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NUMERICAL SOLUTIONS OF THE FOKKER-PLANCK
CHARGED PARTICLE TRANSPORT EQUATION

by

Antonio Andrade

ABSTRACT

In this work, two numerical methods are developed to solve the

Fokker-Planck charged particle transport equation by simple and

efficient means, and without approximation to the collision term.

The first of these methods demonstrates that the kinetic transport

equation can be integrated to yield the time dependent distribution

function of test particles fa(r,~,t) in a fully implicit manner by a

combination of Sn methodology with a matrix factorization technique.

It is shown that the full three dimensional velocity space dependence

along with the radial configuration space dependence of the

distribution function can be obtained as a function of time by this

method if all of the phase space variables are treated as discrete.

In order to illustrate this technique, the energy deposited by fast

ions to geometrically spherical and cylindrical field-free Maxwellian

D-T plasmas is calculated. The results are shown to be in good

agreement with those previously published.

The second technique that is developed is an implicit Monte

Carlo method which is suitable for transport problems in field-free

and externally magnetized plasmas. Here the transport of test

particles in background Maxwellian plasmas is based on probabilities

derivable from the FP equation, such as the expected time for

deflection and the ,expected time of energy exchange. It Is shown

that this technique is comparable in efficiency to the first method

discussed above since large samples of particles are not necessary

because self-consistent fields are not calculated. This technique iS

illustrated by again calculating the energy deposited by fast ions to
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a background plasma. The results for problems in the field-free

transport case are compared to those obtained by the first methoa and

are found to be in good agreement. Since this Is a particle pushing

method, the tracks left by the test particles as they transport

through the background plasma can be followed in scatter plots.

Similarly, the way in which the orbits of test particles deteriorate

as they transport in a magnetized plasma can also be followed in time

and the energy deposition profiles for each of the background species

can be compared to those obtained in the field-free case. It is also

shown that a treatment of Coulomb-nuclear scattering, a process which

becomes important in the analysis of transport in high temperature

plasmas, can be successfullyincorporated within the framework of this

implicit Monte Carlo method.
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CHAPTER I

INTRODUCTION

In the study of charged particle transport in plasmas, numerical

techniques for solving the Fokker-Planck equation have been developed

which closely parallel those used in neutron transport. This was a

natural step in the development of solution methods in charged

particle transport (CPT) in view of the fact that the theory and

methods 12of neutron transport have been well developed s . Moreover,

since much of the pioneering work in CPT was carried out in

conjunction with the on-going effort to build controlled fusion

devices, the early methodologies developed to solve the transport

equation were made more applicable to those machines. In the well

known analysis of transport in mirror machines by Killeen, et al3 for

example, the calculations of spatial changes along the magnetic field

are based on an assumption that the distribution function of ions

remain approximately constant along a guiding center orbit; an

assumption which is sufficiently accurate and more appropriate for

low density mirror confinement systems.

Other authors have used expansion methods4$5 or diffusion theory

techniques to solve the transport equation. The diffusion

techniques require that sequential moments of the transport equation

be taken so as to generate a coupled set of equations, and further

require that a prescription for closing that set be given. The

transport problem is then reduced to the solution of that set.

In other methods7$8, the differencing and multigrouping

techniques of neutronics are directly applied to yield solutions to

the CPT equation by standard algorithms. In all of the methods
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mentioned above however, the Fokker-Planck collision term is usually

approximated in some fashion. The diffusion techniques, for example,

usually include only a treatment of collisional slowing down without

velocity space dispersion (“straight-line slowing down”). The Sn

techniques of Ref. 7 are also applied to a Boltzmann-like equation

in which only straight-line slowing down is considered in a

deceleration term. As will be shown in this work the exclusion of

velocity space dispersion may lead to very inaccurate results.

Recently, some researchers have attempted to solve the

Fokker-Planck (FP) equation without recourse to approximations. This

was done by either reformulating the FP collision term into a form

which matches the structure of a standard neutronics code9 such that

existing computer programs can be used directly for CPT, or by

deriving cross sections10 which siumlate the slowing down of ions to

be used in existing neutronics codes. The drawbacks that were found

to these approaches were that the large computer codes were

cumbersome to modify or as in the case of Ref. 9, the existing code

structure forced a semi-implicit differencing of the collision term

which subsequently led to long computer runs.

In this work, two numerical methods are developed to solve the

Fokker-Planck charged-particle transport equation by simple and

efficient means, and without approximation to the collision term.

The first of these methods demonstrates that the kinetic transport

equation can be integrated to yield the time dependent distribution

function of test particles fa(r,v,t) in a fully implicit manner by a

combination of Sn methodology with a matrix factorization technique.

It is shown that the full three dimensional velocity space dependence

along with the radial configuration space dependence of the

distribution function can be obtained as a function of time by this

method if all of the phase space variables are treated as discrete.

In order to illustrate this technique, the energy deposited by fast

ions to geometrically spherical and cylindrical field-free Maxwellian

D-T plasmas is calculated. The results are shown to be in good

agreement with those published in Ref. 9.
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The second technique that is developed is an implicit Monte

Carlo method which is suitable for transport problems in field-free

and externally magnetized plasmas. Here the transport of test

particles in background Maxwellian plasmas is based on probabilities

derivable from the FP equation, such as the expected time for

deflection and the expected time of energy exchange. It is shown

that this technique is comparable in efficiency to the first method

discussed above since large samples of particles are not necessary

because self-consistent fields are not calculated. This technique is

illustrated by again calculating the energy deposited by fast ions to

a background plasma. The results for problems in the field-free

transport case are compared to those obtained by the first method and

are found to be in good agreement. Since this is a particle pushing

method, the tracks left by the test particles as they transport

through the background plasma can be followed in scatter plots.

Similarly, the way in which the orbits of test particles deteriorate

as they transport in a magnetized plasma can also be followed in time

and the energy deposition profiles for each of the background species

can be compared to those obtained in the field-free case.

In Chapter II, the form of the transport equation to be solved

is developed. It is shown that by some simple tensor analysis, the

FP collision term can be written in a divergence form for which the

vector components in velocity space contain no third derivatives for

all geometries. This makes its form convenient for finite difference

analysis of any type since it would otherwise be difficult to

numerically compute third derivatives of functions. Chapter III

descpibes the Sn and matrix factorization techniques of the method

used to integrate the FP transport equation for the time dependent

distribution function and in Chapter IV the Monte Carlo technique for

transport problems in field-free and magnetized plasmas is developed

in detail. Further, in Chapter IV a means by which large angle

(Coulomb-Nuclear) scattering can be treated is demonstrated. Al1

quantities to be used herein will have MKS units while temperatures

will be given in keV.
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CHAPTER II

THE FOKKER-PIANCK TRANSPORT EQUATION

The kinetic equation which characterizes the transport of

charged particles in a plasma as they suffer collisions which result

in their deflection by small angles has come to be known as the

Fokker-Planck transport equation and is given by

~fa(~,y,t) afa Fext afa
+ v ● --– + =—~ . 1 a<+> afa afa—— ...~

at - & ~ “—=~)c
‘aaz %

(2-1)
— ‘a

where

afa
–) =

1
- (V ●(fa<Ay>) - $’VX:(fa<AvAv>)}

atcx —— (2-2)

is the collision term of the equation. <$> is the average

electrostatic potential at ~ produced by the particles at other

‘Xt is the force experienced by the plasma particlespositions while ~

at ~ due to externally applied electromagnetic fields. Eq.(1-1),

therefore, is artequation for the time evolution of the one particle

distribution function of particles of species ‘a’, as this

distribution is affected by internal and external forces and as it is

affected by collisions with plasma particles of all species ‘b’

within a given system, including collisions among its own species

‘a’.
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Rosenbluth, MacDonald, and Juddl first formulated the averages

<Ax> and <AvAv> in Eq. (2-2) in terms of the potential-like——

functions hab(~) and gab(~) as

CAY> = rabVvhab(V)
—

<A~Ay> = rabvvvvgab(y)
—.

where

hab(y) = u f (r,u,t)lv-ul-l
‘a + ‘bZ~~d_ b ––

Ab ——

(2-3)

(2-4)

(2-5)

Here rab = (Z~e4/4nm~E~)lnAand lnA = ln(~d/bo) where Ad is the Debye

i
length [ nbZbe2/kTb&o]=l/2 and b. is the impact parameter for

scattering at 90° which is equal to ZaZbe2/4rEopabV2. Defining the

integrals in Eqs. (2-5) and (2-6) as

%(V) = ~dufb(r,u, t) IV-UI-l— — —— —— (2-7)

Kb(~) = ~dg fb(r,u,t) Iv-ul (2-8)—— ——

the potential-like relationship between Eqs. (2-5) and (2-6) is

easily shown with
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‘:Kb(V) = 2Lb(V)
—

(2-9)

and

In this work, the effects of

fa will not be considered so that

be set equal to zero.

(2-lo)

internal forces on the evolution of

<~> in Eq. (2-1) can effectively

A Formulation of the Collision Term in———

Terms of the Riemann-ChristoffelTensor—.

In Ref. 1, it is shown that the collision term can be written

in covarient form by first noting that ~~<A~> and ~~<AyAy>

transform like a contravarient vector and tensor respectively. The

subsequent tensor extension of Eq. (2-2) is then given as

where

T#b= a“%ab su

and

(2-11)

(2-12)

(2-13)

and where the relationships between Kb(~) and Lb(y), i.e. Eqs.

(2-9) and (2-10) are now given as

—
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(2-14)

~a
% ~a$

= -#$nf
b“ (2-15)

.

Here the subscripts ,i indicate covarient differentiation with
.threspecc to the 1 component while the superscripts indicate either a

particular vector component or a tensor element. apv is the inverse

of the metric tensor apv which defines the space of interest.

For finite difference numerical analysis, it is naturally more

convenient to use a divergence form for the collision term such as

afa
—)at ~

= _J:i. (2-16)

From Eq. (2-11), it can be seen that the components Ji are given by

(2-17)

Eq . (2-16) will be called the Landau-Fokker-Planck collision term

since Landau2 first formulated a kinetic equation for small angle

Uoulomb scattering in this divergence form.

The analytic evaluation of the components Ji for simple velocity

space geometries is straightforward but the second term of Eq.

(2-17) gives rise to terms which contain third derivatives of the

function Kb(~), which are difficult to approximate numerically. It

is easy to show that for say, a spherical velocity space in which the

background distribution functions are either fully isotropic or only

azlmucnally syuxsetric,these third derivatives can be eliminated from

the components Ji by making use of the relations given in Eqs.

(2-14) and (2-15).
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In the course of this work it was found that the third

derivatives could be eliminated in any geometry and for distributions

in a general state, by tensorially reformulating the coilision term

as follows.

Using Eqs.

definitions of the

(2-8), Eq. (2-17)

(2-5),(2-6),(2-12), and (2-13) and by using the

functions Kb(~) and Lb(~j given in Eqs. (2-7) and

can be Wrzcten in the form

(2-18)

or since the covarient derivatives of tuneinverse metric tensors are

equal to zero, it can further be simplified to

A +A~
Ji = lrabz~{ aAb faai%b, a- #iaaj6(faKb,a8).j } . (2-19)

The second term of Eq. (2-19) can be expanded as

(faKb,a~),j = fa$jKb,~a+ ‘aKb96aj (2-20)

since Kb(v) is a scaler invariant. The Riemann-Christoffel censor—
Ry is defined as3.~aj

Ry
.6ajKb’Y = Kb,6aj - Kb,~ja

and is a tensor of rank 4 which

vector Kb,y. It can be computed

(2-21)

aoes not tiepenaon tne choice of che

as
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Ry
. Baj = 3a(y.t3j}- 3j(Y,Ba}

+ {Y, js){s,6j} - {Y,m}{s,$a> (2-22)

where the symbols { } are the Christoffel symbols of the second kind”

With this definition Eq. (2-20) can be replaced as

(faKb,a~),j = ‘a$jKb$~a + fa[Kb$~ja + R~6ajKb,y] (2-23)

and Eq. (2-19) can then be rewritten as

~ +tib
1 iaaj6[fa,jKb~Ba2{.?___faai~,a - 2Ji = ~~abzb Ab

+ faKb~$ja + faRy6ajKb,y]] . (2-24).

Consider the second term of Eq. (2-24) which will be called term II.

Using (faKb~8j),a = fa,~b,~j + faKb>~ja3 term II becomes

+ aiaajB(faKb,6j)$aII = #aiaajsfa, jKb,~a

- aiaaj‘fa~#b ~dj + aiaaj ‘faR!8~jKb YY] ● (2-25)

By changing the dummy indices in the second term of Eq. (2-25) and

then using the Poisson-like relation given in Eq. (2-14), II becomes
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II = ~[aiaaj8fa,jKb,Da + 2aijfaLb,j + aijaa%b, a~fa,j -

aiaaj ‘fa~ &b~ ~j + aiaaj‘faR!SajKb~Y1 “ (2-26)

By changing dummy indices again, it is seen that the third and fourth

terms will cancel and that two Lb,a terms will also cancel when

Eq. (2-26) is substituted b ck into Eq. (2-24) so that the collision
!!fal .

term will now take the form
xc

= -J~i as before but with

‘i= jrabz~{$faai%b,.-

#iaaj6[fa, jKb,@a+ faR~~ajKb~yl) “ (2-27)

It is to be noted that Eq. (2-27) will involve only the second

Kb(v) making it satisfactory forderivatives of the function _

numerical analysis in any geometry, and that it also simplifies the
.

analytic evaluation of the components J1.

In the chapter to follow, a spherical velocity space is chosen

for the example problems which demonstrate the numerical methods

developed there. This choice is made because of the convenience of

determining whether a plasma is Maxwellized in terms of only one

variable, the magnitude of the velocity 1~1. In Appendix A, the

components Ji are evaluated analytically for a spherical velocity

space by using Eq. (2-27).

A Scaling of the Fokker-Planck Equation

.



It is often convenient in numerical work to scale the variables

of interest in order to avoid using large numbers. In a laser fusion

Dellet vlasma, for example, it is not uncommon to encounter particle

densities on the order of 1028/m3. Although many different scaling

systems can be applied to the Fokker-Planck equation, here it is

chosen to scale densities, velocities, and time as

Ii=.1 $=:
No co

f.L
‘o

(2-28)

where No and To are chosen to suit the problem at hand and where Co

is defined to be (2kTo/mo)l/2. k is Boltzmann’s constant, To is a

standard kinetic temperature and m. is the mass- corresponding to 1

AMu. With these scalings the scaled distribution function is related

to the unscaled distribution by

i = fC~/n (2-29)0.

By further defining the scaled length as ? = r/CoTo and the scaled

acceleration by Z = aTo/Co and then substituting the relations of Eq.

(2-28) into Eq. (2-l), it is found that the Fokker-Planck transport

equation retains its original form if the traditional rab is replaced

by rabNoTo/C~. The final working form of the Fokker-Planck equation

is then given by

afa(r,v,t) afa afa.— + aext.
at

= -v ●J
3; Y–+y”~ – _

—
(2-30)

where
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(2-31)

and where the barred scaling notation has now been dropped since it

is understood that this is a scaled equation.

—
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CHAPTER III

CHARGED PARTICLE TRANSPORT IN A FIELD-FREE PLASMA:

AN INTEGRATION OF THE FOKKER-PLANCK TRANSPORT EQUATION

Solution For A Spherical Plasma———

A symmetric, field-free, spherical plasma configuration

particularly simple system in which new techniques for solving

is a

the

transport equation can be tested. Since results of benchmark
1calculations in this type of system exist in abundance , comparisons

can easily be made.

To this end, consider the time evolution of a distribution

fa(r,v,u,t) of test particles in a fully symmetric state in a

spherical configuration space and in a spherical velocity space in

which the distribution function will only be constrained to be

azimuthally symmetric. In Appendices A and B the charged particle

transport equation, Eq. (2-30), is developed for these geometries as

afa(r,v, u,t) afa

at
+ ‘fl~(r2fa) +

=2&
$p[(l-F)fal = ~ )C

where

(3-1)

(3-2)
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(3-3)

(3-4)

Here the functions Kb and Lb of the background distributions fb will

remain isotropic for all time and the sums over the species ‘b’ will

not include the species ‘a’ so that the treatment of Eq. (3-1) will

become fully linear. The background Maxwellian distribution

functions in scaled variables have the form

fb(u) = n~+XP(-U2 /v:b)
~3/2v:b

(3-5)

where vob = (Tb/Ab)l/2.

With the definitions of Kb and Lb given by Eqs. (2-7) and

(2-8), the derivatives in Jv and JUcan be computed as

ah
— = “~~v112fb(U)dU
av V* o

(3-6)

(3-7)
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a2Kb v 2U4
— = 4n~ –—fb(u)du + 4n~:#fb(u)du .
avz o 3V3

Defining the standard integrals in Eqs. (3-6)-(3-8) as

Hbl(v) = ~%fbdu
v

Hb2(v) = ~;2fbdU

Hb~(V) = ~vU4fbdU ,
0

(3-8)

(3-9)

(3-lo)

(3-11)

it is seen that the Landau-Fokker-Planck components can then be

rewritten as

Jv .
1

Hb2(V)
-4~ rab!!!@z~{5!fa

~: Ab ~2

lafa Hb3(V)
—(‘3av V3 + Hb~(V) )}

and

(3-12)

(3-13)
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Since the background distributions are Maxwellian, the integrals

Hbl, Hb2, and Hb3 are easily evaluated as

nb

Hbl(v) = exp(-v2/v$~
2m3Aob

nb

—[

#/2
Hb2(v) =

=3/2 4
erf(v/vob) - V-exp(-v%lg)

2kob

(3-14)

(3-15)

nbv~b3T1/2
Hb3(V) = ~[-~-erf(v/vob) - &(~ + ~)exp(-v2/v~~ ]. (3-16)

‘ob

The Difference Approximation

Equation (3-1) can be solved by a direct finite difference

method which is similar in many repects to the Sn technique used in

neutron transport. In this method the angular dependence of the

distribution function is not expanded via a complete set of functions

but rather is treated as discrete. The way in which the methodology

presented in this chapter varies from the standard Sn method is in

the treatment of the collision physics. Here the collision effects

will be solved for separate from the streaming effects.

An operator K which will discretize all of the arguments of

fa(r,v,P,t) through the transport equation is

K = ~~s+ldt ~i+l’2r2dr ~g+l’2v2dv /%+1’2dp
s ‘i-l/2 vg-1/2 ‘n-l/2

(3-17)
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where B = At~(Ar~/3)(Av~/3)A~n and At~ = t~+l - t~, Ar~/3 = (r~+l/2 -

r3~_l/2)/3, Av#3 = (V~+l/2 - &/2)/3, AIJn= %+1/2 - %-1/2” In
this analysis the intervals on a mesh will be centered at integer

values of the indices s,i,g and n and the distribution function fa

will always be defined at t = ts+l i.e., implicitly, unless specified

by a subscript to be otherwise.

Applying the operator ~ to Eq. (3-1) yields the difference

approximation

f(ri,vg,~,ts+l) - fs ~Av;/4
..—— + ~v~[Ai+l/2fi+l/2 ‘Ai-l/2fi-l/21At~

ig

4

V ~~~3’[~+1/2fn+l/2
+ ._.__l? _

- an-1/2fn-l/21
ing

+; —[J:+l/2 - J:-1/21}
n

(3-18)

where Vi = Ar~/3, Ai+l/2 = r!+l/2j and where the angular streaming

term has been difference as in the Sn methodology of neutronics2 in

order to preserve conservation of particles for finite sized

intervals Aun. The subscript ‘a’ of the test distribution has been

dropped since it is understood that this is an equation for fa.

By using the definitions
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No TOZ;

1Bg = Aa ‘ab ~3 AbHb2(Vg)

o

i

Hb3(vg) + V$bl(vg))
1 l’1%?07:(.

cg=~ abC3
o ‘g

NoTOZ:

i
Dg x rab

~3v3[Hb2(vg) ‘&b3(vg) ‘:vgHb~(vg))
(3-21)

Og %

(3-19)

(3-20)

in Eqs. (3-12) and (3-13), the components of ~ in the collision term

of the difference approximation become

fg+l - fg
J~+l/2 = - .24“ {Bg+l/2fg+l/2 “g+l/2[ Avg+l,2 ‘] (3-22)

vg+l/2

J;-1/2 (~-~~~)}=-_z4.!._{Bg-1,2fg_~/2 “g-l/2 & 1,2 (3-23)

“g-1/2 g-

‘n+l - ‘n
J:+l/2 }_ _2mDg{(@+1/2) AUn+l/2

fn - fn-l

JIL/2
= -2mg{(l-i-l/2) Aun 1/2 }.

(3-24)

(3-25)

The velocity grid interval edge values fg?l/2 in the J~?l/2



components can be related to

interpolating relations of Chang

‘g+l/2 = (1 - ~g+l/2)fg+l +

21

the centered values fg by the
3and Cooper as

~g+l/2fg

fg-1/2 = (1 - ~g-1/2)fg + ~g-1/2fg-l

1
[exp(~gtl/2) - 11

and

*vgBgzl/2
‘g*l/2 = ‘-—-—

cgkl/2 “

(3-26)

(3-27)

(3-~8)

(3-29)

By using these relations in Eqs. (3-22) and (3-23), the collision

term of Eq. (3-18) can be rewritten as the sum of two terms as

-=
q Cv+<p (3-30)

where

-v cg-1/2= -{fg-l ‘Avg-l/2
- Bg-1/2~g-l/21q

43

cg-1/2 cg+l/2
+ fg[Bg+l/2~g+l/2 - Bg4/2(1 - ~g-1/2) -

‘“g-l/2
1

~g+l/2

cg+lM}+‘g+l[Bg+l/2(L- ~g+@ + -h (3-31)
g+l/2
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and

(1 -
- ‘*[

k+l/2)
+

‘%+1/2

(1 - &l/2)

‘%-l/2
1

(1 - u:+l/2)
+ fn+l.—

‘%+1/2
}.

Note that ~ is a sum of two 3-point difference terms.

By further defining the quantities

Av~/4
c= ...———

ViAv~/3

1A = ~nA~[Ai+l/2fi+l/2 - ‘i-l/2fi-l/2

and the combining

transport equation

f- ~At~ = fs

In this equation , .. .. .

(3-32)

(3-33)

+ [~+1/2fn+l/2 - %-1/2 fn-l/2I (3-34)

Eqs. (3-30) and (3-18), it is seen that the

can be written in the simple form

~AAt8
-—— —0

Apn

it is seen that the collision terms are now on the

(3-35)
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L.H.S. while the streaming terms have been separated off into the

R.H.S. This formulation suggests that a splitting procedure may be

used to solve for the effects of collisions and streaming on the

distribution separately and then combined in some self-consistent

fashion to yield an updated distribution.

Solution of the Difference Approximation by

Consistent Splitting with

Eq. (3-35) can be split into

equations of the form

[f - {At]’ = [fs - ~~]t=t
n s

and

GAAts
f+————

Apn
= <*At5 + fs .

Matrix Factorization

two, separate fully implicit

(3-36)

(3-37)

Here Eq. (3-36) is seen to be an equation which modifies the

distribution function f for collision effects while using the

streaming terms as a constant known source term evaluated with

quantities defined at the previous time step while Eq. (3-37) is an

equation which corrects f for streaming and uses the result f* of

Eq. (3-36) as 4* = ~(f*) as a constant. When Eqs. (3-36) and (3-37)

are solved together within a given time step, the distribution

function f(ri,vg,~,ts+~) is then determined for all i,g, and n.

Consider first Eq. (3-36) and recall that ~ was defined as the

sum of two 3-point ‘termsin Eqs. (3-30)-(3-32). As such, Eq. (3-36)

resembles the difference 2-dimensional Poisson equation which has

the form
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(3-38)lq) = s‘i~~lk+ ‘ng lk ng

1 = n-l,n,n+l

k = g-l,g,g+l

where the matrices E and G contain the coefficients of the two

3-point terms ~v an: ~V re~pectively and where Sng corresponds to the

source term on the R.H.S. Elkof Eq. (3-36). ng and G& are actually

supermatrices with the properties

where the first pair of upper

of an elemental matrix in the

indicate an element in the

the forms

E:; .

((
x

x

\

x

)xx

xx NGxNG

(
xx

xx

x

(3-39)

(3-40)

and lower indeces indicate the position

supermatrix and where the second pair

elemental matrices. Hence E and G have

x

x

()
xx

xxx

xx

/

(3-41)

.
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( )(
x x

x x

x x NGxNG

(xxx)(x)<
)( )

x

x x

x x NNxNN

where NG is the number of intervals

number of intervals on the n grid.

the forms

()()
x

x

JcG

()
x

x

x

()
x

x

x NN

sng

on the g grid

The supervectors

The notation of Eq. (3-38)

[1()
x

x

XG

()
x

= x

x

ox

x

x NN

(3-42)

and NN is the

$lk and Sng have

(3-43)

can be simplified somewhat if the

index g is taken to be vector index so that it can be rewritten as

Etn+ G~il= ~n (3-44)

This equation merely indicates that each multiplication of a superrow
+

of Eqs. (3-41) and (3-42), by a supercolumn of +, will be treated

separately. The f~llowing treatment of Eq. (3-44) is based upon a

method given by Buzbee, et. 4al. .
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In general the matrix E will not be symmetric tridiagonal but a

matrix D can be found that will symmetrize E through a similarity

transformation E = DED-l. If D is allowed to operate on Eq. (3-44)

from the left, it then takes the form

(3-45)

It is easily shown that D has a diagonal form such that it commutes

with G: as indicated.

The symmetric matrix E has a complete set of eigenvectors given

by ~;a= ~a~a so that the vectors D; and D: can be expanded as

(3-46)

(3-47)

Using these expansions in Eq. (3-45), it is found that it can be

rewritten as

(3-48)

Eq. (3-48) is recognized to be a tridiagonal system in the

coefficients ala for each index a. This equation can be solved

readily by a factorization of the tridiagonal system into upper and

lower off-diagonal matrices. This is a standard technique in matrix

analysis, the details of which will not be given here. For an

excellent presentation of this technique, the reader is refered to

Ref. 5.

Once the coefficients ala are determined, the solution of

Eq. (3-45) can be constructed using Eq. (3-46) as
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(3-49)

This is the ‘intermediate’distribution function f* which has been

modified for collision effects. It is noted that for the case in

which the background plasma remains Maxwellian, the coefficients in

Eq. (3-45) remain unchanged Such that the eigenvalues and

corresponding eigenvectors need be computed only once. But the

construction indicated in Eq. (3-49) must be performed at every time

step since the ala will differ as the source term (and therefore the

bna) of Eq. (3-45) changes in time. This procedure is carried out

for every zone ri in a given time step.

Eq. (3-37) remains to be solved. This equation is actually

equivalent to Eq. (3-18) i.e., the difference approximation except

that the collision terms on the R.H.S. are now known as q“* such that

f(ri,vg,~,ts+l) - fs
+ ~p[Ai+l/2fi+l/2 -Ats ‘i-l/2fi-l/21

viAv#3

Av;/4
+ v~UAv3,3[~+l/2fn+ l/2 - ~-1/2 fn-l/21=d* . (3-50)

ing

Eq.(3-50) has the form of the neutron transport equation which

has been difference for Sn treatment and as such, it can be solved

as in neutronics. To outline this method, note that Eq. (3-50) is an

equation in five unknowns f, ‘i?l/2s and ‘n&l/2” In general two of

these, say ‘i+l/2 and fn_l/2, can be determined from boundary

conditions or from a previous time step. The other three quantities

can be related by some scheme so that a system of three equations in

three unknowns can be formed.
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The diamond difference relations

2f = fn+l/2 + ‘n-l/2

2f = ‘i+l/2 + ‘i-l/2

(3-51)

(3-52)

are chosen for this purpose. It is seen in Fig. 1 that these

relations linearly interpolate between quantities defined on a

topologically rectangular mesh. Using these relations in Eq. (3-50)

and solving for f in terms of the known quantities fn-1/2 and ‘i+l/2

yields

‘1

P

Fig. 1.--The diamond structure of the interpolating
procedure shown on a partial r-~ mesh
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f = {~*At + f. - ‘~’’’j$~ [Ai+l/2 + ‘i-l/2 lfi+l/2
ig

AtAv$/4 .
+

ViA~n;v~/31%+1’2 + ‘-’’2 Jfn-”2]
(3-53)

+ %-1/2) - %( Ai+l/2 + Ai-1/2)J} “

solve for the updated distribution f for

boundary of the sphere by calculating

This equation can be used to

all zones i, starting at the

the cell centered distributions f and then extrapolating inward for

the cell edged distributions fi-1,2. Since the calculation proceeds

inward toward the center of the spere, it should only be performed

for angles directed inward to avoid the accumulation of numerical

error6 i.e., for the directions B such that -1 < u ~ O. A similar

equation can be derived for outward directions by considering ‘i+l/2
to be unknown and again using the diamond difference equations in

conjunction with Eq. (3-50) to yield

f= {ij*At+ f~ +
‘~~$[Ai+l/2 ‘Ai-l/21fi-l/2

ig

AtAv:/4
+ ‘[%+1/2 + %-1/2 lfn-1/2}
ViA~Av~/3

(3-54)
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The outward integrations can be started by using an isotropy

condition at the center of the sphere which is just

fr=O,n = ‘r=(),ninwardoutward

‘outward = NN+l-n.Inward “ (3-55)

This integration is done after all of the inward calculations have

been performed. In this way, f(r,v,v,t) is calculated at the updated
.

for all zones, speeds, and angles.‘lme t = ts+l

Two. codes have been developed which perform an integration of

the Fokker-Planck transport equation via the methods outlined in this

section. The first one, SFTRAN, calculates transport in the system

just discussed i.e., in a spherical plasma. The second code CYTRAN

calculates transport in a fully symmetric cylindrical plasma but with

full velocity space dependence such that fa(r,v,u,x,t) is calculated.

The methods and results obtained by CYTRAN will be the subject of the

last half of this chapter.

In the next section, some results obtained by the spherical code

are presented.

Results

The calculation of the energy deposited by fast test ions as

they slow down on a background plasma during the collisional

transport process is typical of the benchmark problems which have

evolved within the literature on charged particle transport. In a

pellet plasma, for example, it is of interest to determine how this

energy is distributed spatially while being partitioned to the

background electrons and ions. It is also of interest to be able to

determine the time history of this deposition. Some of the more

important applications of these type of calculations include the

treatment of fusion product transport and the analysis of injected
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charged particle beams. In order to demonstrate the matrix

factorization (Ml?)method of the last sections, the transport of

fusion alpha particles and beam deuterons and protons will be

considered.

Before proceeding further, it is to be noted that in the

transport equation, the factor ‘ab has consistently been kept within

the summation over the species ‘b’. This is because of the

dependence of 1“ on the background species through the Coulomb

logarithm as

lnA= ln(Ad/bo) = ln[~d/(ZaZbe2/4mcopabV2)].

In this work the arguments Ai and Ae will be approximated as

Ai =

and

A =
e

Ad4~co rni
(

z z.e2 ‘i + ‘a
)2E

al .

Ad411Eo
3Oe

Zae2

for cases where the electron

(3-56)

(3-57)

(3-58)

thermal

the test ion velocities v, but where v

in Eq. (3-57) is set to the thermal
7and the Marshak correction factor is

valid approximations

v
‘th

is greater than

which are

velocity
-..

> Vith. The test ion energy E

ion energy to be definite,

applied in Eq (3-58) when applicable.

The case of 3.5 MeV fusion product alpha particles transporting

in a spherical plasma is considered first. In this example, the

background electron and hybrid D-T ion densities will be 0.2125 x 103

kg/m3 while their temperatures are taken to be equal at 50 keV.



32

Although here the temperatures are set equal, the code does allow for

different electron and ion temperatures.

It is chosen to compare the results of the !’lFcalculations with

those given by Mehlhorn and Duderstadt in Ref. 1 since their method

also allows for velocity space dispersion. In order to match the

zoning used in their modified neutronics code TIMEX-FP, 13 radial

zones are used while the velocity space variables are discretized by

4 v directions and an 18 point speed grid. The zone width is taken

to be .7742 x 10-2m which is equivalent to .035As where As is the

range of alpha particles on electrons at the density and temperature

given above. Further, in this problem, the arguments of the Coulomb

logarithm are not calculated by Eqs. (3-57) and (3-58) but the values

of lnA are set as lnAe = 8.25 and lnAi = 18.56 as the were in Ref.

1. The details of the energy deposition calculation are given in

Appendix C.

In Figures 2 and 3, the fraction Ed/Eo of the initial alpha

particle energy E. deposited per zone to the background electrons and

ions, respectively, is plotted for each zone. It can be seen that

the MF method yields results vhich are in very good agreement with

those reported in Ref. 1. In both Figures 2 and 3, the peaks of the

spatial deposition profiles occur in the same zones and. are nearly

identical in magnitude. Similarly, the stopping lengths calculated

by the MF method enjoy close agreement to those previously reported.

Although small differences occur in the two methods’ calculations of

the amount of energy deposited in the first few zones to both

electrons and ions, the results of the MF method should be reliable

since it does not seem to encounter the difficulties near localized

sources that the Sn techniques used in TIMEX-FP might6.

In order to study the effects of the dispersion in velocity

space which the alpha particles undergo as they scatter on the

plasma, the number of angles NN, used in the calculation was varied.

In Figs. 4 and 5 the spatial deposition profiles are again given for

electrons and ions separately. It is seen that by increasing the

number of directions in which the alpha particle distribution
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Fig. 2. --Fraction of initial alpha particle energy
deposited per zone to electrons
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Fig. 3.--Fraction of initial alpha particle energy
deposited per zone to ions
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function can be defined, for the case of deposition to electrons, the

spatial profile’s peak is decreased while deposition to the outer

zones is increased. In the case of the ions, the peak is also

diminished but shifted to the right with the deposition to the outer

zones again increasing. This behavior is to be expected for the

following reasons. Since the initially isotropic alpha particles are

at higher energies than the background electrons and ions, their

distribution will depart from the isotropic form as they scatter in

an attempt to reach a thermal equilibrium. Although the alpha energy

may diminish after the first few collisions in zones near the center

of the sphere, the energy is more directed in the outward directions

in these zones. They will approach a thermal equilibrium after

enough collisions have occurred along their path, so that their

distribution will again acquire an isotropic character in the outer

zones of the mesh. At this time the particles will have no preferred

direction , so that the amount of backscattering will become the same

flJN.4

- ---- NN.8

. . . . . . NN = 16

........ ..-

01 23 4 5 6 7 8 9 10.11 12

Zone

Fig. 4.--Fractional deposition per zone to electrons
for an increasing number of directions (NN)
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Fig. 5. --Fractional deposition per zone to ions for
for an increasing number of directions (nn)

as the amount of forward scattering, thus resulting in higher

deposition to these outer zones. That this behavior is indeed the

case,

of the

vector

is established by following the distribution of the cosine (B)

alpha particles” velocity vectors with respect to the radial

as a function of time. In Fig. 6 this spectral information

is shown for the center zone at t = O while the curves at other times

are appropriate to the third zone on the mesh. It is seen that the

distribution (normalized to unity on the abscissa) becomes peaked

toward a positive cosine almost instantaneously, showing that the

alpha energy is highly directed toward the outer zones. As time (NT)

progresses, the particles scatter and lose their energy and the

distribution tends toward a Maxwellian at the background temperature.

From this information, it can be concluded that by using too few

angles in this type of calculation, the results may become biased in

showing too much deposition in the first few zones and in ignoring

the backscattering effects in the outer zones.
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Fig. 6. --Angular spectra of the distribution function at
the 3rd position on the zone grid. At the first time
step (NT), the spectra is shown for the first zone

It is interesting to note that the plots in Figure 6 contain

data points which appear jagged. This is due to the use of a large

time step in the algorithm, which gives rise to small fluctuations in

the distribution information, a common occurrence in any finite

difference scheme. Although this phenomenon could be detrimental in

some algorithms, the MF method remained absolutely conservative and

convergent.

In Figure 7 the time dependent energy deposition history is

shown for both deposition on electrons and on ions. As a check on

the accuracy of this method, the curve showing the total energy

fraction deposited to both ions and electrons was calculated using

the appropriate moment of the L.H.S. of the transport equation,

Eq. (3-18). It can be seen that the code remained energy conserving.

It is noted that the total deposition fraction in time tends

towards unity but becomes asymptotic at a value less than unity.

This is, of course, due to the fact that the alpha particle does not
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Fig. 7. --Time history of deposition to both electrons
and ions

lose all of its kinetic energy but only slows down to an energy

defined by the temperature at thermal equilibrium.

The efficiency for the MF method is demonstrated in Figures 8

and 9. The same computations described above for four angles, 13

zones and 18 velocity grid points were performed using 150 time steps

(NT) at a time increment of .01 and then carried out again using 1500

time steps at & = .001. Here the time increment At is scaled to the

slowing-down time of alpha particles due to electrons at 50 keV which

is equal to 8.47 x 10-9 sec. It can be seen that very little

accuracy is lost by using the larger time step. The calculation

using 150 time 6teps required 5 seconds of CPU time on the CRAY I

computer.

The energy deposited to a plasma by an injected beam can be

calculated by introducing a distribution function characterizing the

beam at the outermost zone of the system. In the examples which

follow, the zoning used in the previous examples is retained but a
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Fig. 8. --Fractional deposition per zone to electrons
for two time step sizes and the corresponding
number of iterations

distribution (in speed) defined at one ingoing angledelta function

is used to simulate a beam entering at the boundary.

In the first example, a beam of 1 MeV deuTerons impinging on D-T

plasma (at the same temperature and density as before) at the

outermost zone (zone 13) is considered. The delta function is

defined at their velocity corresponding to that energy which is v =

9.823 x 106 mfsec. In Figs. 10 and 11, the deposition profiles are

shown for the case in which the beam consists of an initial burst of

ingoing deuterons. Since the beam velocity is much less than the

electron thermal velocity in this case, the deuterons should tend to

deposit their energy on the background ions in greater proportion.

This is seen to be the case.

In Figures 12 and 13, the deposition profiles are shown for an

initial burst of 500 keV ingoing protons. Since the proton velocity

is the same as above (v = 9.823 x 106 m/see) the same tendency to

deposit more energy to the ions should be observed. In addition
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Fig. 9.--Fractional deposition per zone to ions for
two time step sizes and the corresponding
number of iterations
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Fig. 10.--Fraction of initial deuteron energy deposited per
zone to electrons for a beam entering at zone 13



40

“\,

020
r

0.10“

0.0 * , I
01 234567891011 1213

Zone

Fig. 11.--Fraction of initial deuteron energy deposited per
zone to ions for a beam entering at zone 13

though, since the mass of the protons is less than that of deuterons,

they are more easily deflected and so should deposit

much more quickly i.e., within the first few zones.

behavior is verified in the figures. Both of the above

required about 4.5 seconds of CPU time on the CRAY I.

their energy

Again, this

calculations
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Fig. 13.--Fraction of initial proton energy deposited per
zone to ions for a beam entering at zone 13
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Solution For A Cylindrical Plasma——

In the first sections of this chapter it was shown tnat the

Fokker-Planck equation could be solved by the use of a consistent

operator splitting technique and the subsequent application of matrix

factorization and forward extrapolation to obtain the time dependent

distribution function of test particles fa(r,v,lJ,t). In the

following sections it will be shown that these techniques can also be

employed to solve for the full 3 dimensional velocity space

dependence of the distribution function.

To this end, it is chosen to solve the transport equation for a

fully symmetric plasma which is describable in cylindrical

coordinates in configuration space and spherical polar coordinates in

velocity space such that the time evolution of the distribution

function fa(r,v,~,x,t) will be sought. In Appendices A and B, the

charged particle transport equation, Eq. (2-30), is developed for

these geometries as

afa(r,v,v,x,t)

at
+ V(l - ~2)1/2cosXa(rfa)

.—
r &

~a(fa(l - v2)1’2sinx) afa
- —— ..— = .—

ax )
r at c

where

afa
—)at c

=-{~v2Jv+L~ +%X}
v ap ax

(3-59)

(3-60)

and
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(3-61)

(3-62)

(3-63)

It iS again invoked that the backgr~u~d di~tributions remain

Maxwellian for all time and that collisions between particles of

species ‘a’will not be considered so that the derivatives of Kb and

Lb can be evaluated as before in Eqs. (3-6),(3-7) and (3-8). In this

case, the Landau-Fokker-Planck components take the simple forms

l~fa Hb3(V)
—(‘3av ~3 + Hbl(v) )},

1
_~)afa

J~ = -41rrabNOTOZ~{Q_____ x
~: 2V3 aIJ

Hb3(V) ~v
‘(Hb+) - ~ + ‘#’$#v) )}

(3-64)

(3-65)
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t

afa
JX - -4T ‘r ‘0 T073{.

ab ~3
2V3(11- l?) axo

x

Hb3(V) 2V

(H&) - ‘j;~– + 34@))} (3-66)

where the definitions of Hb1,Hb2, and Hb3 given in Eqs. (3-14)-(3-16)

have been used.

The Difference Approximation

An operator which discretizes the dependence

arguments as fa(r.~$vg$~n$xm$ts) through the transport

of fa on its

equation is

tg+l ‘i+l/2 vg+l12 z %+1/2 Xm+l/2
K = ~jt dt~r r2dr~v v dv~vn ~,2dU~

&l/2dA
(3-67)

8s i-1/2 g-1/2 -

where B is now defined as At9(Ar~/2)(Av3/3)ABnA~ and Ats = ts+l- ts,

Ar~/2 = (r~+l/2 5- r~_l/2)/2, Av~/3 = (Vg+l/2 - V&l/2)/3, Av = N+l/2

%-1/2’ and ‘X = &+l/2 - ~-.~/2. Here again the ~ indices will

represent cell edged quantities while the integer indices will

represent those that are cell centered and the distribution fa will

always be indexed implicitly i.e, at the advanced time t ‘tg+l

unless specified otherwise.

Applying this operator to the transport equation, Eq. (3-59),

yields the difference approximation

f(ri,vg,~,~,ts+l) - fs (1-I.?WCO sx#v:/4 ~
+

At Ar~/2 Av~/3

(ri+l/2fi+l/2- ‘i-l/2fi-l/2)
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Av:/4
+

(%a+l/2fIn+l/2- am-1/2fm-l/2j (3-68)
A& Ar~/2 Av~/3

4J:+l/2 -J#-l/21+ +[J:+l/2-J&l/2H+ Aun

where the alpha coefficients technique of Sn theory2 has again been

used to form the difference approximation of the third term and where

the subscript ‘a’ on the distribution function to be solved for has

been dropped. By using the definitions of B ,C
g !3’

and D given in
g

equations (3-19)-(3-21) and by performing the same

collision terms as before, it is found that they

the sum of three 3-point difference terms so that

Eq. (3-68) can then be set equal to ~ as

<=qv+(u+cx

where the three terms are given by

algebra in the

can be written

the R.Ii.S.

as

of

(3-69)

cg-1/2
qi 1

. ~tfg-l ‘Av8-1/2
- Bg-1/2~g-l/2

Av:/3

cg-1/2 cg+l/2
+ fg[Bg+l/2~g+l/2 - &g-1,2 -

Avg+l/2
- Bg_l/2(1 - 6g-1/2)I

cg+l/2
+ fg+l[Bg+l/2(1 - ~g+@ + ~--1~11 s (3-70)



(1 - 4/)}+1 *
+ fn+l———

‘%+1/2
9

2T Dg
{x =

{fLU-lA&,2 - fm(+”– + —~)
A%( 1 - &) Xm-lf2 ‘%+1/2

+f nl+lA 1 }.
%1+1/2

By defining the quantity A as

A=(l
- @l/2cos~Av:/4

(ri+l/2fi+l/2
Ar~/2 Av~/3

- ri-1/2fi-l/2)

(3-71)

(3-72)

AV:14
+ (~+1/2fm+l/2 - %-1/2 fro-l/2) ‘3-73)

A~ Ar~/2 Av~/3

it is seen that the difference

written in the more concise form

approximation, Eq. (3-68), can now be

f- (3-74){Ats = fs - AAt~ .
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Solution of the Difference Approximation by

Consistent Splitting with Matrix Factorization

Equation (3-74) can be split consistently into two equations of

the form

[f-~At]*= [f~-AAt]t=t
8

f+AAt= <*At + f~ .

(3-75)

(3-76)

The solution f* of Eq. (3-75) will contain the effects of collisions

in its velocity space dependence while Eq. (3-76) will use this
.*

result as q = ~(f*) and can be solved for f, the updated

distribution function which will include the effects of streaming in

configuration space.

The solution of Eq. (3-75) differs significantly from the

solution of its counterpart in spherical coordinates, Eq. (3-36), in

the implementation of the matrix factorization technique on an

equation that is not fully separable. To see this note that in ~*

i.e., Eq. (3-72), there exists a factor (1 - IJ#)in the denominator

which gives that term an unwanted dependence on P. Simple

multiplication by this factor will not clear up this problem since it

will then introduce the factor into the {V term (note that simple

division by the factor Dg in the ~B and <X terms will rid these of

any dependence on v). In order to circumvent this problem, a second

splitting is introduced such that Eq. (3-75) is itself split into two

equations of the form

jlk ~ S1
‘;::$;lk + ‘mng’!jlk= mng

and

(3-77)



48

(3-78)

j = m-1,m,m+l

1 = n-l,n,n+l

k = g-l,g,g+l

where the three dimensional supermatrices E,F, and G contain the

coefficients of
‘W=-P and :X respectively

the three 3-point terms q ,q ,

and have the properties Ejlk + ~;~:E~:~ F:;: + 6;6~;;& and G;;: +mng
&6kGjlk
n g mng” The source terms are now defined as

mng = [fs - ‘At]t = t. - ‘~’’At]t= t.
~1

mng = [fs - ‘At]t = t. - ‘ixAt]t= ts
S2

(3-79)

(3-80)

so that the terms on the L.H.S. of both Eqs. (3-77) and (3-78) are

now fully separable.

Both of these equations con now be solved bY ‘he ‘atrix

factorization method described earlier to yield the two solutions

!;ls;;t !;~~lonT~se are

subsequently iterated to yield the

. . of the original equation, Eq. (3-75).

Eq. (3-76) is solved as in the spherical coordinates case by

making use of the diamond difference relations

2f=f m-1/2 + fm+l/2
(3-81)

(3-82)2f = fi-j,/2+ ‘i+l/2
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to derive inward and outward equations that can be solved by simple
forward extrapolation. Here these equations take the form

f={~At+f~-
AtAv:/4 (]-<)1/2COS~

‘i+l/2{ri+l/2 + ‘i-l/2
Av3/3 Ar~/2

)
g

AtAv;/4
+– —

fin-l/2(%+1/2 + c&l/2)} (3-83)
A~Av~13 Arf/2

{1 - .fl_!?4—[(1-~)1/2cos&(ri+ l/2 + ‘i-l/2)
Av~/3 Ar~/2

- &%+l/2 + %-1/2)1}

which is used for the inward integrations i.e., for ~ < &G~and
L

AtAv:/4 (k<)l/2COS~
f={~*At+f~+-

‘i-l/2(ri+l/2 +
Av~/3 Ar~/2

AtAv;/4
.-— –fm-l/2(c&/2 +

+ A&Av:/3 Ar~/2
%+1/2)}

{1 +
AtAv:/4

[(1-~ )1/2cos&(ri+l/2 + ‘i-l/2I
Av3/3 Ar~/2
g

L

‘i-l/2)

(3-84)

a+ A% %+1/2+ %-1/21]}



50

which is used for outward integrations.

Results

The methods discussed in the last section can be demonstrated by

an energy deposition calculation using the same zoning in r, v, and IJ

as in the spherical coordinates case i.e., as II = 13, Ar = .7742 x

10-2m, NG = 18, and NN = 4. If the same test problem involving an

initially isotropic burst of 3.5 MeV alpha particles from the

innermost zone is considered, the spatial deposition profiles on the

background electrons and ions shown in Figs. 14 and 15 are obtained.

Here again the background densities were taken to be 5.12 x ~028m-3

while the ion and electron temperatures were set at 50 keV. The

Coulomb logarithms were also set as lnAe = 8.25 and lnAi = 18.5625 as

before. For these examples the number of intervals on the x grid

were varied.

In Figs. 14 and 15 it is seen that by increasing the number of

intervals (MM) on the x grid while keeping the other zoning constant,

more deposition occurs in the first zones in both cases. This

indicates that a larger number of intervals are necessary to resolve

the slight deflection that the particles undergo as they traverse the

first few zones. This particle behavior will be verified in the next

chapter in which their paths in the plasma is simulated. It can be

postulated that if the number of & intervals are increased to a very

large number, the deposition profiles will show increased deposition

in the first zones and will subsequently drop to zero somewhat

faster.

It should be stated that CYTRAN uses considerably more CPU time

than SFTRAN for comparable problems. For example, in the above alpha

particle slowing down problem where MM was set to 4, CYTRAN comsumed

~ 300 seconds while the spherical code used only 5 seconds. The main

reason for this costly behavior is that in CYTRAN a second splitting

was used as explained in the last section. It was found that the
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solutions obtained in the second splitting had to be iterated to

within a very small criterion (= 1/10,000) in order to preserve

particle conservation.

It can be concluded that if the ~-space geometry of interest is

such that perfect separability cannot be easily achieved, a point of

diminishing returns has been reached insofar as the applicability of

matrix factorization to a 3-dimensional velocity space problem.

Although CYTRAN is still considerably faster than some other

transport techniques, it nay be well advised to try another method

[Cf. Chapter IV] for non-separable geometries.

Note that if perfect separability in Eq. (3-75) does occur for a

given n-dimensional velocity space problem, a simple extension of the

matrix factorizationmethod in which (n-1) different eigenvector

expansions are incorporated can be used to solve the equation

rapidly.

Conclusions

It has been shown that the Fokker-Planck charged particle

transport equation can be solved in an efficient manner by splitting

the difference approximation to yield two fully implicit equations,
● each of which is solved separately. One split equation contains the

collision physics and modifies the distribution of test ions for

these effects in its velocity variables v and u (and/or X) while the

other equation corrects the distribution for spatial transport

(streaming). A matrix factorization technique is used to solve the

first of these equations (“the collision equation”) while a standard

forward extrapolation technique is employed to solve the “spatial

equation”. Using the example of 3.5 MeV alpha particles transporting

in a background D-T plasma, it was seen that the combination of these

techniques in this algorithm yielded results which were in very good

agreement with those previously published. Furthermore, since the

algorithm is fully implicit, it was also shown that large time steps
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could easily be used to generate accurate results in a minimum of CPU

time.

Although the distributions of ions and electrons describing the

background plasma were postulated to be fixed Maxwellian

distributions, the generalization to time, space and velocity

dependent distributions is straightforward within this algorithm.

Further, the matrix factorization technique is not restricted to any

particular geometry, and here it has been shown to be successfully

applicable to the curved geometries of spherical and cylindrical

systems.

There are also many other possible extensions of these methods

which remain to be investigated. One interesting possibility is the

generalization to a two or three dimensional configuration space

dependence of the test particle distribution. This appears to be

straightforward since the spatial transport effects are solved for

separately. Another possibility is the reformulation of the split

equations into the more general relativistic forms which would

account for the test particle’s mass increase at velocities near the

speed of light. This extension would be useful for solving transport

problems involving test particles at MeV and higher energies and in

problems of electron transport in general.

Finally, the inclusion of a magnetic field within this scheme

(or even within any other finite difference scheme) remains to be

done successfully. Although several differencing procedures were

tried, it was found that the acceleration term of the transport

equation could not be difference conservatively i.e., the

conservation of particles would be lost for finite sized intervals on

the velocity space grids. The work carried out by the author was by

no means exhaustive and it remains conceivable that a technique

(perhaps similar to the alpha-coefficient technique in Sn theory) can

be derived to circumvent this problem.

In the next chapter a different numerical approach is developed

to handle Fokker-Planck transport in both field-free and magnetized

plasmas.
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CkMP’L’ERIV

CHARGED PARTICLE TRANSPORT IN A MAGNETIZED PLASMA:

A SIMULATION OF THE FOKKER-PLANCK EQUATION

An Implicit Monte Carlo Technique—

In this chapter, a Monte Carlo technique is developed to

simulate the behavior of test particles as they collisionally

interact with a background plasma. The Monte Carlo procedure is

based upon probabilities derived from the Fokker-Planck equation.

Most simulations to date have focused on the modeling of

collisionless plasmas and the phenomenon associated with them

stemming from self-consistent interaction. In this analysis, the

test particles will not be allowed to perturb the background plasma

and the interaction between them will be ignored such that the

results of these simulations will be equivalent to those obtained by

integrating the linear Fokker-Planck equation. Also, the methods to

be developed here will be applicable to both magnetized and

field-free plasmas as will now be shown.

In this Monte Carlo approach, each test particle from an initial

sample is allowed to change its velocity and position over a time

step according to the collisionless equations of motion. In reality

though, during this time step At, each particle has experienced some .

amount of deflection and some amount of energy loss. The exact

amounts of deflection and energy loss for each particle would be

difficult to obtain since this would mean analyzing each collision in

detail. Clearly this is next to impossible since the microfields

responsible for each instantaneous encounter would have to be

e

—
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ascertained. Instead of trying to analyze the slowing down process

in this manner, the problem can be approached from the point of view

in which the details of each separate collision become unimportant

but where the average values of deflection and energy loss acquired

by the particles after several collisions becomes of interest.

If these expected values are assigned to each particle at the

end of a given time step, then on the average, the particle will slow

down and be deflected in much the same way that would occur if each

collision was analyzed in detail. Clearly, since the particles are

advanced by the collisionless equations of motion, the time steps

must be kept small so that the deflections assigned to them at the

end of a given time step truly reflect the deflection that they have

1 first used such an approachactually acquired. Oliphant and Nielson

in order to calculate the effects of collisions among a single

species plasma on the growth of instabilities. In this work, the

concern will be on the study of transport of fast ions in a

multi-species plasma. In the remainder of this section the equations

of motion that are used to advance the particles will be developed.

The collisionless zeroth order motion of a charged particle

interacting with a magnetic field can be obtained from the Lorentz

equation

dv
‘“:(yxB) ,
dt m –

(4-1)

For a particle streaming in a field-free plasma, Eq. (4-1) can

be quickly integrated to yield

Vav
—

(4-2)
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whereas the dynamical equations for a particle in a constant magnetic

field are obtained by considering the individual components”of

Eq. (4-1) in a given coordinate system. If the constant field lies
A AA

along the z direction of an ;,y,z coordinate system and is given by ~
.

= Bz, the particle will gyrate diamagnetically around field lines

with velocities and orbits given by

Vx = Vlcosuct = vlsinuct
‘Y

=
‘z vZo

(4-3)

X-x. = rlsinact Y-YO = rlcosuct z ‘v Zot + 20

where V1 = (v~o+ v~o)l/2, Wc is the cyclotron frequency ZeB/m and rl

= vll~c is the gyroradius.

Hoclcney2first introduced a finite difference approximation of

Eq. (4-2) that would insure that the orbits obtained for particles

gyrating in a constant magnetic field, projected on a plane

perpendicular to the field, would close upon themselves as circles

with the correct gyrofrequency. This leap-frog scheme is given as

v(t+At) - v(t).——-— .———
At

~(t+At) - ~(t)

At

(4-4)

= y(t+At)

where a = tan(wcAt/2)/(ucAt/2) and At is the computer time step.

In the following section, cylindrical configuration space

coordinates and spherical velocity space coordinates will be used to
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describe a particle’s position and velocity. These systems are shown

. in Fig. 16 from which the components can be seen to be

x = rcos~ v~ = vsine cosm

y = rsin$ = vsine sino
‘Y

z-z = VCOS8 .‘z

In these coordinate sytems Eqs. (4-4) take the component forms

(4-5)

v=x

‘Y =

v=z

[1 - (ucaAt/2)2]vxo+ ucaAtvyo

[1 + (ucaAt/2)2]

[1 - (wcaAt/2)2]vyo - ucaAtvxo

[1 +(ucaAt/2)2]

‘Zo

:

/

J
I

I
I
I
I

/%=+--

(4-6)

~ - Specs y- space

Fig. 16.--Coordinate systems for particle simulation
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and

x = Atvx + X.

Y = Atvy + y. (4-7)

z = Atvz + z. .

Eqs. (4-2), (4-6) and (4-7) constitute the governing dynamical

equations which will describe the motion of test particles in between

collision events.

The

O in the

equation

deflects

equation

Collision Probabilities

expected time in which a test particle deflects by an angle

laboratory frame can be calculated from the Fokker-Planck

and in particular, the time in which a test particle

by 90° can be calculated by taking the v$ moment of the FP

and then defining

av~
Td = V2/(—) .

at

This is the well known “deflection time” where .

(4-8)

(4-9)

and where the distribution of test particles at t=O is assumed to

have the form fa(x,v,t=O) = na(~,t=O)6(~ - >) and where the——

background distributions are taken to be Maxwellian. Montgomery and

Tidman3 give ‘d as
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+ (~ + abv2)erf(a~’2v)l} (4-lo)

where Y = noe4Z2/4n~~m2 and no is the background plasma density and

where ab = mb/2kTb. If the derivative in this expression is

performed, one obtains the working form of the deflection time as

(4-11)

The relaxation time for an accumulated deflection and O (e < 900) is

then determined by4

‘c) = Tdt3in20 . (4-12)

The number of

expected amount

NQ = At/~e

times that a test particle is deflected by this

in a given time step is then simply

(4-13)

so that at the end of that time step the particle is forced to change

direction by an amount NQO@. Note that the angle @ can be fixed to

be any value between 0° and 90°. Note also that the value of NQ as
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computed from Eq. (4-13) may not be an integer. Integer values of

the number of deflections to occur in a time step can be obtained

though by a simple Monte Carlo selection which will not bias the

results of Eq. (4-13) over many time steps. AS is shown in Fig. 17

if I represents an integer just below N@ and 1+1 one just above, a

random number & can be used to determine what integer value to use in

the calculation as

ifG<(NO- 1) choose 1+1 .,

(4-14)

C>(Ne- 1) choose I .

Once the integer number of @ deflections has been determined, each

deflection can be performed in a simple velocity space coordinate

Performl deflections

1+1

Perform 1+1 deflections

Fig. 17.--Method for determj.ningthe integer number
of @ deflections to be performed
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system i?’,~’’,;” in which the pre-collision velocity vector xi lies

along the i?’axis (Fig. 18). The transformations from the laboratory

system to the

two steps.

which it l“ies

system. This

double primed coordinate system can be accomplished in

First, the initial velocity is rotated into a frame in

in a plane formed by the ;’~’ vectors of an ;“,~-,i’

transformation is easily shown to be

(4-15)

v~ = vxcosu + v sinu
Y

~ = -Vxsin~ + v cos~
‘Y Y

v; = v=

From this system, the velocity can then be transformed easily into an
A!lx ‘“ system,j?’,z in which it lies along the f“ axis with the

transformation equations

v~ = v~cose + v~sine

= v’
‘; Y

(4-16)
Vll= -v”sin6 + V~COSQ
z z

where e is the angle through which the f’,i’,~’ system would have to

be rotated so as

In order to

velocity vector

random azimuthal

to lie along the <“,~’’,i”system.

perform the @ deflection in the simple system, the

is first rotated @ onto the ~“~” plane. Then a

direction is chosen as $ = 2n( where 6 is a random

number. The final velocity’s components in that frame are then given

by

v“~f = V~iCOS@

V;f = V’~iSinQCOS6

‘;f = V’~iSin@sin~ .

(4-17)
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The transformations back to the laboratory system shown in

Fig. 16 can easily be accomplished by changing the transformation

angles to their negatives so that

and finally

= v~cos~ - v’sinu‘x Y

= v~sinu + v’cosu
‘Y Y

v= = v’z“

. ..

PrQ-cWision

Fig. 18.--The pre and
xi and ~f

(4-19)

(4-18)

Post-collision

post-collision velocities
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In these calculations, only the direction of the velocity vector

is altered according to the amount dictated by Eq. (4-13) while its

magnitude is kept constant. The next section describes how this

magnitude is changed, again according to an expectation value

calculated from the FP equation.

Energy Deposition

The expected amount of energy lost by a test particle as it

scatters on a background plasma within a given time step can also be

calculated from the Fokker-Planck equation as

AE=At$=_l&
TE (4-20)

where ‘E is the “energy exchange” time and is also given in Ref. 3 as

1/2”)erf(ab

‘E = -v2/Y~ln~Z~{2v~[(l+$)— v 1

If the derivatives in this expression are taken, the final working

form can be shown to be

l/2e‘abv2

1

4ab
TE - -v2/y ln~Z~{[l+~)

=1/2

%?)} .- ~rf(ab
mbv

(4-22)
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The new velocity magnitude at the end of a time step can then be

calculated from the expression for energy conservation as

Enew ‘Eo~d-& . (4-23)

As the energy of the test particles is lost to the background plasma

in time, it is partitioned to each of the background species present.

This partitioning can also be obtained from the energy exchange time

since it can written as the sum of a number of terms corresponding to

the number of background species present. In the case of slowing

down on a two component plasma consisting of electrons and ions

‘E = ‘i + ‘e (4-24)

Such that the percent energy partitioned to each species can be

obtained as

% to ions = (1 - ~e/TE)~ (4-25)

% to electrons = (1 - Ti/TE)~ . (4-26)

In this algorithm the energy

for a test particle when

corresponding to the thermal

‘ith= (&)l’2-.

deposition calculation is discontinued

its velocity has reached the value

velocity at the background temperature

(4-27)

At this velocity, if the particle is still within the system, it is
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still allowed to collide (change directions) although it no longer

deposits energy.

The spatial zoning increment Ar is fixed at the begining of the

program such that the zone in which a particle deposits its energy

can be obtained from the expression

(X2 +yqlfz + ~ ()
i= — .——.

Ar
. . (4-28)

It is noted that the computer will determine the zone number as an

integer with the above expression. If “i” is found to be greater

than the total number of zones in the system, the particle is

considered lost.

Results——.

The results obtained for transport problems with the method

detailed above can be compared to those obtained with the matrix

factorization method for the case of transport in a field-free

cylindrical plasma. In order to make this comparison, once again

consider the example of an initial burst of 3.5 MeV alpha particles

emitted from the origin, slowing down in a D-T plasma at density 5.12

x 1028m-3 and at a temperature of 50 keV. Again Ar = 7.742 x 10-3m.

The deposition profiles generated by the Monte Carlo technique are

shown in Figs. 19 and 20 and are compared to those obtained by

CYTRAN. In the MC method the scattering angle was set to be O = 5°

and 500 particles were generated in random directions at t=O at the

origin in order to simulate an initially isotropic delta distribution

function. It was found that the results obtained by the MC method

were fairly insensitive to the choice of scattering angle O as long

as it was kept to within small values (O C 100). In all of the

examples to follow G will be set to 5°.
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Fig. 19.--Fractional deposition per zone to electrons as
calculated by Monte Carlo and CYTRAN
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Fig. 20.--Fractional deposition per zone to ions as
calculated by Monte Carlo and CYTRAN
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For the case of deposition to electrons [Fig. 19] it is seen

that the results are in good agreement except for the deposition in

the first zone. The MC method predicts higher deposition there but

it should be remembered, as was shown in Figs. 16 and 17, that many x

angle intervals are necessary in CYTRAN to predict the particle

behavior correctly. In Fig. 16 as these intervals were increased, so

did the deposition in the first zone. In the case of deposition to

ions, the results are again in roughly good agreement [Fig. 201. In

Fig. 15, as the number of x intervals in CYTRAN is increased to 16 it

is seen that the deposition in the first zones increases and that the

deposition in the peak zones diminishes to values near those

predicted by MC. In both cases of deposition to electrons and ions,

the MC method brings the particles to an abrupt halt before CYTRAN

does. It is believed that the slight tails on the profiles generated

by CYTRAN are a result of the smoothing that occurs in the finite

difference approach.

Fig. 21 shows the tracks of the first 50 alpha particles that

were followed in the example described above. Each dot represents

the position of a given particle at the end of a time step projected

onto the x-y plane at z = O. It can be seen that the dots on a given

path grow closer together as the particles slow down and deflect

while they scatter on the background plasma. From the same figure,

it is noted that the RMS deflection during their initial flight is

very small and the appreciable deflection does not occur until the

particles are almost thermal. From this information it is verified

that the discrete mesh in x space of CYTRAN would indeed need many

intervals in order to resolve these slight deflections.

In Fig. 22 the time history of the deposition to each of the

species is shown. Note that the deposition rate is greater on

electrons initially and that not until the alpha particles have

slowed somewhat do they begin to lose more energy to the background

ions. In the examples above the time step At was initially set to TS

x 10-2 where ~ is the slowing down time for 3.5 MeV alpha particless
on 50 keV electrons (8.47 x 10-9sec) but it was adjusted such that At
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was always < TE/50. In this way, the amount of energy deposited per

time step would always be tractable and the number of collisions per

time step per particle would remain small. As was explained earlier,

this time step control is also necessary in order to show the true

amount of deflection for each particle on the scatter plots.

Although the deposition information in the plots above were obtained

for an initial sample of 500 particles, the computer runs consumed

only about 1 minute of CPU time. It was found that good results

could be obtained with samples as low as 100 particles in which case

only about 10 sees. of CPU time was needed.

In the following examples the same test problem described above

(3.5 MeV alpha particles born at the origin) is used as a basis for

cases in which an external magnetic field is activated. Here the

field will always lie along the z axis. In Fig. 23, the orbits of

the first ten (out of 500) particles are shown for a case in which

the magnetic induction was set as b = 20 tesla but for which the

plasmas were made collisionless. Here the paths of the test

particles are just the orbit solutions of Hockney’s equations

Eqs. (4-6) and (4-7). It is seen that the particles retrace their

circular paths without deflection with a maximum gyroradius vi/tic =

0.01347m as can be verified in the figure. The smaller circular

orbits are, of course, the projections on the x-y plane of the orbits

of particles that had higher initial velocity components along the ;

direction. When collisions are allowed to occur, these orbits should

deviate from their circular paths and furthermore, the gyroradii of

the particles should decrease in time since their perpendicular

velocity is being reduced as they lose energy to the background.

Fig. 24 shows the same orbits of particles as in Fig. 23 but with

collisions being allowed to occur. It is seen that the circular

orbits degenerate as the particles lose their energy and that the

radii of curvature indeed become extremely small and distorted as

they near thermalization. The magnetic field should inhibit the

flight of particles out of the system so that their energy is more

locally deposited in the zones about their orbits. This is verified
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in Fig. 25 which shows much higher deposition to both electrons and

ions in the first zones. In Figs. 26, 27, 28., and 29, the same

graphs are shown for the cases in which the induction as set as B=1O

tesla and B=.01 tesla. It is seen that the deposition profiles

expand as the field strength decreases and that in the case of a weak

field (B=.01 tesla) the results are almost identical to the

field-free case. In all of these examples the initial time step was

also taken to be TS x 10-2 and each consumed approximately 1 minute

of CPU time.
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A Treatment of Nuclear Scatterin~——.

As an energetic ion transports through a background plasma, it

deflects and loses energy primarily as the result of many small angle

collisions “I.e., encounters with the fluctuatingmicrofields of the

background particles in its vicinity. The amount of energy that it

transfers to either the background ions or electrons depends on the

velocity of the test particle relative to the background particles’

velocities. In any case, although the amount of energy lost by the

test particle in a given period of time is a statistical quantity, an

average or expected amount of energy lost in this process can be

calculated for that period of time. As was shown in the last

section, this energy exchange time and other characteristic

interaction times can be used to predict the dynamical behavior of

the test particles.

A phenomenon which also occurs in the collisional transport

process is the direct binary interaction between the test ions and

the background ions which result in the test particle’s deflection

through large laboratory angles. For this case, the amount of energy

lost by a test particle can take on a wide range of values which

depend on the details of the collision. As such, characteristic

times cannot be used to predict the dynamical state of a particle at

the end of a given time period and only a detailed analysis of each

large angle collision occuring in

determine that state.

The probability that a test ion

in a given computer time step,

following analysis. If P(dt) is the

that time step will suffice to

suffers a large angle collision

At, can be determined from the

probability that a test particle

enters a large angle collision in a time interval dt, then

P(dt) =:
c

(4-29)
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where dt will be restricted as dt c tc and where t= is defined as the

large angle collision time by

t= =
-+ “v total

(4-30)

Here v is the pre-collision velocity of the test particle and ltota~

is the macroscopic cross section niU(E) where ni is the background

ion density and where c(E) is the center of mass angle integrated

cross section for large angle scattering at energy E. The energy E

in 6(E) is the energy available for a nuclear reaction to take place

i.e, E-E ~m + Q where Ecm is the total kinetic energy in the center

of mass and Q is difference between the final and initial laboratory

kinetic energies. Since the processes to be considered here will

always be elastic collisions, Q will always.be identically equal to

zero. In order to determine E = Ecm, a collision partner will always

be sampled for from the background Maxwellian ion distribution such

that Ecm = ~lJ V22 ab rel can be calculated.

The cross section (s(E)is given by

11

u(E) = 2m~eo C(E,e)sin6 de (4-31)

where 00 is the cutoff angle which will define the onset of large

angle scattering. In this work e. will be set to 5°. Note that the

upper limit on the integral of Eq. (4-31) will be T/2 instead of n

for collisions occuring between identical particles.

The probability that the test ion will survive without collision

in the first time interval is then [1 - P(dt)]. Hence, the

probability that it survives without collision during n time

intervals is [1 - P(dt)ln. Here t=nodt so that this probability can

be rewritten in the form
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[1 - P(dt)]n = [1 -~]n . (4-32)

If the quantities I=-t/tc and m=n/1 are defined, Eq. (4-32) takes the

form

[1 - P(dt)ln = [(1 +~)m]l .
m

(4-33)

Now if the limit of small time intervals is taken i.e., dt + O, since

t=n“dt, n must approach = for t to remain the same. From the

definition of m, this limit also-implies that m + ~. Recall that the

base e of the natural logarithm is defined as

e =:i~ (1 +.l-)m
m

(4-34)

so that the probability that no collision occurs in time t can now be

obtained from Eq. (4-33) as

1 -t/tc
=ee . (4-35)

From this expression then, the probability R(t) that a test particle

does suffer a large angle collision during time t is then simply

given by

-tltc
R(t) =l-e .

The time t in this equation

step At such that it will give

(4-36)

can be set equal to the computer time

the probability that a test ion
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suffers a large angle collision in At. Note that if it is agreed

from here on that the maximum number of large angle (la.) collisions

per test ion per time step is to be limited to one, then Eq. (4-36)

can be used to determine whether or not a collision occurs. This is

done by sampling the interval O < R(t) < 1 with a random number. The

reason for limiting the number of collisions to one is that again,

the equations of collisionless motion are used to move the particles

through a distance Ar_in the time step At after which a new velocity

is assigned to them. This new velocity is the post collision

velocity which may have a vastly different direcion and magnitude

than the pre-colision velocity. In order for this type of analysis

to be realistic, the distance traveled in the time At must be kept

small. In order to insure that this is the case, the ratio of At/tc

is kept small throughout the calculation. Normally this ratio itself

would give the expected number of la. collisions per time step but

since this number is being restricted here to a maximum of unity,

sampling for the occurance of a la. collision in the interval O <

At/tc < 1 is equivalent to sampling in the interval O c R(t) < 1 as

will be done in this work (to see this, merely expand the exponential

inEq. (4-36)).

If it has been determined that a test ion does indeed collide

with its collision partner, its energy and direction are modified

most conveniently in the center of mass (cm.) system. In this

system the cm. scattering angle 0 of the test ion is the only

quantity that need be obtained since it is known that the recoil

particle’s final cm. velocity will be oppositely directed. The

cm. scattering ang1e can be sampled for from its distribution

function as

0

~= --$&Jf30”(E,e)sinede (4-37)

where ~ is a random number and E is now the energy available for

reaction ~P v=‘“e”’ 2 ab rel” This expression implicitly determines the
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scattering angle since Cu(e) is now the integrated cross section for

scattering through angles between O. and 8. In reality though. since

the cross sections are tabulated in various bins Oi for a given

reaction energy as

7r

21TJ6u(E,O) sine d9 (4-38)
i

the scattering angle can be sampled for by the formula

7r

2TJe U(E,e) sinf3 de = U(e)(l - 5) . (4-39)

The L.H.S. of Eq. (4-39) is recognized as the cross section for

scattering into cm. angles greater that or equal to e. Once this

random cross section is determined, it can be compared to the

tabulated cross sections. It will usually lie between those

tabulated at some ei and ei+l. A simple linear interpolation is then

used to obtain the final cm. scattering angle. In the cm.

system, the initial and final magnitudes of the test particles

velocity with respect to the cm. are not affected by an elastic

collision but its direction is changed through the cm. angles 0 and

B. The cm. scattering angle e determined previously is the angle

between the initial and final lines of flight of the test particle in

the cm. system while 6 is the cm. azimuthal scattering angle.

The deflection of the test particle in the cm. system can be

performed in the more convenient coordinate system referred to

earlier in which the pre-collision cm. velocity is allowed to lie

along an ;“ axis [Fig. 18]. This velocity is then rotated onto the
AA
x“y” plane by the amount e. A random azimuthal cm. angle 0 = 211~

is then chosen in order to place the final cm. velocity randomly on

the e cone centered along the x“ axis. After this velocity is

transformed back into the original velocity space system, the cm.

velocity Vcm is added to it to give the final velocity in the

●
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laboratory system. This is the velocity that is assigned to the test

particle at the end of a time step.

As in the case of transport with only small angle scattering, a

particle which leaves the boundaries of the system is considered

lost. Otherwise, it is allowed to deposit the amount of energy lost

in the collision to the recoil particle. This recoil energy is

usually non-negligible and as such, a proper treatment of charged

particle transport for cases in which these nuclear elastic processes

are taken into account, should provide for the transport of the

recoil particles also. In the method used here, all of the recoil

particles are transported from their point of origin along with the

original particles, begining at the time step after the one in which

they were created. The method is kept efficient though, by ignoring

the lowest energy recoil particles. This is done by discriminating

against those collisions which produce only slight test particle

laboratory scattering angles. In this way only those recoil

particles whose energies may significantly affect the deposition

rates and profiles are followed in time. In all of the examples to

follow, this angle discriminator will be set to allow the transport

of recoil particles only if the original projectile is deflected by

more than 10° in the laboratory system.

Results

In the first few examples to follow, the transport of 4.S MeV

deuterons in a field free spherical system will be considered. A

spherical background deuterium plasma will be taken to have a density

of l,28x1028m-3 and varying electron temperatures. The background

ion temperatures will be set to values 50% greater than the electron

temperatures in order to be able to compare the results with those

obtained by Evans in Reference 6. In Ref. 6, the transport of

charged particles in field free spherical deuterium plasmas is

treated by an explicit Monte Carlo method i.e., by a method which

transports one particle at a time until it either leaves the system
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or until it thermalizes and becomes uninteresting.

the zoning used in Ref. 6, the spherical shell

first example will be set as Ar=.02m. In Fig. 30

In order to match

zone widths in the

the fraction of

initial energy deposited per zone to both the background ions and

electrons (total) is given as a function of radius for a case in

which the electron temperature was taken to be 75 keV.. It is seen

that the inclusion of Coulomb-nuclear scattering (Monte Carlo) in

this high temperature plasma has a significant effect on the

deposition profile when compared to the profile generated by

considering only small angle scattering (Rutherford). The results

obtained here are seen to be in very good agreement with those

obtained by Evans who also included Coulomb-nuclear processes in his

calculation. The initial sample was comprised of 200 4.5 MeV

deuterons originating from the center of sphere at t=O in random

directions. It was found that this 200 particle initial sample was

usually ‘sufficient to reproduce published results for cases in which
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Fig. 30.--Fractional energy loss per zone for both
small and large angle scattering in a 75 keV plasma
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only small angle scattering is accounted for [cf. Ref. 61. It

should be recalled though, that for runs in which the large angle

scattering is activated, many recoil particles are created which are

also transported along with the original sample. These additional

knock-ons should then be expected to help improve the statistics of

the problem. The fact that the results obtained by Evans, who used a

10,000 particle initial sample, are in good agreement with this

method’s results, seems to verify this.

In Figs. 31 and 32, the fractional deposition profiles are given

for the cases in which the background electron temperatures are taken

to be 25 and 10 keV respectively. In Fig. 31 the zone width was set

as 7.5x10-3m while in Fig. 32 the zone width is equal to 2.5X10-31D.

From these figures it can be seen that as the plasma temperatures are

lowered while keeping the initial test deuteron’s energy constant

(4.5 MeV), the effects from large angle scattering processes

diminish. In the case where Te=10 keV, the profiles given for small

and large angle scattering are seen to converge. From this

information it can be surmised that in low temperatures deuterium

plasmas, one can ignore the la. scattering processes and that the

dominant form of collisional energy loss will come from Rutherford

scattering which is treatable by Fokker-Planck methods. For high

temperature plasmas, the la. scattering mechanism for energy loss

is seen to be extremely important. The change in the shape of the

deposition profiles for these cases as compared to cases in which

only small angle scattering is accounted for is attributable to

higher partitioning of the original sample’s energy to the background

ions. This is, of course, due to the fact that many lower energy

particles are created after large angle collisions which subsequently

collide more frequently with the background ions that have lower

thermal velocities than the background electrons.

In the following examples the transport of 4.5 MeV deuterons on

a background plasma at a density of 5.12x1028m-3 and at Te=75 keV

will again be considered but with the configuration geometry now

being taken to be cylindrical. The zone size in the remaining
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examples will be Ar=.02m. In Figs. 33 and 34, the deposition

profiles are shown for the case of field free transport in an

infinite cylindrical plasma. Fig. 33 shows the partitioning of the

fraction of initial deuteron energy per zone to the background

electrons and ions as a function of radius for a case in which only

small angle scattering is considered. From the experience with the

previous examples though, it can be expected that the inclusion of

lea. scattering should have a significant effect on the deposition

profile. In Fig. 34 the fractional deposition per zone to both ions

and electrons is shown for a computer run in which the la.

scattering was included. The deposition profile is seen to be

shifted to the left with a maximum occuring in the first few zones,

indicating large energy losses in the accompanying la. scatter

events occuring early on as the test particles move along their

paths. This trend was also seen in the examples of transport in

spherical systems. If an externally generated magnetic field is now

0.10-

—On ions

,-....On electrons

.
..7

L.-
.-=

-- 1
L-a

L.m
L-=

L--,

0.00
L-.

I 1 1 I I 8 1 1 I t I t I 1 1 I 1 I 1
0123466709 1011 C?131416I6V161O

Zone

Fig. 33. --Fractional deposition per zone on ions and electrons
for small angle scattering in a 75 keV plasma
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Fig. 34. --Fractional deposition per zone for both
small and large angle scattering in a 75 keV plasma

imposed on this cylindrical system such that it lies uniformly along

the i direction, the test particles will then gyrate about the field

lines as they scatter and lose energy by both small angle (s.a.) and

la. collisions in the 75 keV plasma. When the s.a. and la.

collision routines are turned off, the particles gyrate in closed

circular paths as shown in Fig. 35 for a case in which the magnetic

induction was taken to be 5 tesla. Here the orbits of the first ten

out of an initial 200 particle sample are shown. When the small

angle scattering routines are reactivated, the particle tracks shown

in Fig. 36 are obtained. It is seen that the deterioration of the

orbits as the particle loses small amounts of energy in these

collisions, is gradual. For this example, it is seen that noticeable

deflection does not occur even through almost half of a gyroperiod.

Eventually, though , when the particles begin to lose more energy to

the ions, the orbits are seen to degenerate more quickly as the

particles tend toward equilibrium. Fig. 37 shows that the deposition

profiles for this case are much more localized, as would be expected
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for cases in which magnetic fields are used to confine particles. If

the la. scattering routines are now activated along with the s.a.

routines, the particle tracks shown in Fig. 38 are obtained. It is

seen that the orbits degenerate much more quickly. This is possible

because each of the test particles can now lose large amounts of

perpendicular (and parallel) energy in the la. collsions that they

encounter. The corresponding deposition profiles showing the

partitioning of the fraction of initial energy per zone to the

background ions and electons is shown in Fig. 39.

Conclusions

For the case of Fokker-Planck slowing down i.e., for collisional

transport in the small angle scattering approximation, it has been

shown that a Monte Carlo treatment of the collsions physics based on

the expected values of the energy exchange and deflection times

yields results which are in good agreement with those obtained by a
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finite difference technique. This Monte Carlo treatment allows the

calculation of transport processes in both field free and magnetized

plasmas.

The results of the transport of alpha particles in a magnetic

field are verified by their agreement with those obtained in a field

free mode in the limit of weak magnetic induction. For the case of

transport in strong magnetic fields, it has been shown that the fast

ions deposit their energy almost entirely in regions near their

original orbits as expected, due to the confining effect of the

magnetic field. In both cases of field free and magnetized

transport, the calculations were carried out in a minimum of CPU

time. This makes this method attractive for use both as a code in

itself to determine deposition profiles and stopping lengths and also

as a package which may be installed in larger time dependent

magnetohydrodynamic codes in which charged particle heating effects

are often needed.

It has also been shown that the inclusion of Coulomb-nuclear

elastic scattering processes is of vital importance in the analysis

of transport in high temperature plasmas. For plasma temperatures

above approximately 10 keV, the effects from these large angle

scattering events become noticeable and at higher temperatures, they

may become a dominant mechanism for energy loss.

Various possibilities exist for the extension of these methods.

One straightforward application would be found in the study of

diffusion phenomenon in field free and magnetized plasmas. For this

case, transport coefficients could be obtained which could then be

compared to those calculated analytically and further, they may also

be obtained in domains of temperatures and densities in which

analytic results are scarce. Another possibility lies in the

extension of this linear method to a form which is self-consistent.

Again, since the particle advancement here is implicit, at the end of

a given time step, the self-consistent fields generated by the

particles themselves could be calculated. This extension would then
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perhaps be a basis for the study of the effects of collisions on

instabilities and other collective phenomenon.
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APPENDIX A

THE LANDAU-FOKKER-PLANCKTERM IN

SPHERICAL VELOCITY SPACE

In Chapter II the Landau-Fokker-Planck collision term is given

by Eqs. (2-30) and (2-31) as

where

i

NOTO ~ Aa .
1 iaajf3xJ1 = rab-c3- b Ab

‘z {—faa=~b,a - ~

o

(A-1)

(A-2)

Eq. (A-2) can be used to calculate the velocity space components of

the collision term in any geometry once the metric tensor aij which

defines the space of interest is specified. The square of the linear

element in a given space defines the metric tensor as

. .d~z = aijdxldxJ . (A-3)

From Fig. 40 the lengths of the sides of the volume element d~ in a

spherical velocity space are easily seen to be dv, vdB/(1-D2)1/2, and

v(l-p2)1’2do so that the metric tensor takes the form

—
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(A-4)

the

the

The only non-trivial relations needed to calculate the Ji are

expressions for the second covarient derivatives of Kb(~) and for

Riemann-Christoffel tensor RyBaj . These are given by
.

‘b$ji a2.Kb -
= ‘b’ij = lJ

$( ajain + a.a. - anaij)Kb,m

I Jn

A
r~

Cos-’p

b

(A-5)

Fig. 40.--The volume element for a spherical
velocity space
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and

~1, = an%~!(apajm.Jnp + a.aJ pm - amajp)

~ &( anajm
P2

+ a.aJ nm - amajn)

+ $( a~anm a~o( apajo
+ ana~m - aman~)—

+ i3. a
- aoajp)J pO (A-6)

alm
a~o( anajo- -# a~apm + apa~m - amap~ )— + a.a

- aoajn) .

J no

Here a. means
J

the partial derivative with respect to the jth

component. Although Eq. (A-6) appears to be cumbersome, it is easily

evaluated for this geometry (or any geometry with a diagonal metric

tensor) since + 6..a..aij lJ lJ”
A useful property of the RC tensor is

that R~lnp = O. With these relations, the elements of Eq. (A-2) can

be calculated to yield

K,ll
a2K a2K=—— , K,12 = ~---~,
av2

a2K
K,13 = =- %, K,22

a2K v aK P aK
=— +

(l-vZ)* ‘—-—–
(A-7)

a~2 (@)aB

For this geometry,the elements of the RC tensor are easily shown to

all be identically zero. Hence, using Eqs. (A-2) and (A-7), the

first component of ~ can be written down as
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i

NT Aa
Jv = rab 0 ‘Z~{AbfaallLb,l

~:

(A-8)

and by performing the indicated sums over the repeated indices

+ (1-p2)afa a2Kb
(— - ;!$) +

af a2Kb

V2 au avap —l.--–-:(--– -:a::)l}. (A-g)“2(l_D2) a~ ava~

Similarly, the P and w components can be calculated to be

1!
NOTO ~Aa (1-B2)a~ - (1-P2)

Jp = ‘ab~b{~fa V2 aV [~3
o

2V2

afa a2Kb
~) , ~-B2)afa[a2Kb

aKbaKb _.._—
—(—- ‘--— + v P
av avap

—. -— -
V2 a~ 2V2

)
(1-IJ2)b (1-#) au

1 afa a2Kb
—(—

v
+ v2(~-#) aKb)l}au apaw+ ~1-B2) au

(A-1O)

1
NOTO ~Aa 1 a%

Jw = 1
[rab~b{—fa 2

~~ ‘b V (l-#)aw 2v2(i-?)
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afa a2Kb
_.$~!?]+ (1-V*)8f 82Kb

aKb

‘~(%am v“*-
a(ap apa~

+ — !-.__)
(1-B2) au

1 afa 82Kb
—(.— + .(l-#!l -

+ ~& au a$ av :;)1} .11(1-11*)— (A-n)

When the Rosenbluth potentials Kb(~) and Lb(x) are isotropic i.e.,

when the background distributions fb are isotropic, the components

simplify to

(A-12)

(A-13)

(A-14)
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APPENDIX B

THE TRANSPORT EQUATION IN SPHERICAL

AND CYLINDRICAL GEOMETRIES

In order to use Eq. (2-30) in curved geometries, the appropriate

forms of y“Vf must be used. Although these forms are available in a

variety of texts, their derivation is often omitted. In this

appendix a somewhat non-conventional derivation of the form of V.vf

is given for both spherical and cylindrical coordinates.

Since in an Eulerian descriptionof a system the observer is not

confined to move with a particle but rather chooses his own vantage

point, _V.vf = V*vf i.e., ~ is not related to r as ;. One—

complicating aspect of curved geometries is that the coordinates of v

with respect to its basis vectors in velocity space change as the

particle streams in coordinate space thus giving the appearance that

v is related to r.— —

v*Vf in Spherical Coordinates—— ---- —

In Fig. 41 the orthonormal basis vectors ;,~,~ in configuration

space and the e,$,~ basis vectors in velocity space are shown for a

spherical coordinate system in both configuration and velocity space.

Here u is the angle between the ;e and k“ planes while COS-lP defines

the angle between the ~ and flvectors. It is easily seen that as a

particle streams in the direction Q, the O,g,; triple will

continuously change its attitude with respect to Q if the vector r

follows the path of that particle. Hence, both M and w will change

as 6 and $ change. In order to account for this in the gradient

term, the partial derivatives are written as
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Fig. 41.--The spherical coordinate systems for a particle
described by the vectors r in configuration
space and ~ in

The problem of obtaining ~“vf,
av au ap
ax, and ~~

$G’ a;’ ‘“
In order

can be performed.

The unit vector ~ in Fig.

velocity space

(B-1)

then, is in obtaining the quantities

to obtain these the following analysis

41 can be decomposed in terms of its

components along the Q,$,$ basis vectors by defining the projections

along these as

~ = eon = (@)l/2cogo

(=q.Q= (1-~2)1/2sinQ

(B-2)

(B-3)

—
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Note from the same figure that the components of the e,+,; vectors

along the ~,~,; vectors are given by

e = COS9 cos$i?+ COS6 sin@ - sin8; (B-5)

@ = -sin@fi+ COS*A + 02 (B-6)

f = sinO cos$il+ sine sin~ + COS8; . (B-7)

Further, if the direction cosines of ~ along the i?,~,;were known to

be .S1,C2, and C3, the projections of ~, 6, and 11 along these axes

would then be

n = c1cos6 COS$ + E2sin@ cose -c3sinfJ (B-8)

(B-9)~ x -Clsin$ + e2cos$

v = clsine cos$ + c2sin9 sin$ + C3COS8 (B-1O)

Taking differentials of these last three expressions leads to the

relations

dn = CcOse d$ - tie (B-n)

(B-12)d~ = -(clcos$+ S2sin$)d@

d~= ?Ide+ Esine d$ (B-13)

and by using the definitions of n and E given in Eqs. (B-2) and

(B-3), it is found that
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~=n=
(1-u2)l/2coskl

dtl

Cg . ~6infl .

d$
(1-~2)1/2sin0 sine

du._..–*”?
de (1-#) 1/2

(B-14)

(B-15)

(B-16)

●

(B-17)

One further item to be noted is that whenever an operator in a

given space S acts on quantities defined in another space T, the

physical components of those T quantities in the space S must be

determined. In this case, the operation is the dot product of Q and

v. The physical components of ~ are given by

~r=v

Qe= (1-~2)1/2cosU/r

Q+ . (1-1~2)1/2sinU/rsine

(B-18)

(B-19)

(B-20)

where the definition of the physical components of the velocity

vector fl in configuration space has been used. This definition has

the form

$-space~i
r-space =—

(aii)l/2

(B-21)

where aii is the well known metric tensor of a spherical

configuration space and is given by
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()
1 0 0

a= o rz O .=

o 0 r2sin28

(B-22)

I

●

Using Eqs. (B-14)-(B-17) and (B-15)-(B-20) in Eq. (B-1), Q.vf

can be shown to be

Q*vf = g + (1-112)1/2c.os@f+ (1-u2)l/2cos2waf
r ‘aT

..—
r au

+ pl”gsin~u + (1-U2)l/2sinuaf “ 2~af
r

+ (1-B2)l/2sln
~n~ T=

cotfJ(l-p2)l/2sinuaf win cos~af
-u - rau” (B-23)

I

I

I

By further using the relations

(1-V2)1/2cosua(fsintl)= (1-U2)1/2cosuaf
rsinO ae r ae

+ (1-v2)l/2cosu.l
fcote

r

and

cot6a[f(l-p2)1/2sineJ= ~ote(l-B2)l/2sinuaf—
r ae r ati

(B-24)

(B-25)
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+ cote(l-u*)l/*
—fcosu,

r
(B-26)

~*Vf can be

V.vf =—

+

computed in its conservative form as

v(l-u2)1/2cosaa(fsine)
rsin8 aO

la[(l-~z)f] cOtea[f(l-~2)1/2sinu]
ap ‘7 au

.
r

(B-27)

v“Vf in Cylindrical Coordinates

The orthonormal triple ~,~,; and ;,?,~ for cylindrical geometry

with a spherical velocity space are shown in Fig. 42 for a particle

located at r having unit velocity ~. Here x is ;he angle between the—

f; and O; planes and cos-1P is the angle between the i and flvectors.

It can be seen that as a particle streams in configuration space, the

angle x will change as the angle 0 changes. Hence,

(B-28)

In this
ax

case, — must be calculated.
a~

Following a procedure similar

to the one used in the last section, the projections of $2 on the

F,$,2 vectors are written as

(B-29)

(B-30)
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I

1
I

Fig. 42. --A cylindrical coordinate system in configuration
space wi4h a spherical system in velocity space

p=s2*i?. (B-31)

From Fig. 42 it is also seen that the components of the ~,$,~ vectors

on the i?,~,i?vectors are

where ; remains the sme in both systems. If a and flare the

direction cosines of ~ on the ; and ~ vectors then the projections of

G and ~ along these axes would be

c= acos$ + 6sin$ (B-34)
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n = -asin$ + 13cosI#I. (B-35)

Taking differentials in Eqs. (B-34) and (B-35) yields

dg = rki$ (B-36)

do = -Ed$ . (B-37)

By using the definitions of n and ~ in Eqs. (B-36) and (B-37), after

some algebra, it can be shown that

The physical components of ~ in r space are

w = (1-p2)l/2coSX

n+= (1-~2)1/2sinx/r

Qz=u

so that from Eq. (B-26)

Q.vf = (l_u2)l/2= af (1-B2)1/2sinXaf
Os% + r a+

(1-~)1/2sinxaf af
r ax ‘k

(B-38)

(B-39)

(B-40)

(B-41)

(B-42) *

and with the relations



l~[f(l-V2)1/2sinXl=
r ax

(1-B2)1/2cosX~(rf) =
r &
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(1-k?)l/2sinXaf + f(l-112)1/2cosx
Tx

— (B-43)
r r

(1- V2)H2C Osxf + (l-pz)lfzcosx;:
r

(B-44)

~*Vf can be written in its conservative form as

*
Vovf = v(l-v2)1/2c0sxa(rf) vaIf(l-v2)1/2sinxl— -— r & r ax

+ (1-#)1/2sinXaf af
r a~ ‘k”

.
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APPENDIX C

CALCULATION OF ENERGY DEPOSITION

The time history of the amount of energy deposited by the fast

ions to each component of the background plasma can be obtained by

taking the V2 moment of the Fokker-Planck term of Eq. (3-1). Note

that the terms in the sum on the background species ‘b’ will yield

the deposition rate for each of the species individually.

Consider the definition of the V2 moment of fa given as

<V2>= 4’~;fav4dv
‘a

(c-1 )

where

m

na = 4r~ofav2dv . (c-2)

If fa is a Maxwellian distribution given in scaled variables as

fa = ‘a
=312V3 e

xp(-v%:a)

oa

(c-3)

where Voa = (Ta/Aa)l/2, then Eq. (C-1) can be calculated as

32<V2> = —v =#Ta/Aa)l/2 (c-4)
2 oa

so that
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Ta = $a<V2> . (c-5)

Since the average kinetic energy of

distribution is defined as Ea = 3Ta/2 (in

Ea = Aa<v2> .

With this result, the time rate of energy

plasma can be written as

~Ea(r,t)
=-A jV2(:)cdy

at a

the particles in this

scaled variables),

(c-6)

deposited to the background

(c-7)

where the minus sign indicates that the energy lost by species ‘a’ is

gained by the background plasma. From Eqs. (3-3) and (3-4), it can

be seen that only the Jv component term of [~) will
& c

contribute to

the integral inEq. (C-7) such that

aEa(r,t)

at = ‘Aa~:7&2Jvv4dvdtiX .

This expression can be solved numerically as

1 (v;+l/2J:+l/2
aEa(r,t)

=
at

-Aa~v4dvdMlX [—
AV:13

- v:-1/2J&l/2)1

( C-8)

(c-9)

*
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By using the expressions for Jv
g+l/2 and J&l/2 given in Eqs. (3-22)

and (3-23), the above equation becomes

~Ea(r,t)
f

1
=

at
4~Aa ~ndx~-ldu ~V2 X

~g

Cg-lfz
‘fg-l‘Avg_1,2

cg-1/2
- Bg-1/2&g-l/2]+ fg[Bg+l/26g+l/2 - Av 1,2

g-

cg+u2 -

Avg+1/2
Bg-1/2@g-@l + fg+l[Bg+l/2(1-6g+@

where the integral over speed has been approximated

~V2AV3/3. In the computer codes SFTRAN and CYTRAN,
ggg
over u and x are also done numerically.

(c-lo)

by ~v4dv =

the integrals
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