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THE RANDOM-FORCE METHOD APPLIED TO CALCULATING SHORT-RANGE ATMOSPHERIC DIFFUSION

by

F. A. Gifford

ABSTRACT

The random-force equation, a simplified, stochastic, “
Lagrangian equation for the lateral component of the motion
of a diffusing air particle, is applied to the analysis of
short-range, short-time-averaged, horizontal atmospheric
diffusion data. The velocity autocovariance and the
velocity variance of the diffusing particle are derived and
found to vary with the diffusion time, t. The normalized
velocity autocorrelation function formed from these
quantities is found to be a stationary exponential function
of lag time. The corresponding energy spectrum of the
particle’s motion has the form of (frequency)-2, over a
broad high-frequency range. All these particle statistics,
as well as the root mean square displacement of the
particle about its mean position, i.e., the instantaneous
plume spreading, oy(t), depend on three atmospheric flow

7- the Lagrangianparameters: the total turbulent energy, v ,

integral time scale, ‘L; and the initial velocity of the
particle at the source point, Voo By the

~;~gi::er aequation for u and the variance function, av
time equal toy;hat of the standard, low-level, short-range
atmospheric diffusion experiments, an analytical expression
is deduced for the “plume shape-factor,” fl, in the
equation u = Uvtfl, which has often been used to correlate
the result~ of such experiments. This is compared with the

f -curve determined empirically from the large collection
o4 low-level time-averaged atmospheric diffusion
experiments made by Draxler. By comparing the theoretical
and experimental fl-curves it is shown that the Lagrangian
time scale, tL, is on the order of 104 s and that the
averaging times of these diffusion experiments, 10 minutes
to an hour, was too short to support their interpretation
in terms of fully time-averaged diffusion. The shape of
these time-averaged plumes is shown to have been
intermediate between the instantaneous and fully time-
averaged limits but in this instance rather nearer the
former. From this it is inferred that large-scale,
quasi-horizontal atmospheric turbulent motions influence
the shape and concentration patterns of diffusing plumes in
the planetary boundary layer, even when these are averaged
over time periods of up to an hour. The controlling role
of tropospheric, turbulent, kinetic-energy transfer in this
process is briefly discussed.
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I. INTRODUCTION

The random-force, or Langevin-equation method of calculating particle

diffusion has been shown (Gifford 1981) to compare well with available data on

horizontal diffusion in the atmosphere over a wide range of scales. This

method assumes that an air “particle” obeys the following equation of motion:

dv/dt + 6V = n(t) ; (1)

v is the horizontal (lateral) component of the particle Velocity, ~ ~ tL-l,

where tL is a Lagrangian turbulence th.3-SCde and n is a random acceleration

that is assumed to have a flat spectrum and zero mean. In this simplified

equation of motion, the term 13v represents the local drag force on the

particle, and the random acceleration rIrepresents the effects on the particle

motion that arise from large-scale pressure forces.

The solution to this one-dimensional, linear, stochastic differential

equation is

t

v(t) = V. exp(-f3t)+ exp(-~t)f exp(~~)~(~)d~ . (2)

o

Since v E dy/dt, a second integration provides the lateral particle

displacement, y, from the fixed time or mean-wind axis. This can be squared

and averaged over an ensemble of particles to find the mean-square

displacement, 0$. The good agreement of the resulting expression with

observations of the instantaneous cross-flow spreading of puffs and plumes in

the atmosphere, over a range of time scales from 10 to 107 s, suggests that the

stochastic process represented by Eq. (1) is broadly applicable to atmospheric

diffusion problems. In this report, some further useful statistical quantities

are derived from Eq. (l), including the (one-dimensional) time-dependent

velocity variance, correlation, spectrum, and the time-averaged displacement

variance. These results are then compared with the extensive empirical
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analysis of time-averaged atmospheric horizontal diffusion data that was

performed by Draxler (1976).

So that “he may run who reads it,” a fairly detailed summary of the

following results is included at the end of this report. References to the

very limited amount of literature on the theory of atmospheric diffusion

application of Eq. (1) can be found in Gifford (1981), where the relation of

the random-force equation to Smith’s (1968) linear-velocity hypothesis and to

several recent Monte Carlo studies of atmospheric diffusion was also pointed

out .

II. PROPERTIES OF THE RANDOM-FORCE MODEL

The particle-attached , or Lagrangian correlation for the y-, or cross-flow

component of the motion can be formed directly from Eq. (2) as follows:

v(t)v(t+T) = v: exp(-f3t) exp(-~(t+~)) (3)

t+T

+exp(-f3(2t+~)) Jt J exp13(C+<)n(E)~(C)dEdC

o 0

+ ensemble averages of products involving single integrals .

The overbar indicates ensemble averaging. Single-integral averages all equal

zero because v s O. To evaluate the double-integral term, the new variable

w.~- c is introduced, and this term becomes

t T

exp[-6(2t+’c)] ~ exp(2f3E)d5 ~ A(w)exp(13w)dw .

0 0

The acceleration correlation A depends only on the lag-time w because

stationarity is assumed. It is also assumed that this correlation drops to

zero very rapidly, in a time much less than 6-1 =
‘L “ This proposition can be

argued in various ways, for instance, on the basis that A was assumed to have a

white-noise spectrum. But in the final analysis, it is an assumption that has

to be judged by the quality of agreement of the results with data, which so far

appears to be good. If A drops rapidly enough, the second integral can be
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treated as

Lagrangian

a constant, f’A(w)e6wdw=cl, and the (cross-flow component of)
o

velocity covariance is found to be

v(t)v(t+~) = e-~~{v~ e-26t + (cl/2f3)[l- exp(-213t)]} ; (4)

note that it is time dependent.

The velocity variance is given by Eq. (4) with T = O;

u;(t) = v: exp(-2i3t)+ (cl/2f3) [1 - exp(-26t)] . (5)

Thus , the velocity variance experienced by a diffusing particle is also a

function of time, even in the assumed stationary turbulent flow, and becomes

equa1 to the flow variance, 7= cl/2B, only after a sufficiently long

diffusion time, t, on the order of several tfIUt3S tL.

The constant c1 equals the rate of turbulent kinetic energy transferred to

the particle by the action of large-scale, quasi-horizontal, random atmospheric

motions; cf.Tennekes (1978), Tennekes and Lumley (1972, pp. 20-21). This must,

in turn, be proportional to the average rate of energy dissipation, c, in the

boundary layer, and so

cl=Be= 2%~l,B~l. (6)

In this way Eq. (1) provides the necessary direct linkage between the

small-scale, dissipative, atmospheric motions and the quantities that

characterize the

(1978) obtained

dispersion in

autocorrelation.

largest, integral, or outer turbulence scales. Tennekes

the same result [cf. his Eq. (12)] by evaluating particle

the inertial sub-range and assuming an exponential

Here Eq. (6) follows directly from Eq. (1) for the stochastic

process assumed to govern the entire range of atmospheric diffusive motions.

Thus it appears that the random-force model, Eq. (l), is capable of describing

one of the most fundamental aspects of turbulent kinetic-energy transfer in the
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lower atmosphere, i.e., its flow toward smaller scales from the large-scale

motions and dissipation in the boundary layer.

By forming the quotient of Eqs. (4) and (5), it is found that

v(t)v(t+T)/u:(t) = R(T) = exp(-f3~) and so the Lagrangian particle

autocorrelation function, R, is exponential for the assumed stochastic process

provided that the correlogram, v(t)v(t+~), is normalized with the

time-dependent variance, d:(t). If Eqs. (4) and (5) are averaged over all
—

Tpossible V. values, then v: = v = cl/2~, since all turbulence fluctuations are

in this case accounted for. In this case also, it is seen that v(t)v(t+~)/~ =

R(T) = exp(-f3~). Thus both for a specified initial V. and for V. averaged over

all possible values, an exponential Lagrangian autocorrelation, R, is

determined. This reflects the nature of the assumed stochastic process, Eq.

(l). The difference, which is quite significant for diffusion-modeling

applications, is that in the fully averaged case, which corresponds to the

averaged, Taylor-type of diffusion that is ordinarily assumed in most modeling

applications, the mean-squared particle velocity is constant and equal to the

Tmean-squared flow velocity, v . In contrast, for the unaveraged Vo, which

corresponds to the relative, instantaneous, or “puff’’-type of diffusion, the

variance of the diffusing particles’ velocities, u:(t), is time-dependent, as

shown by Eq. (5). The resulting mean-square displacement relative to an

instantaneous puff or plume centroid exhibits accelerating diffusion behavior,

2 = t3, as is well known.
‘Y

A. The Energy Spectrum

The kinetic-energy spectrum of the horizontal particle motion, ~F(n),

corresponding to an exponential Lagrangian velocity autocorrelation is given by

m

~F(n) = ~+v~
-1

R(t) cos2~ntdt = 4~tL [1 + (2rtLn)2] , (7)

o

where n is frequency in Hz, and the customary meteorological normalization,

~=F(n)dn = 1, has been applied. Thus the random-force model has an energy
o
spectrum that behaves as (~/~2tL)n-2 over a broad range of frequencies, in

agreement with the well-known equilibrium-theory result that ~F(n) = n-2 [cf.
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Tennekes and Lumley (1972)]. Just as in the case of the correlation function,

however, the Lagrangian spectrum derived from Eq. (1) is expressed in terms of

the large-scale parameters that control atmospheric diffusion, namely the

mean-square turbulence velocity, v ,T and the Lagrangian integral scale, tLO

B. Scale Analysis of Atmospheric Diffusion

The two large-scale parameters, ~and ‘L, define an (effective) eddy-

Viscosity of the atmosphere, K = ~tL, and a characteristic length, L;

L- (~t;)l/2- (KtL)l/2& ~-1/4 K3/4 (by Eq. 6). The last of these relations

is just a form of the Richardson-Obukhov “4/3 law” of diffusion. The length,

L, characterizes the smallest size-range of the large-scale, horizontal motions

that is capable of maintaining the energy-transfer rate, c, to the small,

three-dimensional boundary-layer eddies, given the large-scale flow

“viscosity,” K, as was pointed out by Monin (1972). By comparing the

mean-squared particle-displacement formula that follows, by integration and

averaging, from Eq. (2) with a wide range of tropospheric contaminant-cloud

diffusion measurements, Gifford (1981) found that, typically, K A 5 x 104 m2

s-l and tL . 104 s. From these values it follows that L - 20 km, which iS

approximately at the location of the so-called “spectral gap,” or

mesometeorological minimum , of the atmospheric energy spectrum.

Scales of motion greater than L, Up to the synoptic, are quasi-horizontal

and two-dimensional. In this range the largest “eddies” lose significant

energy to the next smaller ones in a time tL - L2/K ‘ ~-1/3L2/3 (e.g., Monin

1972 and Golitsyn 1973), which is the relaxation time of the diffusion process.

By substituting the above values of K and tL, it is found from Eq. (6) that

2s- 5 cm s-3. This evaluation of e agrees well with other estimates of energy

dissipation in the planetary boundary layer that have been made by various

authors, who used quite different lines of reasoning.

At scales smaller than L, in the range of typical three-dimensional

planetary boundary-layer turbulence, energy is derived from the larger, two-

dimensional eddies both indirectly from synoptic-scale motions and directly

from instability of the vertical-shear layer created above the earth’s surface

by the frictional drag of these large-scale motions. The latter source
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operates, however, at the comparatively slow rate of viscous decay, i.e., Vlt:,

because it is controlled by the atmosphere’s (kinematic) molecular viscosity,

v. This is much smaller than the rate, s - K/t~, of energy transfer, which

depends on the apparent viscosity, K, of the atmospheric turbulence.

Consequently the bulk of the net energy that drives small-scale, three-

dimensional, boundary-layer turbulence is supplied by quasi-horizontal,

diffusive atmospheric motions whose scale is greater than L. These are

maintained by the large synoptic-scale motions from which they derive their

energy. The exact nature and properties of this scale of motions, intermediate

between the lower end of the synoptic scale and the small-scale, three-

dimensional turbulence of the planetary boundary layer, as Golitsyn (1973)

points out, have been

kinetic energy transfer

whatever these may prove

turbulent kinetic energy

very little studied. In particular the mechanisms of

that are involved are essentially unknown. But

to be, they necessarily must involve a net transfer of

to the boundary layer. The properties of diffusion in

the boundary layer are in this way always being directly influenced to some

degree by the larger scale (i.e., > L), quasi-horizontal, two-dimensional

motions. In attempting to estimate or model atmospheric diffusion, even (as

will be demonstrated below) over fairly short times and distances, it is for

this reason essential to account fully for the influence on plume or cloud

spreading of the large-scale atmospheric-turbulence parameters ~ and tL.

Tennekes (1978) also stresses this point.

c. The Role of Vn in Particle Dispersion

Draxler (1976) analyzed short-range, horizontal atmospheric diffusion data

for which displacement variances, u$, were formed from air-concentration

observations that had been averaged over short times, on the order of the

travel-time, t, from source to sampling point. Tracer gases and particles were

released over time periods intermediate between the fully averaged and

unaveraged cases, and this suggests that the role of the initial source

velocity, Vo, in the process should be considered in more detail.

Clearly,

the air motion

the Initial particle velocity, Vo, in Eq. (2) should be that of

at the source at the initial time of the diffusion process.
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Only in this case will v(t) be a stationary random function. This requirement

(Yaglom 1962) dictates the following choice of Vo:

V. 5 J“eBc ~(C)dC j (8)
a

so that, from Eq. (2),

v(t) = /te-f3(t-C)~(~)d5 . (9)
4

Equation (9) defines a unique stationary solution of Eq. (l), whose

autocorrelation is exponential. The initial particle velocity, Vo, is a random

“constant,” having the value at any instant of the air velocity at the source

point. Consequently, any particular source configuration defines an averaging

of V. over corresponding space-time points. For averaged-type diffusion from a

point source, V. is averaged over all possible values at the fixed source

point and ~ equals the value for the entire flow, ?. For the case of

instantaneous dispersion from a source of finite width, the vo-averaging is

over the source-width dimension. Similarly, dispersion from a point source

that operates (or is sampled) only for a certain time interval can be related

to a finite-time average of vo over that interval. Lee and Stone (1982) have

analyzed these various source configurations in detail for the random-force

model , relating the space- and time-extension of sources to the corresponding

Eulerian space- and time-correlation scales. This requires generalizing

certain of the present single-point results to a large number of source

points. Although the single-point model will be pursued here to keep the

discussion as simple as possible, and because it seems to be adequate for

present purposes, their paper should be consulted for the detailed discussion

it provides of the effects of source configurations on dispersion.

D. Horizontal Cloud Spreading and Meandering

A single integration of Eq. (2) provides the horizontal

displacement, y, from the time or mean-wind axis;

8
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t t

Y(t) = (~o/8)[1 - exp(-f3t)] - ~-1 exp(-~t) ~ exp(~~)d~ + @-l ~n(t)d~ .(10)
o 0

The (nondimensional) horizontal displacement variance follows fromEq. (10) by

squaring and averaging over an ensemble of particles all released with the

initial velocity vo;

‘$(T) = [T - (1 - exp(-T)) - (1/2)(1 - v~/~)(1 - exp(-T))2], (11)

where T = t/tL and x$ = fS$/2~t~.
—

From Eq. (10), the average displacement, y~

of a cloud’s centroid is

~=votL [1 - exp(-’l’)] , (lOa)

and so Eq. (11.)can be written in the equivalent form

(ha)‘;(T) = Xfi(T)+Y2(T) .

That is, the (mean-squared) cloud spreading with respect to the (fixed) time or

mean-wind axis equals the sum of the instantaneous cloud spreading about its

centroid and the (square of) the displacement of that centroid. The terms on

the right-hand side are the spreading about the centroid, or relative

diffusion,

(llb)

and the centroid displacement, or meandering,

Y2(T) = y2/2~t; = (v~/2=)(1 ‘exp(-T))2 . (llC)

(Since the present analysis has been based, for simplicity of presentation, on

9



a single particle, the mean of the square of

of its mean displacement, for constant Vo.)

When a further averaging of Eq. (11) is

the final term drops out since then ~/~

diffusion from a point source is

its displacement equals the square

performed over all possible Vo,

= 1; and the equation for averaged

(12)

a result first obtained by Taylor (1921). In principle, it should be possible

to interchange such (ensemble) averaging with an average of Eq. (10) performed
—

over a long period of time , such that for it v: would in fact approach ~. In

practice (Culkowski 1975; Csanady 1973; and Ferrara and Cagnetti 1980), this

can require several days for atmospheric boundary-layer turbulence. Thus , the

atmospheric diffusion data to be discussed in the next section will correspond

to time averages of Eq. (10) with respect to v:, such that <v%> is considerably

less

that

111.

than ~, where the notation <> indicates averaging over a time period ta

is generally small compared to such long averaging times.

SHORT-RANGE ATMOSPHERIC DIFFUSION DATA

Models of atmospheric dilution that are used in a wide variety of

practical air-pollution and environmental-impact estimations are based on

dispersion parameters derived from a number of field observations of time-

averaged plume-concentration patterns made during the 1950s and 1960s under a

variety of experimental conditions. Draxler (1976) summarized these as

empirical curves of
‘Y and ~z9 the horizontal and vertical plume standard

deviations of the averaged plume-concentration distributions. He presented the

results of these extensive data comparisons for the case of horizontal

spreading, in the form of a similarity equation originally proposed by Pasquill

(1971),

‘Y = uv t fl(t/tL) ; (13)
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aY‘
m, is the standard deviation of the plume-concentration distribution after

-1
t seconds of donwind travel; Uv, m s , is the standard deviation of the

y-component of the horizontal wind measured at the source; fl is a universal

dimensionless function.

..-——.

Draxler determined the following equation for fl based, essentially, on

all the available short-range plume diffusion data:

f~= [1+0.90 (t/t~)0”51-l ●
(14)

The quantity ti equals the t-value for which fl equals 0.5. Equation (14) was

found to apply to Uy in all conditions of stability and for short-term-averaged

concentrations from ground-level and elevated sources. (It also applies to 62,

but vertical cloud spreading is not considered here.) It can be written in

terms of the Lagrangian integral time-SCale, tL, by defining a quantity a such

that

0.5 -1 .
fl = [1 + 0.90 a (t/tL) 1 (15)

The form of Eq. (14) was

large diffusion times, t,

for ay,

chosen so that the limiting values for

agree with the Taylor, i.e., time-averaged

small and

expression

(16)

Release times for the various tracers used in these experiments ranged from 10

minutes up to an hour, depending to some degree on the distance to the farthest

concentration-sampling arc, which was 5 km or less in the majority of cases.

The horizontal wind standard deviation, av, and the ground-level concentration

patterns were as a rule sampled over a like time, and so usually represent

averages over Feriods from several tens of minutes to an hour.



Draxler’s results are

comprise a practically useful

of very great interest, not only because they

method of diffusion estimation, but also for the

following theoretical reason. Since Taylor’s form of Gy for averaged

diffusion, Eq. (16), was assumed to hold for the experiments, the Lagrangian

autocorrelation function R(T) could be found from Eq. (14) by combining it with

Eq. (13) and differentiating twice. Draxler showed that the R-function

determined in this way dropped rapidly at first but had a long positive “tail”

and could not be described by an exponential form for any reasonable choice of

tL . This fact about atmospheric diffusion has been somewhat puzzling since he

first demonstrated it.

An equation for the averaged cloud width as measured at a fixed sampling

arc over an experimental time period ta follows from averaging and rearranging

Eq. (ha) to get <a~R> = <62> - <~&2.
–y

Performing the averaging on Eq. (11)

for u~R and Eq. (lOb) for y, it is found that

<a~R(T)> = 2~tL [T - (1 - exp(-T)) - (<c>/2)(1 - exp(-T)2)] , (17)

where <c> = [1 - (<v:> - <VO>W71* Note that, for a vanishingly small

averaging time, <c> ==1 and Eq. (17) reduces to Eq. (llb) for the instantaneous

spreading. When ta is very large, <c> = O, since <vo> = O and <v~> = ~ then;

and Eq. (17) reaches the Taylor limit, Eq. (12). The velocity variance

experienced by the diffusing particle in the same circumstances, <u$R>, can

similarly be formed from Eq. (5) and the (ensemble) average of Eq. (2), since

<U~R> = <ov2> - <7>; the result is that

<a:R> = (<vg> - <VO>2) exp(-2T) += [1 - exp(-2T)l c (18)

Equation (llb), for the relative cloud diffusion, contains a range for

which u~R = t3. This accelerating diffusion range begins to approach the

large-time asymptotic state, a~R + 2 kt, for T-values of about 2 or 3. For the

fully averaged Taylor diffusion of Eq. (12), ~ increases at first as t2 and

then later as 2 kt also, joining the Eq. (llb) curve. In the intermediate

12



case, for diffusion averaged over ta, the mean-square cloud spreading is at

~2first as , but below the fully averaged spreading case of Eq. (12), to a

degree deper~ding on how different <c> is from zero. Accelerating diffusion

begins at some value of T that is also controlled by <c>, i.e., by ta; and the

final stage of diffusion is reached, as with the other two curves, at some

large value of T. Figure 1 illustrates the behavior of cloud spreading as

determined hy Eqs. (llb), (12), and (17) for, respectively, the instantaneous

diffusion about the centroid, the fully averaged Taylor limit, and the

diffusion a~”eraged over an experimental time period, ta, corresponding in the

example shown to the value <c> = 0.95.

Equaticms (17) and (18) define the averaged cloud spreading and the

corresponding wind variance experienced by a particle, over an experimental

averaging time ta, and so are the appropriate quantities to compare with

Eq. (13). When the substitutions are made it is found that

21/2 ‘r-(1-.e-T)-(<c>/2)(l-e-T)2}l/2
fl(T) “-.{.- S

l-<c>e-2T
(19)

where the symbol <> indicates as always a time averaging over ta. The present

theory in this way provides an analytical formulation of the function fl, which

can be compared with Draxler’s empirical formula, Eq. (14). Figure 2

illustrates Eq. (19) for a range of values of the parameter <c> that includes

the Taylor average-diffusion limit (<c> = O) as well as the limit (<c> = 1) of

instantaneous, or relative, diffusion. Since Draxler’s curve is based on

concentrations averaged over periods of from tens of minutes to an hour, it can

be expected that <c> will be found to have some intermediate value.

From l~ig. 2, it can be seen that when T > 5 the curve fl, according to

Eq. (19), is approaching its asymptotic behavior for large values of T and is,

consequently, little influenced by <c>. The value fl = 0.5, upon which Draxler

based his t:Lme-scale ti, corresponds closely to T = 6.4 for any value of <c>.

With these values it follows from Eq. (15) that a = 0.44. To specify <c> it

seems most reasonable to require agreement between Eqs. (15) and (19) for some

smaller value of T, say T = 1. When this is done, it is found that <c> = 0.68,
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which implies that <V$> F <v~> - <V>2 has attained 32% of

time averaging of these data. Equations (15) and (

<c> = 0.68, are plotted in Fig. 3 for a range of T-values

the total ~ for the

8), with a = 0.44 and

adequate to cover the

experimental data. In Fig. 4, Eq. (19) has been expressed in terms of t/ti,

for the same parameter values, and superimposed on Draxler’s Fig. 1, permitting

a direct comparison with the diffusion data as well as with Draxler’s curve,

Eq. (15). Equation (19) appears to fit the data equally as well as Eq. (15).

It may in fact fit slightly better, since Draxler’s fl-curve seems a bit high

for t/ti > 2, particularly if a few outliers are ignored.

Iv. THE LAGRANGIAN TIME SCALE

Equation (14) does not involve tL explicitly, and so Draxler estimated tL

directly from the diffusion data. Basing the determination on the near-source

observations, he found that tL = ti/6.36. Since ti equalled about 300 s, from

the asymptotic behavior of Eq. (14) for large t, he concluded that tL - 5CIs

for diffusion from ground-level sources. But Draxler could not explain the

behavior of Eq. (15), which he derived assuming the applicability of Eq. (16)

= P), in terms of a single exponentialfor fully averaged diffusion (i.e., o:

autocorrelation and, hence, a Single time Scalej tL. He concluded that the

implied Lagrangian autocorrelation, according to Eq. (16), “approaches zero

much too soon to properly describe diffusion at large distances.” When he fit

the longer range portion of the data, he found a considerably larger apparent

Lagrangian time scale, tL = ti/1.64. In the present analysis, which explicitly

accounts for the averaging time of the diffusion data through the parameter

<c>, this problem does not occur. Equation (19) is derived from Eq. (l), which

defines a random process that has a single, exponential correlation, given by

Eqs. (4) and (5), and a single Laprangian time scale, tL, which analysis of

tropospheric instantaneous puff- and plume-spreading data has indicated to

equal several hours (Gifford 1981).

Just as in the case of Draxler’s empirical Eq. (14), for fl, the time

scale tL is not explicitly defined by Eq. (19), even after the single

disposable parameter, <c>, has been determined. Some further information on

the energy content of the large-scale diffusive motions has to be supplied in

order to specify tL; one way to derive an estimate is as follows. The value

16
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<c> = 0.68 was found to produce the best match between the present theory,

Eq. (19), and Draxler’s empirical curve, Eq. (15). This means, since

<c>=l- <V~>/~, that <V:> = 0.32 ~= 0.32 K/tL = 0.16 ~tL, based on various

relationships that were previously introduced. Although Draxler’s data are

widely scattered over a broad range of stability conditions, many of the points

are clumped near neutral stability (Draxler 1976, cf. Fig. 3). Consequently

Eq. (15) can probably be taken to approximate near-neutral conditions. In such

conditions the horizontal wind direction standard deviation , Oe, equals about

10°, and the mean transport wind, u = x/t (where x is downwind distance from

the source), is about 5 ins-l. It follows that <V~>l/2 - u tan 10° = 0.9 ins-l.

Making use of the fact that s - 5 cm2s-3 on the average in the boundary layer,

it is found that tL n 104 s.

This rough estimate of tL, a quantity about which virtually nothing is

known from direct observations , should not be taken as definitive for several

reasons. The value assumed for c may be too high, possibly by a factor of 2,

since a significant fraction of the total tropospheric eddy-energy dissipation

occurs at high altitudes, in the clear-air turbulence associated with jet

streams. Also seasonal and other kinds of variations in the tropospheric

turbulence level will affect tL. The present estimate, tL - 104 s, agrees with

the estimate previously derived from the tropospheric instantaneous diffusion

data (Gifford 1981). It should however be taken only as an order-of-magnitude

indication that tL, according to the random-force theory, is much larger than

tL estimated on the basis that fully averaged diffusion (Eq. 16) applies to the

short-range diffusion data that were averaged over a few tens of minutes.

Diffusing clouds and plumes, even when averaged over such time periods, are

observed to have shapes (fI-curves) that are influenced to some degree by

large-scale diffusive motions, shapes that cannot be explained unless these are

accounted for.

Draxler (1976)

i.e., that observed

was well aware of this implication of his data analysis,

plume shapes do not reproduce the theoretical shape implied

by analysis based on Eq. (16) for fully averaged Taylor-type diffusion, at

intermediate and large diffusion times. He proposed to explain this on the

basis that the observed accelerating diffusion is caused by vertical shear of

the mean planetary boundary-layer wind. Diffusion in various sheared flows,

18



including an Ekman boundary layer, has been the subject of several theoretical

studies, which are well summarized in the book by Monin and Yaglom (1971) and

in Csanady’s (1973) thoughtful monograph. The main shear effect is to elongate

a diffusing puff, or a plume element, in the direction of the mean flow. This

has little effect on the along-wind structure of plumes, as Csanady pointed

out . But the cross-wind shear occurring in the outer part of a skewed Ekman-

layer also leads to enhancement of the effective lateral diffusion, and must be

included in any boundary-layer K-model of plume diffusion.

Apart from the limited degree to which the Ekman-layer assumption of

constant vertical diffusivity represents actual atmospheric boundary layers,

the main problem with this interpretation, from the point of view of the

present theory, is that boundary-layer shear is an effect, not a cause, of

diffusive atmospheric motions. Accelerating diffusion, in the random-force

model, is controlled by the same large-scale, quasi-horizontal motions that

create and maintain the boundary-layer shear. Boundary-layer shear is in

effect parametrized in the random-force model along, it should be noted, With

a number of other dispersive flow phenomena of possible importance, such as

certain wave instabilities, irregular terrain effects like flow separations and

vortex shedding, and gravity flows.

Whether

been producec,

presence in

scales, is tcl

for example,

to regard the accelerating, horizontal cloud spreading as having

entirely by an imposed, constant, boundary-layer shear, or by the

the atmosphere of a steady transfer of energy from large to small

some degree a matter of choice; but it must be remembered (cf.,

Monin et al., 1974) that the phenomena are entirely distinct from

the modeling point of view and produce quite different physical effects. The

accelerating diffusion described by Eq. (llb) disappears when the diffusion is

averaged over a sufficiently long time. When ta is large enough, and it

should , for this purpose, equal at least several times tL, the parameter <c>

goes to zero as has been shown, and Eq. (17) reduces to

fl(T) =
#/2T-l[T _ (1 _ e-T)]l/2 . (21)

If Eq. (21) is introduced into Eq. (13), Eq. (12) for the averaged-plume
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diffusion is recovered. The accelerating diffusion is no longer present, even

though the wind field, including any shear, remains the same. Consequently,

accelerating diffusion is clearly associated, in the random-force model, with

the influence of the averaging time of diffusion, ta. This effect does not

occur in the case of sheared boundary-layer K-theories, since the mean motion

in these is regarded as fixed; consequently the cloud elongation and distortion

produced by shear are not changed by time averaging. In contrast to this, the

accelerating regime of lateral diffusion predicted by the random-force theory

will disappear for a sufficiently large averaging time.

v. SUMMARY AND CONCLUSIONS

In the random-force method, the horizontal velocity and position

displacement of a diffusing air particle are assumed to obey a simple

Lagrangian equation of motion, Eq. (l). In this equation, the particle

acceleration is the result of a local drag force, proportional to the

particle’s velocity, and a random acceleration, representing large-scale

pressure forces; the latter is assumed to have a white-noise spectrum.

Equation (1) is solved to give the following properties of a dispersing

particle: the Lagrangian velocity, Eq. (2); the autocovariance, Eq. (3); the

velocity variance, Eq. (5); the power, or variance, spectrum, Eq. (7); and the

2 Eq. (11).lateral displacement variance, ay, These properties of the particle

motion are shown to depend on three parameters of the flow: the initial value

of the lateral wind component at the source, Vo; the lateral component of the

7total flow variance, v ; and the Lagrangian integral time-scales tL. All these

particle properties depend, in addition, on the dispersion time, t, and become

identical with the corresponding (stationary) properties of the tropospheric

flow only after dispersion times equal to several times tL. The normalized

Lagrangian autocorrelation function, defined as the quotient of Eqs. (4) and

(5), is found to be exponential and stationary; R(T) = exp(-~/tL). The form Of

the corresponding variance (energy) spectrum, Eq. (7), agrees with that of the

inertial-range frequency spectrum over a range of frequencies that is

considerably wider than that which can be attributed to the action of three-

dimensional boundary-layer turbulence alone.
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Values Of the large-scale flow parameters, ~ and tL, can be combined to

estimate the tropospheric eddy-diffusivity K, the eddy-energy dissipation rate

c, and a length scale L, which essentially separate the large, quasi-

horizontal, two-dimensional dispersive motions of sub-synoptic scales from the

smaller, three-dimensional, boundary-layer turbulence. The values K=5x104

n12 s-l and ‘L = 104 s were estimated previously, by means of an extensive

comparison of Eq. (11) with tropospheric, instantaneous cloud-spreading data

extending over a wide range of diffusion times, from 10 to 107 S. From these

2 ‘3, in agreement with acceptedvalues it is found that L n 20 km and e - 5 cm S

estimates of these quantities. Thus the random-force model correctly provides

for the effects of two important properties of the tropospheric eddy-energy

balance; namely, energy transfer from large-scale, two-dimensional motions to

the three-dimensional, boundary-layer turbulence, and eddy-energy dissipation

by the boundary-layer turbulence of the correct magnitude. The value found

for the large--scale eddy-diffusivity, K, from the tropospheric cloud-spreading

data is also in reasonably

results.

These data comparisons are

good agreement with other large-scale diffusion

extended, in the present report, to the various

canonical series of short-range (a few kilometers), short-time-veraged (a few

tens of minutes) horizontal diffusion data that were summarized by Draxler

(1976). Following Pasquill (1971), Draxler assumed a similarity form for the

horizontal dispersion, Eq. (13), and fit the diffusion data to this to

determine a universal, empirical plume-shape function, fl, Eqs. (14) and (15).

An analytical expression for this function fl can be derived by averaging

Eqs. (2), (5), (lOa), (11), and (ha) of the present theory over a time period

equivalent to that of the diffusion data; Eq. (19) is the result. This

equation depends on a single disposable parameter, <c>. By choosing the value

of <c> so as to provide the best match between Eq. (19) and Draxler’s empirical

curve, it is found that, over the averaging period of the experimental data,

approximately a third of the total flow variance has occurred. It appears that

these short-time averaged diffusion experiments, which have usually been

applied as if they represented fully averaged, Taylor-type diffusion, in fact

retain much of the character of the instantaneous cloud spreading described by

Eq. (llb), since they correspond to the curve <c> = 0.68 of Fig. 2, a plot of

Eq. (19). Draxler was unable to interpret Eq. (15), for the empirical plume-
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shape function, fl, in terms of a single Lagrangian time-scale, because he

assumed that Eq. (16), the fully averaged Taylor-equation for Cy, applied.

From the value <c> = 0.68 it is estimated that the Lagrangian integral

time scale implied by these boundary-layer, short-time averaged plume data is

about 104 S. The fact that this agrees with the tL-value previously determined

from the instantaneous,

somewhat fortuitous.

force model’s essential

exceeds the travel, or

tropospheric puff-spreading data must be regarded as

Nevertheless it is a strong indication of the random-

correctness, inasmuch as the value 104 s considerably

diffusion time of these experiments. This value of the

Lagrangian time scale, tL - 104 s, is about two orders of magnitude larger than

values previously inferred from boundary-layer diffusion experiments or balloon

trajectory data, which are typically conducted over periods ranging up to an

hour. In fact tL computed from any particular experiment has always shown a

disconcerting tendency to be approximately equal to the time-duration of that

experiment. From the present results it is easy to see why this must be so.

If an “apparent” Lagrangian time scale for an experiment is defined as

taL~yaR(~)d~, a5isusually assumed inestimates fromdata, thenthe present

result: imply that

‘aL=faexP(-T/tL) dT=tL[l -exP(-ta/tL)] ;
o

(21)

ta is, as before, the averaging time, or duration , of an experiment. By

expanding the exponent it is seen that, for small enough values of the

experimental duration ta, the apparent Lagrangian scale taL just eqUah ta$ as

has so often been found. For experimental periods ta of up to an hour, taL

differs from ta by less than 20%, if tL = 104 s.

The general picture of tropospheric diffusion that is conveyed by these

comparisons of the random-force model with the standard diffusion-data sets has

some significant points of difference from more conventional interpretations.

The major one is that the transfer of turbulent kinetic energy by quasi-

horizontal atmospheric motions of lengths between the lower end of the synoptic

scale and about 20 km has two important effects on the shape of diffusing
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clouds. The nodel predicts, and the instantaneous, long-range cloud- and

plume-spreading data confirm, the presence of an extensive region of

accelerating horizontal diffusion in the troposphere. This phenomenon

evidently occurs up to time scales much larger (several times 104 s) than those

of buoyant, boundary-layer convective motions , which are typically on the order

of a few hundred seconds , and must necessarily be governed by larger scale,

random motions. The exact nature and origin of these motions, it should be

stressed, is not, at present, at all well understood. Terrain inhomogeneities,

which exist over a broad range of sizes, land-use patterns, and so on,

presumably exert an influence. The actual vehicle for the energy transfer

could involve gravity-wave propagation, in modes that as yet have not been

studied in relation to the diffusion problem. But that a flow of turbulent

kinetic energy at large scales, from the lower (high-frequency) end of the

scale of synoptic motions down to the dissipative, three-dimensional, boundary-

layer turbulence scales, exists in some form is certain; and the diffusion data

indicate that diffusive motions are involved.

A seconcl point, the principal subject of this report, is that the large-

scale, random motions of the lower troposphere also affect the shapes and

concentration distributions of small-scale diffusing clouds and plumes in the

boundary layer, even when the latter are averaged over times of up to a few

tens of minutes. Explanation of the shapes and concentration distributions of

all the basic plume-diffusion data sets by means of fully time-averaged, Taylor

diffusion theory was shown by Draxler (1976) to be awkward at best, and

impossible in terms of a single Lagrangian time-scale of the order of the

experimental averaging time. The resolution of this problem in terms of the

random-force t:heoryof horizontal diffusion indicates that the observed plume

shapes, which is to say the universal function fl, formed from these extensive

short-range, short-time-averaged diffusion trials, imply a large Lagrangian

time scale. The experimental averaging periods of these data, a few tens of

minutes, were large enough to include only about a third of the total

turbulence of the flow. Consequently the observed plume shapes, intermediate

between the shape of an instantaneous plume and a fully averaged plume, still

reflected the influence of the former.

23



ACKNOWLEDGMENT S

The writer is grateful to J. T. Lee and G. L. Stone for many helpful

discussions during the progress of this study. This report incorporates many

of their suggestions, as well as critical comments on an earlier draft kindly

provided by R. R. Draxler, T. H. Horst, F. Pasquill, S. K. RaO, F. B. Smith,

and H. Tennekes. The writer appreciates this invaluable help.

REFERENCES

Csanady, G. T., 1974:
D. Reidel Pub. Co.,

Culkowski, W. H., 1975:
time; three hours

Turbulent diffusion in the environment, iv and 248 pp,— —
Boston, Massachusetts.

Standard deviation of wind direction as a function of
tQ five hundred seventy-six hours. NOAA/ARL, ATDL, Oak

Ridge, TN, report 75/ii.

Draxler, R. R., 1976: Determination of atmospheric diffusion parameters.
Atmos. Env. 10, 99-105.— —

Ferrara, V., and P. Cagnetti, 1980: Wind persistence influences on time
averaged concentrations at short distances. Proc. seminar on radioactive
releases and their dispersion to the atmosphere following a hypothetical
reactor accident, Ris6 National Laboratory, Roskilde, April 1980.

Gifford, l?.A., 1981: Horizontal diffusion in the atmosphere: a Lagrangian-
dynamical theory. Los Alamos National Laboratory report LA-8667-MS
(January 1981) (Atmos. Env. ~, 505-512, 1982.)

Golitsyn, G., 1973: Introduction to the dynamics of planetary atmospheres, 103— —
PP Y Gidrometeoizdat, Leningrad, NASA t~nslation No. TT F-15, 627
(December 1974).

Lee, J. T. and G. L. Stone, 1982: Effects of Eulerian Spatial and Temporal
Velocity Correlations on Turbulent Diffusion: Theoretical Results, Los
Alamos National Laboratory (ESS-7) draft report, 14 May 1982.

Plonin, A. S., 1972: Weather forecasting as a ~roblem in physics. MIT Press,
Cambridge, Massachusetts.

— . —

Monin, A. S. and Yaglom, A. M., 1971: Statistical fluid mechanics. MIT Press,
Cambridge, Massachusetts.

Monin, A. S., V. M. Kamenkovich, and V. G. Kort, 1974: Variability of the
Oceans, Hydrometeoisdat, USSR (English translation edited by J. L. fimley,
publ. by John Wiley and Sons, New York).

Pasquill, F., 1971: Atmospheric dispersion of pollution. Q.J.R. Met. Sot. ~,
369-395.

24



Smith, F. B, 1968: Conditional particle motion in a
field. Atmos. Env. 2, 491-508..— —.

Taylor, G. I. 1921: Diffusion by continuous movements.
Soco 20, 196.— .

homogeneous turbulent

Proc. London Math.

Tennekes, H.., 1978: The exponential Lagrangian correlation function and
turbulent diffusion in the inertial subrange. Atmos. Env. 12.

Tennekes, H., and J. L. Lumley, 1972: A first course in turbulence. xii and
300 pp, MfT Press, Cambridge, Mass~cmts. —

Yaglom, A. M,, 1962: An introduction to the theory of stationary random
functions,, (Dover Pr~s 1973).

— — —

25

*u.s. Government PRINTING oFFIcE: 1982-0-676-026/193



l?= !j
1n.
,,=- II

1!

Il. ‘

.——
.. .1’

!,
L._+

.!
,.. —,,

..-..-=- .
:1

.._
,!

.,

;:

,.

,.. —,,
+.

!..!!

. ‘- il

!’

i,

- .;

NttS

PUCRange Price Code

Printed in the United States or America

Available from

National Technical l“fmmation service

US Department of Commerce

5285 Pori Royal Road

Springfield, VA 22161

Microfiche (AO I)

Page Range

NTIS

Price code

NTIS

Page Range PrimCode

NTIS

Page Range Price Code

001.025 A02

026.050 A03

051.075 A04

076.100 A05

10 I.125 A96

126.1S0 A97

151-175

176.200

201.225

226.250

251-275

276.300

A08

A09

A 10

All

A12

A13

301.325 A14

326 3s0 A 15

351.375 A 16

376400 A17

401.42S AM

426450 A19

45147s A 20

476.500 A2[

501.525 A22

526.550 A23

551.575 A24

576.600 A25

601 Up” AP9

“Contact NTS S for a “price quote.

!,

11 ...-.”



— — —.

LosAnaims
i


