	． $30526 E+05$	． $21300 \mathrm{E}+03$	． $31198 \mathrm{C}+05$	0.	0 。	$0 \cdot$	0.		－26300E＋03
－30526E 05	． $21300 \mathrm{E}+03$	． $7119 \mathrm{BE}+05$	0.	0 ．	0 ．	$0 \cdot$	0.	－26300E＋03	－30526E +05
$.21300 E+03$	． $31198 \mathrm{E}+05$	0 。	0.	0.	0.	0.	－26300E＋ 03	－30526E＋05	－21300E＋03
． $3119 \mathrm{EE}+05$	0.	0 。	0.	0.	0.	． $26300 \mathrm{E}+03$	－30526E＋05	－ $21300 \mathrm{t}+03$	－31198E＋05
0.	0 。	0.	0.	0.	． $26300 \mathrm{E}+03$	－30526E405	－21300E＋03	．31198E＋05	－
0.	0.	0 。	0.	$.26300 E+03$	－ $30526 \mathrm{E}+05$	． $21300 \mathrm{E}+03$	－31198E＋05	0.	0 －
0.	0.	0 。	． $13630 \mathrm{E}+04$	$.9813 \mathrm{BE}+05$	－ $54400 \mathrm{E}+03$	－10050E＋06	0.	0 。	。

TABLE III．（cont）
 FOR PLANT，L－USLD，STARTING UP IN YEAR KS

K S	YFAR	THO2	4233	FISSPU	U308	SHU	FABRICATION	FUEL backend
1	1981．0	0.	0.	0.	3．470E 000	2．934E＋00	$1.133 E+00$	7．829E－01
2	1982．0	0.	0 ．	0.	3．530E＋00	$2.988 \mathrm{E}+00$	$1.133 E+00$	7．829E－01
3	1983.0	0 ．	0.	0 。	3．597E 400	$3.047 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
4	19 4． 0	0.	0.	0.	3．665E 000	3．108E＊00	$1.133 \mathrm{E}+00$	7．829E－01
5	1985.0	0.	0.	0.	3．735E＋00	3．171E＋00	$1.133 E+00$	7．829E－01
6	1986.0	0 ．	0.	0.	3．806E＋00	$3.234 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
7	1987.0	0.	0.	0.	3．879E400	3．299E400	$1.133 \mathrm{E}+00$	7．829E－01
\％	1988.0	0.	0.	0.	3．953E＋00	3．365E +00	$1.133 E+00$	7．829E－01
9	1989.0	0 ．	0.	0.	$4.028 \mathrm{E}+00$	3．432E＋00	1．133E＋00	7．829E－01
10	1990.0	0.	0 ．	0.	$4.105 E+00$	3．501E 400	$1.133 \mathrm{E}+00$	7．829E－01
11	1991．0	0.	0.	0.	$4.1845+00$	3．571E＊00	$1.133 E+00$	7．829E－01
12	1992.0	0.	0.	0.	$4.264 E+00$	3．642E＋00	$1.133 \mathrm{E}+00$	7．829E－01
13	1993.0	0.	0 ．	0.	$4.346 E+00$	3．715E400	$1.133 \mathrm{E}+00$	7．829E－01
14	1994.0	0.	0.	0.	$4.429 E+00$	3．789E＋00	$1.133 \mathrm{E}+00$	7．829E－01
15	1995.0	0.	0 。	0.	$4.514 E+00$	3．865E＋00	$1.133 \mathrm{E}+00$	7．829E－01
16	1996.0	0.	0 ．	0.	$4.601 E+00$	3．942E＋00	$1.133 \mathrm{E}+00$	7．829E－01
17	1997.0	0.	0.	0.	$4.690 \mathrm{E}+00$	$4.021 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
18	1998.0	0 。	0.	0.	$4.780 \mathrm{E}+00$	$4.101 E+00$	$1.133 E+00$	7．829E－01
19	1999.0	0.	0.	0 。	$4.872 F+00$	$4.184 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
20	2000.0	0.	0.	0.	4．966E +00	$4.267 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
21	2001.0	0.	0.	0.	$5.062 E+00$	$4.353 \mathrm{E}+00$	$1.133 E+00$	7．829E－01
22	2002.0	0.	0 ．	0.	$5.160 E+00$	$4.440 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
23	2003.0	0.	0.	0.	$5.257 E+00$	$4.526 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
24	2004．0	0 ．	0 。	0.	$5.354 \mathrm{E}+00$	$4.612 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
25	2005.0	0.	0.	0.	$5.450 E+00$	4．698F＋00	$1.133 \mathrm{E}+00$	7．829E－01
26	2006.0	0.	0.	0.	$5.545 \mathrm{~F}+00$	$4.782 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
27	2007.0	0.	0.	0.	$5.639 E+00$	$4.866 E+00$	$1.133 E+00$	7．829E－01
28	2008.0	0.	0.	0.	$5.733 E+00$	$4.949 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
29	2009.0	0.	0.	0.	$5.825 E+00$	$5.031 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
30	2010.0	0 ．	0 。	0.	$5.916 \mathrm{E}+00$	$5.112 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	7．829E－01
31	2011.0	0 ．	0.	0.	6．005E＋00	$5.191 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
32	2012.0	0.	0.	0.	$6.093 E+00$	5．269E 400	$1.133 \mathrm{E}+00$	7．829E－01
33	2013.0	0.	0.	0.	$6.179 \mathrm{~F}+00$	$5.345 \mathrm{E}+00$	$1.133 E+00$	7．829E－01
34	2014.0	0.	0.	0.	$6.263 \mathrm{E}+00$	$5.420 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
35	2015.0	0.	0.	0.	6． $345 \mathrm{E}+00$	$5.492 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	$7.829 \mathrm{E}-01$
36	2016.0	0.	0 ．	0.	$6.425 \mathrm{E}+00$	$5.563 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
37	2017.0	0.	0.	0 。	6．502E＋00	$5.631 E+00$	$1.133 E+00$	7．829E－01
38	2018.0	0.	0.	0.	$6.577 E+00$	5．697E 00	$1.133 \mathrm{E}+00$	7．829E－01
39	2019.0	0.	0.	0.	6．649E +00	$5.760 E+00$	$1.133 E+00$	7．829E－01
40	2020.0	0.	0.	0.	$6.717 E+00$	$5.820 F+00$	$1.133 E+00$	7．829E－01
41	2071．0	0.	0 ．	0.	$6.782 \mathrm{~F}+00$	5．877E 00	$1.133 \mathrm{E}+00$	7．829E－01
42	2022.0	0.	0 ．	0.	$6.844 E+00$	$5.931 E+00$	$1.133 E+00$	$7.829 E-01$
43	2023.0	0.	0.	0.	$6.902 \mathrm{E}+00$	$5.981 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
44	2024.0	0.	0.	0.	$6.955 \mathrm{E}+00$	$6.028 E+00$	$1.133 \mathrm{E}+00$	7．829E－01
45	2025.0	0.	0.	0.	$7.004 \mathrm{E}+00$	$6.070 E+00$	$1.133 E+00$	7．829E－01
46	2026.0	0.	0.	0.	$7.049 E+00$	$6.108 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	$7.829 E-01$
47	2027.0	0.	0.	0.	$7.088 \mathrm{E}+00$	h． $142 \mathrm{E}+00$	$1.133 \mathrm{E}+00$	$7.829 E-01$
48	2028.0	0.	0.	0.	$7.122 \mathrm{ta0}$	$6.170 E+00$	$1.133 E+00$	$7.829 E-01$
49	2029.0	0.	0.	0.	$7.150 E+00$	$6.194 E+00$	$1.133 E+00$	$7.829 E-01$
50	2030.0	0.	0.	0.	$7.172 \mathrm{E}+00$	$6.211 E+00$	1.133 t 00	$7.829 E-01$

KS	Year	total PDOER COST	CAPITAL IINCL INC TAX dn capital ano FIXEO CHARGESI	$\begin{gathered} \text { OPERATION } \\ \text { AND } \\ \text { MAINTENANCE } \end{gathered}$	FUEL IINCL INCOME taX on fuel:	$\begin{aligned} & \text { GROSS } \\ & \text { REVENUE } \\ & \text { TAX } \end{aligned}$
		$3.536 E+01$	2.455E+01	2.486E+00	R. $320 \mathrm{E}+00$	0.
1	1982.0	$3.547 \mathrm{~F}+01$	$2.459 E+01$	$2.486 E+00$	$8.434 E+00$	0.
3	1983.0	3.560E+01	$2.455 \mathrm{E}+01$	$2.486 E+00$	$8.561 E+00$	0.
4	1984.0	$3.573 \mathrm{E}+01$	$2.455 E+01$	$2.486 E+00$	$8.690 E+00$	0.
5	1985.0	3.586E+01	2.455E+01	$2.486 E 400$	8.822E+00	0.
6	1986.0	3.599E401	2.455E+01	$2.486 E+00$	6.957E+00	0.
7	19月7.0	3.613E401	2.455E+01	$2.486 E+00$	$9.094 E+00$	0.
8	1988.0	$3.627 E+01$	2.455E+01	$2.486 E+00$	$9.234 E+00$	0.
9	1989.0	3.641F401	2.455E+01	$2.486 E+00$	$9.377 E+00$	0.
10	1990.0	3.656E+01	2.455E+01	$2.486 \mathrm{E}+00$	$9.522 E+00$	0.
11	1991.0	3.671E+01	2.455F+01	2.486F+00	$9.671 E+00$	0.
12	1992.0	3.686E+01	$2.455 \mathrm{E}+01$	2.486E+00	$9.823 E+00$	0.
13	1993.0	3.701E401	2.455E401	$2.486 E+00$	$9.977 E 400$	0.
14	1994.0	3.717E401	2.455E+01	$2.486 E+00$	$1.013 \mathrm{E}+01$	0.
15	1995.0	$3.733 \mathrm{E}+01$	2.455E+01	2.486E 400	$1.030 \mathrm{E}+01$	0.
16	1996.0	3.750E401	2.455E401	2.486E+00	$1.046 E+01$	0 .
17	1997.0	3.76GE 01	2.455E+01	$2.486 E+00$	$1.063 E+01$	0.
18	1998.0	3.784E+01	2.455E+01	$2.486 E+00$	$1.080 E+01$	0.
19	1999.0	3.801E401	2.455E+01	2.486E+00	$1.097 E+01$	0.
20	2000.0	3.819E401	2.455E+01	$2.486 E+00$	$1.115 \mathrm{E}+01$	0.
21	2001.0	$3.837 \mathrm{E}+01$	2.455E+01	2.486E+00	$1.133 \mathrm{E}+01$	0.
22	2002.0	3.855E401	2.455E*01	2.486E+00	$1.152 \mathrm{E}+01$	0.
23	2003.0	3.874E+01	$2.455 E+01$	2.486E+00	$1.170 \mathrm{t}^{0} 01$	0.
24	2004.0	3.892E401	2.455F+01	2.486E+00	$1.188 \mathrm{E}+01$	0.
25	2005.0	$3.910 \mathrm{E}+01$	2.455E+01	$2.486 E+00$	$1.206 E+01$	0.
26	2006.0	$3.928 \mathrm{E}+01$	2.455F+01	2.486E+00	$1.224 E+01$	0.
27	2007.0	$3.946 \mathrm{E}+01$	2.455F+01	2.486E+00	1.242E+01	0.
28	2008.0	3.964E+01	2.455E+01	2.486E +00	1.260E+01	0.
29	2009.0	$3.981 E+01$	2.455E+01	2.486E+00	$1.277 E+01$	0.
30	2010.0	3.998F+01	2.455E+01	2.486E+00	1.294E+01	0.
31	2011.0	$4.015 \mathrm{E}+01$	$2.455 \mathrm{~F}+01$	$2.486 E+00$	1.311E+01	0.
32	2012.0	$4.032 \mathrm{E}+01$	$2.455 E+01$	$2.48 \mathrm{hE}+00$	$1.328 E+01$	0.
33	2013.0	$4.048 \mathrm{E}+01$	2.455E+01	$2.485 E+00$	$1.344 E+01$	0
34	2014.0	$4.064 E+01$	2.455E+01	2.486E+00	$1.360 E+01$	0.
35	2015.0	$4.079 E+01$	$2.455 E+01$	$2.486 E+00$	$1.375 \mathrm{E}+01$	0.
37	2017.0	$4.109 \mathrm{E}+01$	$2.455 \mathrm{E}+01$	7.456E+00	$1.405 E+01$	0.
3 n	2018.0	$4.123 \mathrm{E}+01$	2.455E+01	$2.486 E+00$	$1.419 E+01$	0.
39	2019.0	$4.136 E+01$	2.455F+01	$2.48 \mathrm{GE}+00$	$1.432 \mathrm{E}+01$	0.
40	2020.0	$4.149 E+01$	2.455E+01	2.486E400	1.445E+01	0.
41	2021.0	$4.161 E+01$	2.455E+01	$2.486 \mathrm{E}+00$	1.458E+01	0.
42	2022.0	$4.173 \mathrm{E}+01$	2.455E+01	$2.486 \mathrm{t}+00$	1.469E+01	0.
43	2023.0	$4.184 E+01$	2.455E+01	2.486E400	1.480E+01	0.
44	2024.0	$4.194 E+01$	2.455F+01	2.486E400	1.490E+01	0.
45	2025.0	$4.203 \mathrm{E}+01$	2.455E*01	$2.45 \mathrm{hE}+00$	1.499E+01	0.
46	2026.0	$4.211 E+01$	$2.455 \mathrm{E}+01$	2.486E400	1.507E+01	0 .
47	2027.0	$4.218 \mathrm{E}+01$	2.455E401	$2.486 \mathrm{E}+00$	1.515E+01	0.
48	2078.0	$4.225 E+01$	$2.455 \mathrm{E}+01$	2.486E+00	1.521E+01	0.
49	2029.0	$4.230 E+01$	7.455F+01	2.4RSE +00	$1.526 E+01$	0.
50	2030.0	$4.234 F+01$	2.455F+01	2.486E+00	1.530E+01	0.

TABLE III. (cont)

FUEL CYCLE INFORMATION- - L-USLO

feed data for zone 1
YEAR
1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

$\therefore 000000000000$
U235 (kG) $2.20100 F+03$
$9.72000 E+02$ $9.72000 \mathrm{E}+02$ $9.72000 E+02$ $9.72000 \mathrm{E}+02$ $9.72000 E+02$
$9.72000 E+02$ $9.72000 \mathrm{E}+02$ $9.72000 E+02$
$9.72000 E+02$ $9.72000 E+02$
$9.72000 E+02$ $9.72000 E+02$
$9.72000 E+02$ $9.72000 E+02$
$9.72000 \mathrm{E}+02$ $9.72000 \mathrm{E}+02$ 9. $72000 \mathrm{E}+02$ 9. $72000 \mathrm{E}+02$ $9.72000 \mathrm{E}+02$ $9.72000 E+0$ $9.72000 \mathrm{~F}+02$ $9.72000 \mathrm{E}+02$ $9.72000 E+02$ $9.72000 \mathrm{E}+02$ $9.72000 \mathrm{E}+02$ $9.72000 E+02$ $9.72000 E+02$ 9. $72000 \mathrm{E}+0$ 9. $72000 E+0$ $9.72000 \mathrm{E}+02$ $9.72000 \mathrm{E}+02$ 9. $72000 \mathrm{E}+02$ $9.72000 \mathrm{E}+02$

U23B(KG) $9.71110 E+04$ $9.71110 E+04$
$3.12700 E+04$ $3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ $3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ $3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ $3.12700 \mathrm{~F}+04$ $3.12700 \mathrm{E}+\mathrm{O}_{4}$ 3. 12700E +04 $3.12700 E+04$ $3.12700 E+04$ 3. $12700 \mathrm{E}+04$ $3.12700 F+04$ $3.12700 \mathrm{E}+04$ $3.12700 \mathrm{E}+04$ $3.12700 \mathrm{E}+\mathrm{O}_{4}$ 3.12700E 404 3.12700E +04 3.12700E 04 $3.12700 E+04$ 3.12700E+04 $3.12700 E+04$ $3.12700 E+04$
$3.12700 E+04$ 3.12700E +04

FISSPU(KG)	total (kg)
0.	$9.93120 E+04$
0.	3.22420E+04
0.	3.22420E+04
0.	3.22420E +04
0.	3.22420E+04
0.	3.22420E404
0.	3.22420E+04
0.	3.22420E+04
0.	3.22420E404
0.	3.22420E+04
0.	3.22420E+04
0.	3.22420E404
0.	3.22420E404
0.	3.22420E+04
0.	$3.22420 E 404$
0.	3.22420E+04
0.	$3.22420 E+04$
0.	3.22420E404
0.	3.22420E+04
0.	3.22420E+04

TOTAL(KG) 3. 22420 + $3.22420 E+04$ $3.22420 E+04$ 3.22420E+04 $3.22420 E+04$ $3.22420 E+04$ $3.22420 E+04$
$3.22420 E+04$ $3.22420 E+04$
$3.22420 E+04$ 3. $22420 \mathrm{E}+04$ 3.22420E+04 3. $22420 E+04$ 3.22420E+04 3. $22420 E+04$
$3.22420 E+04$
$3.22420 E+04$ $3.22420 E+04$
$3.22420 E+04$ $3.22420 E+04$ 3.22420E+04 3.22420E+04 3. $22420 \mathrm{E}+04$ 3.22420E+04 3. $22420 E+04$
$3.22420 E+04$

FUFL CYCLE INFORMATIDN-- LUSLO
discharge data for zone 1

year	TH232(KG)	U233(KG)	U235(KG)	U23A(KG)	FISSPU(KG)	TOTAL(KG)
${ }_{1}$	0.	0.	$2.63000 F+02$	3.05260E+04	$2.13000 \mathrm{E}+02$	3.11980 E
2	0.	0.	$2.63000 F+02$	$3.05260 E+04$	$2.13000 \mathrm{E}+02$	3.11980E + 04
3	0.	0.	$2.63000 E+02$	$3.05260 E+04$	2.13000E+02	$3.11980 E+04$
4	0.	0.	2.63000E+02	$3.05260 E+04$	$2.13000 E+02$	$3.119 \mathrm{AOE}+04$
5	0.	0.	2.63000E+02	$3.05267 E+04$	$2.13000 E+02$	$3.11980 E+04$
6	0.	0.	$2.63000 E+02$	$3.052 \mathrm{hOE}+04$	2.13000E+02	$3.119 \mathrm{SOE}+04$
7	0.	0.	2.63000E+02	$3.05260 F+04$	2.13000E+02	3.119 ROE +04
8	0.	0.	2.63000E+02	$3.05260 E+04$	2.13000E+02	3.11980E +04
9	0.	0.	$2.63000 \mathrm{~F}+02$	3.05260E404	2.13000E +02	$3.11980 \mathrm{E}+04$
10	0.	0.	2.63000E+02	$3.05260 E+04$	$2 \cdot 13000 E+02$	04
11	0.	0.	2.63000E 022	$3.05260 E+04$	2.13000F+02	$3.11980 E+04$
12	0.	0.	2.63000E 02	3.05260E+04	$2.13000 E+02$	$3.11980 E+04$
13	0.	0 .	2.63000E +02	$3.05260 E+04$	$2.13000 \mathrm{~F}+02$	3.11980E +04
14	0.	0 .	2.63000E +02	$3.05260 \mathrm{E}+04$	$2 \cdot 13000 \mathrm{~F}+02$	$3.11980 \mathrm{E}+04$
15	0.	0.	$2.63000 \mathrm{E}+02$	$3.05250 E+04$	2.13000F +02	3.119ROE 04
16	0.	0.	$2.63000 \mathrm{E}+02$	$3.05250 E+04$	2.13000E 402	$3.11980 E+04$
17	0.	0.	2.63000E + 02	$3.05250 \mathrm{E}+04$	$2.13000 F+02$	$3.11980 E+04$
18	0.	0.	2.63000F+02	3.052 FOE +04	$2.13000 E+02$	$3.11980 \mathrm{E}+04$
19	0.	0.	2.63000E +02	$3.05260 E+04$	2.13000E+02	$3.11980 E+04$
20	0.	0 .	2.63000E+02	$3.05260 E+04$	2.13000E +02	$3.11980 \mathrm{~F}+04$
21	0.	0.	$2.63000 \mathrm{~F}+02$	$3.05240 E+04$	$2.13000 E+02$	$3.11980 \mathrm{E}+04$
22	0.	0.	$2.63000 \mathrm{E}+02$	$3.05250 E+04$	$2.13000 \mathrm{E}+02$	3.11980E +04
23	0.	0.	$2.63000 \mathrm{E}+02$	$3.05260 E+04$	2.13000E402	3.11980E +04
24	0.	0.	2.63000E+02	$3.05260 E+04$	$2.13000 E+02$	$3.11980 \mathrm{E}+04$
25	0.	0 。	2.63000E402	$3.05260 E+04$	$2.13000 \mathrm{E}+02$	$3.119 \mathrm{OEE}+04$
26	0.	0 .	$2.63000 \mathrm{E}+02$	$3.05260 E+04$	2.13000E402	$3.11980 \mathrm{E}+04$
27	0.	0 .	2.63000E+02	$3.05260 E+04$	$2.13000 E+02$	$3.11980 \mathrm{E}+04$
28	0.	0 。	$2.63000 E+02$	3.05260E+04	$2.13000 \mathrm{E}+02$	$3.11980 \mathrm{E}+04$
29	0.	0.	2.63000E402	3.05260E+n4	2.13000E*02	$3.11980 \mathrm{E}+04$
30	0.	0 .	1.36300E+03	9.8138nE404	$5.44000 E+02$	1.00499E+05

*********LIFETIME AVERAGE MATERIAL FLDNS WITH LOSSES
(UNITS/YR)
(UNITSICHE-YR)

$\begin{aligned} & \text { AVG } \\ & \text { FEED } \end{aligned}$	0. 0.	0.	$\begin{aligned} & 1.02839 E+03 \\ & 8.0975 \mathrm{PE}+02 \end{aligned}$	$\begin{aligned} & 3.39743 E+04 \\ & 2.67514 E+04 \end{aligned}$	0. 0.	$\begin{aligned} & 3.50027 E+04 \\ & 2.75612 E+04 \end{aligned}$
Avg						
OISC	0.	0.	0.	0.	0.	0.
	0.	0 .	0.	0 .	0.	0 -
Avg						
NET						3.50077E +04
FEED	0. 0.	0.	$1.02839 E+03$ $8.09758 \mathrm{t}+02$	$\begin{aligned} & 3.39743 E+04 \\ & 2.67514 E+04 \end{aligned}$	0.	$2.75612 \mathrm{E}+04$

TABLE III. (cont)

TABLE III. (cont)

LAST1 = 16611

CAPITAL COST BY YEAR FOR CDAL (S/KH)

feed rate for each fuel cycle item during each year of plant life in each fuel cycle zone for coal iunits/yri

0.	0.	0.	0.	0.	0.	. $32691 \mathrm{E}+07$	0.	0.	0.
0.	0.	0.	0.	0.	. $32691 \mathrm{E}+07$	0.	0 .	0.	0.
0.	0.	0.	0.	.32691E+07	0.	0 .	0.	0.	0.
0.	0.	0.	. $32691 \mathrm{E}+07$	0.	0.	0.	0.	0.	0.
0.	0.	$.32691 \mathrm{E}+07$	0.	0 .	0.	0.	0.	0	0.
0.	$.32691 E+07$	0.	0 。	0.	0.	0.	0.	0 .	
. $32691 \mathrm{E}+07$	0.	0.	0.	0.	0.	0.	0	0.32691E+07	$0.32691 E+07$
0.	0 .	0.	0.	0.	0.	0.	0.	$.32691 E+07$	0.
0.	0.	0.	0.	0.	0.	0.	. $32691 \mathrm{~F}+07$	0	0.
0.	0.	0.	0.	0.	0.	. $32691 E+07$	0.	0 .	0.
0.	0.	0.	0.	0.	. $32691 t+07$	0.	0 .	0 -	0 .
0.	0.	0.	0.	.32691F+07	0.	0.	0.	0 .	0.
0.	0.	0.	. $32691 \mathrm{E}+07$	0.	0 .	0.	0.	0.	0.
0 .	0.	. $32691 \mathrm{E}+07$	0.	0 .	0 .	0 .	0.	0.	0 .

TABLE III．（cont）

0	． $32691 \mathrm{Can7}$	0.	0.	0.	0.	0.	0.	0.	
．32691E＋07	0.	0.	0.	0.	0.	0.	0.	－32691E＋07	$0 \cdot 32691 E+07$
0.	0.	0 ．	0.	0.	0.	0.	0．32691E 07	0．32691E＋07	
0.	0 ．	0.	0.	0.	0.	0．32691E＋07	0．32691E＋07	0.	0.
0.	0.	0.	0.	0.	0．32691E＋07	0． 0 －	0.	0.	0 ．
0.	0.	0.	0.	0．32691E＋07	32601E 0	0.	0.	0.	0.
0.	0.	0.	0．32691E＋07	$0 \cdot 32$－	0.	0 ．	0.	0.	0.
0.	0.	0．32691E＋07		0.	0.	0.	0.	0.	0.
0.	0．32691E＋07	$0 \cdot 32691 E+07$	0.	0.	0.	0.	0.	0.	0.
0．32691E＋07	0．32691E＋07	0.	0.	0 ．	0 ．	0.	0.	0.	． $32691 E+07$
$0.32691 E+07$	0.	0 ．	0 －	0.	0.	0.	0.	$.32691 E+07$	0.
0.	0 ．	0 ．	0.	0.	0.	0.	．32691E＋07	0.	O．

OISCHARGE RATE FOR EACH FUEL CYCLE ITEM OURING EACH YEAR OF PLANT LIFE IN EACH FUEL CYCLE ZONE FOR COAL IUNITSIYRI

0.	0 ．	0.	0.
0.	0.	0.	0.
0.	0.	0.	0.
0.	0.	0.	0.
0.	0.	0.	0.
0.	0.	0.	0.
0.	0 ．	0.	0.
0 。	0.	0.	0.
0.	0.	0 ．	0.
0.	0.	0.	0.
0.	0.	0.	0.
0.	0.	0.	0.
0.	0.	0 ．	0.
0.	0.	0 ．	0.
0 。	0.	0 ．	0.
0.	0 。	0 。	0.
0 。	0.	0.	0 ．
0 。	0.	0 ．	0.
0 ．	0 ．	0.	0 ．
0.	0 ．	0.	0 ．
0 ．	0 ．	0 ．	0.
0.	0 。	0.	0 ．
0.	0 ．	0 ．	0 ．
0.	0.	0.	0.
0.	0.	0.	0.
0.	0.	0.	0.
0 。	0.	0.	0.

0.	0 －
0.	0.
0.	0.
0.	0.
0.	0.
0.	0 ．
0.	0.
0.	0 ．
0.	0.
0.	0.
0.	0 ．
0.	0.
0.	0.
0.	0.
0.	0.
D．	0 ．
0.	0.
0.	0.
0.	0 ．
0.	0.
0 ．	0.
0.	0 ．
0 ．	0 ．
0.	0 ．
0.	0.
0.	0 ．
0.	0.

0_{0}
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0

0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0.	0.
0 。	0.
0.	0.
0.	0.
0.	0 ．
0.	0.
0 。	0.
0.	0.
0.	0 ．
0 ．	0.
0 。	0.
0 ．	0 ．
0.	0.
0.	0 ．
0.	0.
0 ．	0.
0.	0 ．
0.	0.
0.	0.
0.	0.

TABLE III. (cont)

K S	Year	tOTAL POMER COST	CAPITAL IINCL INC TAX DN CAPITAL ANO FIXEO CHARGESI	$\begin{aligned} & \text { OPERATION } \\ & \text { ANO } \\ & \text { MAINTENANCE } \end{aligned}$	FUEL IINCL INCDME TAX ON FUELI	GROSS revenue TAX
1	1981.0	3.973E+01	1.735E+01	$3.755 \mathrm{E}+00$	$1.862 E+01$	0.
2	1982.0	$4.010 \mathrm{E}+01$	1.735E+01	$3.755 \mathrm{E}+00$	$1.899 F+01$	0.
3	1983.0	$4.048 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$1.937 E+01$	0.
4	1984.0	$4.087 E+01$	$1.735 E+01$	$3.755 \mathrm{E}+00$	$1.976 E+01$	0.
5	1985.0	4.12 6E 01	$1.735 \mathrm{E}+01$	3.755E+00	$2.016 E+01$	0.
6	1986.0	$4.166 \mathrm{~F}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$2.056 E+01$	0.
7	1987.0	$4.208 E+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$2.097 E+01$	0.
8	1988.0	$4.249 E+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	2.139E+01	0.
9	1989.0	$4.292 E+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	2.182E+01	0.
10	1990.0	$4.336 E+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$2.226 E+01$	0.
11	1991.0	$4.380 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$2.270 E+01$	0.
12	1992.0	$4.426 E+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	2.315E+01	0.
13	1993.0	$4.472 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	2.362E+01	0.
14	1994.0	$4.519 E+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$2.409 E+01$	0.
15	1995.0	4.56 AF+01	$1.735 \mathrm{E}+01$	$3.755 \mathrm{~F}+00$	2.457E+01	0.
16	1996.0	$4.617 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$2.506 E+01$	0.
17	1997.0	4.667E+01	$1.735 \mathrm{E}+01$	$3.755 \mathrm{~F}+00$	$2.556 E+01$	0.
18	1998.0	$4.718 \mathrm{E}+01$	$1.735 E+01$	$3.755 \mathrm{E}+00$	2.608E+01	0.
19	1999.0	$4.770 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$2.660 E+01$	0.
20	2000.0	$4.823 \mathrm{E}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$2.713 \mathrm{E}+01$	0.
21	2001.0	$4.878 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+10$	$2.767 E+01$	0.
22	2002.0	$4.931 \mathrm{E}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$2.821 E+01$	0.
23	2003.0	$4.985 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{~F}+00$	$2.875 \mathrm{E}+01$	0.
24	2004.0	$5.038 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$2.92 \mathrm{BE}+01$	0.
25	2005.0	$5.091 F+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{~F}+00$	2.980E+01	0.
26	2006.0	$5.143 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.032 \mathrm{E}+01$	0 .
27	2007.0	$5.194 E+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.084 E+01$	0.
28	2008.0	$5.245 \mathrm{~F}+01$	$1.735 E+01$	$3.755 \mathrm{E}+00$	$3.134 E+01$	0.
29	7009.0	5.294F401	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{~F}+00$	$3.184 E+01$	0.
30	2010.0	$5.343 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.233 \mathrm{E}+01$	0 -
31	2011.0	$5.391 E+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$3.281 E+01$	0 .
32	2012.0	$5.438 \mathrm{E}+01$	$1.735 E+91$	$3.755 \mathrm{~F}+00$	$3.328 E+01$	0 .
33	2013.0	$5.484 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{~F}+00$	$3.373 E+01$	0.
34	2014.0	$5.528 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$3.41 \mathrm{BE}+01$	0 .
35	2015.0	5.571 F - 01	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{~F}+00$	$3.460 E+01$	0 .
36	2016.0	$5.612 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 E+00$	$3.502 E+01$	0
37	2017.0	$5.652 \mathrm{E}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	3.542F.01	0.
38	2018.0	$5.690 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	3.580E+01	0.
39	2019.0	$5.726 \mathrm{~F}+01$	$1.735 \mathrm{~F}+01$	$3.755 \mathrm{E}+00$	$3.616 E+01$	0.
40	2020.0	$5.760 \mathrm{~F}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.650 E+01$	0
41	2021.0	$5.792 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.681 E+01$	0.
42	2022.0	$5.821 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.711 \mathrm{E}+01$	0.
43	2023.0	$5.848 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{~F}+00$	$3.738 \mathrm{E}+01$	0.
44	2024.0	$5.872 \mathrm{E}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.762 \mathrm{E}+01$	0.
45	2025.0	$5.894 E+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	3.783F+01	0.
46	2026.0	$5.912 \mathrm{E}+01$	$1.7355+01$	$3.755 \mathrm{E}+00$	3.802F+01	0.
47	2027.0	$5.927 E+01$	$1.735 \mathrm{~F}+01$	3.755F+00	$3.817 F+01$	0.
48	2028.0	$5.939 \mathrm{~F}+01$	$1.735 \mathrm{E}+01$	$3.755 \mathrm{~F}+00$	3.828E+01	0 .
49	2029.0	5.947 F 01	$1.735 \mathrm{E}+01$	$3.755 \mathrm{E}+00$	$3.836 E+01$	0.
50	2030.0	5.951E*01	1.735F+01	3.755E+00	$3.840 E+01$	0 。

TABLE III. (cont)
atauelcyclefeeo ret

1	$3.26910 E+06$	0.	0.
2	$3.26910 E+06$	0.	0.
3	$3.26910 E+06$	0.	0.
4	$3.26910 E+06$	0.	0.
5	3.26910E+06	0.	0.
6	3.26910E + Oh	0.	0.
7	$3.26910 E+06$	0.	0.
8	$3.26910 E+06$	0.	0.
9	$3.26910 E+06$	0.	0.
10	$3.26910 F+06$	0.	0.
11	$3.26910 E+06$	0.	0.
12	$3.26910 E+06$	0.	0.
3	$3.26910 F+06$	0.	0.
14	$3.26910 E+06$	0.	0.
15	$3.26910 E+06$	0.	0.
16	$3.26910 E+06$	0.	0.
17	$3.26910 E+06$	0.	0.
18	$3.26910 \mathrm{~F}+06$	0.	0.
19	$3.26910 E+06$	0.	0.
20	$3.26910 E+06$	0.	0.
21	$3.26910 E+06$	0.	0.
22	$3.26910 E+06$	0.	0.
23	$3.26910 E+06$	0.	0.
24	$3.26910 E+06$	0.	0.
25	$3.26910 E+06$	0.	0.
6	$3.26910 E+06$	0.	0.
7	$3.26910 E+06$	0.	0.
28	$3.26910 E+06$	0.	0.
29	$3.26910 E+06$	0.	0.
30	3.26910E406	0.	0.

REFERENCES

1. R. Salmon, "A Procedure and a Computer Code (POWERCO) for Calculating the Cost of Electricity Produced by Nuclear Power Stations," Oak Ridge National Laboratory report ORNL-3944 (June 1966).
2. R. W. Hardie, "BICYCLE II: A Computer Code for Calculating Levelized Life-Cycle Costs," Los Alamos National Laboratory report LA-8909 (November 1981).
3. J. A. Hughes, "Methods of Nuclear Fuel Management for Utilities," Ph.D. Thesis (University of Illinois, Champaign-Urbana, Illinois, 1975).
4. K. E. Asmussen, R. H. Brogli, S. E. Nowicki, and B. W. Southworth, "A Manual on Fuel Cycle Cost Calculations and a Description of the Code: GACOST," Gulf General Atomic, Gulf-GA-A10593 (October 1972).

Printed in the Unlted States of America Available from
National Technical lnformation Service
US Department of Commerce S285 Port Royal Road Springfield. VA 22161
Microfiche $\$ 3.50$ (A01)

Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code
001.025	\$ 5.00	${ }^{102}$	151-175	\$11.00	A08	301-325	517.00	A14	451-475	" 3 3,00	A20
026-050	6.00	A03	176-200	12.00	A09	326-350	18.00	A15	476-500	24.00	A21
051.075	7.00	A04	201-225	13.00	A10	351.375	19.00	A16	501-525	25.00	.422
076-100	8.00	A0S	226-250	14.00	All	376-400	20.00	A17	526-550	26.00	A23
101-1 25	9.00	A06	251-275	15.00	A12	401-425	21.00	A18	551.575	27.00	A24
126-150	10.00	A07	276-300	16.00	A13	426450	22.00	A19	576.600	28.00	A-S
									601-up	\dagger	A99

†Add $\$ 1.00$ for each additional $\mathbf{2 5}$-page increment or portion thereof from 601 pages up.

Los Alanos

[^0]: *Separative work unit.
 ** Back-end costs are defined as any costs incurred after the fuel is discharged from the reactor such as spent fuel shipping, reprocessing, and waste storage costs.
 tFraction of material lost during fabrication.

[^1]: *Fraction of material lost during reprocessing.
 **Length of time from when fresh fuel is purchased until it is loaded into the reactor.
 \dagger Length of time from when spent fuel is discharged from the reactor until back-end fuel costs are paid (and any credits are received).

[^2]: *Generalized input format. See description of generalized input format at the beginning of Sec. III.

[^3]: *Repeat from eard P1 for IP plant types.

