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SESAME Equation of State For Epoxy

by

J. C. Boe~lgcr

ABSTRACT

A new SESAME equation of state (EOS) for epoxy has been
generated using the computer program GRIZZLY. This ncw EOS
has been added to the SESAME EOS library as ma[clial number
7603.

INTRODUCTION

Users of the SESAME equa[ion of state (EOS) librtiry’ have a Ion: s!umling

in[crcst in the EOSS of polymers and polymer composites. In response m this in[crcs!.

there has been an ongoing effort to expand the SESAME library m include EOSS for

additional polymers and [o upgrade the quality of existing polymer EOSS as new

experimental ckt[abecomes available. One of the most widely used polymers is epoxy,

a prototypical thcrmosct polymer. Currently, the SESAME library includes two EOSS

I“orepoxy, matmiai numbers 7601 and 7602, both added to [hc lihrtwy in 1984. (These

two EOSS arc idcn[ical, except 7601 has van der Waals loops in the vapm .mw

region, whet-cm 7602 has MaxweIl constructions.) Like many of [hc oltlcr EOSS in IIw

SESAME library, these existing EOSS for epoxy are largely undocumented and it is
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dif[icul[ to w]] exactly whut type et’ epoxy is being represented. In addition, the old

E()!;s [or epoxy have a bulk sound speed (2.75 km/s) that is signilicmdy larger [him

thr ~xperimtmtol value (2.263 kmis).z

Recently, a numhcr o!”cxpcrimcnts were conducted on a specific type O( epoxy

fmmcd by mixing Epnn 828 resin (70% by wcigh[) wi[h Jclftiminc T-403 cllring tigcnt

(30% by weight).3 Firs[, [he clcmcntal comp~siti~ns of the two compmwn[s iISC(J [O

fmm the epoxy were carc!ully determined.3 Then, the density and bulk sound spcc(l (JI”

IIWcured epoxy were mwtsurcd; yielding 1.154 gm/cm3 und 2.255 km/s, rcspcctivcly.4

Finally, a series of shock wave cxpcrilnents was used 10 de[crminc a n[lmber of”points

along the principal Hugoniot of the cured epoxy.4

In tlw present invcstiga[ion, the new experimental d;lta for epoxy3”4have hccn

used. in cmjunctirm wi[h older Hugoniot daLL2to construc[ u ncw SESANIE EOS l“m-

epoxy. This new E(3S for epoxy is not subject to the difficulties associated with tlw

older EOSS, discussed above. The new EOS will be added [o (he SESAME lit-waryiis

material number 7603.

11.METHODOLOGY
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For most of the EOSS in the SESAME library, [he pressure P, internal energy E,

and Helmholtz free energy A are all partitioned into three distinct terms:

(1)P (p,T) = f, (f)) + p. (PsT) + ‘. (P$T)



E(p,? ) = E. (p) + En(p,T) + E, (P.T) (~)

A (P,T) = A: (p) + An (P,T) + At ((1,~) (3)

where p is the density and T is [hc [cmperatur~. The three suhscri pLs.s, II , Und ~

denote the contributions to the EOS from (he static lattice cold curve (zero [cmp~rtiturc

iso[hcrm), the nuclear motion, and the [ha-ma] electronic cxcita[ions, respectively.

Thus, it is possible [o colcula(c (or updam) ctich term indcpcndcn[]y using any desired

model. Here. all three pieces of the EOS for epoxy htivc hccn gcncrti[cd with

GR1ZZLY,5 the locally dcvclopcd multipurpose computw- program l.or~til~lilil[ing

SESAME EOSS.

In GRIZZLY, the only model currently available for calculating [he thermal elcc-

mmic con[rihutions is the Thomas-Fermi-Dirac (TFD) model.” For tlw present E(X,

thermal elcc~ronic contributions were first generiltcd for each a[mnic component in

epoxy. Those monatomic thermal electronic EOSS wsre then comhincd via additive

volume mixing.5 This part of the calculation requires ihc weigh[ fruc[ion (wi), atomic

numher (Zi), and iltornic mass (Ai ) for each species of atom (i) in the epoxy. As was

noted above, the epoxy was formed from a mixture of Epon 828 resin (70!Z0 by

weight) and Jeffamirw T-4(I3 curing agent (30% by weight). ~ Ttihlc 1 gives the ammic

compositions measured for the two constituents of the epoxy.3 neglecting the trace clc-

mtmts. Table 1 also gives the atomic composition used hem for [hc cured epoxy (based

on the assumption that the composition is not altered by the curing process) and the

values of Ai and Zi used for each atom.’
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Tahlc 1: Atomic Compositions (M
Epon 828, .Icffaminc T-403, and Epoxy

Ai

12.01
[5.999

1.008
14.007

Wi
Epon T-403 Epoxy

().741 ().599 ().6984 ,
0.188 ().1[)3 ().189s
0.071 (1,112 ().()833 ‘

0.096 ().()288

The thermal nuclear contributions for epoxy were obtuinccl wilh the JDJNUC

nuclctir modelx in GRIZZLY. In d~ismodel, [hc ma[criid is [rLMId JS a Dchyc so]id ill

low tcmpera[ures and as an ideal gas at high kmperatures. The JDJNUC mmlcl

smoothly switches hetwcen these two limiting forms for Icmpcruturus ncur the nwl[ing

line, which is obtained from the Lindemann law. On each nuckur isotherm. the melt-

ing transition is approximated by a small IWOphase region Iocutcd ~[ [hc rncl[ing

poin[.

In addition to the data listed in Table 1 and the ambient densi[y (p(l = 1.154

gm/cm3),4 the JDJNUC model requires an ambient melt tcmpcramrc (T,,,) and some

analytical form for the Grurwisen parameter as a functi.m of density [y(p)]. The Dehyc

temperature (CID) is calculated internally from T,,,

on the behavior of pure c]emenLs.s Because epoxy

via an empirical rcl:ltionship hascd

is a thcrmoscl polymer, il docs not

have a well-defined melting temperature to be used in G1(IZZLY. Here, T,,, = IN)() K

has been chosen as a reasonable estimate. The associated Debye tcmpera[urc then is

~“ = 843 K.
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A gcncraliz~d version of the standard CHART-D model’) IMsbeen used to descrihc

Y(P): lhc IGRUN = 7 option in f3RIZZLY.5 In this formultitian, ihc Grurwisen pararnc-

[cr is cxprcsscd i.Isa quudru[ic function of p in the cxpimdcd rugifm ilnd M ti qumlrotic

I“unctionof I/p in :hc compressed region. Four i[cms 01”inpu[ ii[”~ required [{)conl-

plctcly specify y(p): the amhicn[ Grunci.wn pararnewr (y,)), [hc :lmhicnt VUIUC f)!” [k

log:~ri[hmicderivative of y, and the asymptotic values y([)) and y(oo).The ambient

Grunciscn parameter was chosen to malch the value used in [hc IWOexisting SESAME

lo This val,le for y. is a]s~~~l)sjs[~[l~with [Ill!rcccn[ ShO~kEOSS for epoxy. y. = ().8. (

wuvc experiments.4) The logarithmic derivu(ivc U[p. was chosen to have ti smtill ncgu-

tivc value (-0.05) to ensure sensibly smooth nuckmr iso[hcrms near pfl. For fi[l) and

Y(oo)lh~ dcfa(l]t vitlues of 1 and 2/3 were used.

For modest compressions (< 2.0), the cold curve was ohtuincd by rcrnoving hx-

mal con[rihutions from an input Hugoniot read in as a table t)!”purtwle and shock vclo-

ci[ics (UP, U.) selected to provide a good fit to all available Hugonio[ ml sound

sped data;2.4
w Table 2. For high compressions, the cold curve was required to

smoo[hly extrapolate to a mixed TFD cold curve. This method of calculation ensures

that the compres.wd EOS will rcproducc the experimental Hugonio[ and also will have

the correct asymptotic hehavior. In the expanded region (p < po), [he cold curve wi.Is

fit[cd with a generalized Lennard-Jones forms that was cor,strnincd [o smoothly con-

nect with the compressed portion of the cold curve and have the correct cohesive

energy (EC). Here, EC= 40 kcal/av-atom-mol was chosen [o ensure [hat the final EOS

has a rcasoncblc vapor dome. In aadition to the parameters already discussed, this pm-t
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o! the calculation requires a parameter FACLJ5(here 0.5) thtit controls the shape of

the expanded cold curve.

Table 2: Input Hugoniot PoinLs

UP (km/s) U, (km/s) UP (km/s) U,, (km/s)

().000 2.263 2.995 7.195

().185 2.865 3.215 7195

0.370 3.250 5.500 10.237

111.RESULTS

Figure 1 compares the present dmcm.%calHugoniot !or epoxy wi[h dw cxpcrimcn-

tal data from Ref. 2 (diamonds) and Ref. 4 (stars). (The overall agrccmcn[ bc[wecn [hc

old data2 and the ncw data4 is reassuring.) The theoretical Hugoniot for matcriid

number 7601 is also shown in Fig. 1. There arc two significant features apparcn[ hoth

in the cxpwimental data and in the Hugoniot for material numher 76(13. First. there is

a phase transition in the region 2.995 c Up < 3.215 km/s. This phase trtinsiticm. which

also appears in the Hugoniot for material number 7601, is a standard fca~mc of poly-

mers and may hc duc to pressure induced crosslinking between the choins of Ihc poly-

mer.”

The second important feature in Fig. 1 is the rapid drop in the Hugoniot shock

velocity as the particle velocity approaches zero. Again, this is a rather common

feature of polymers and may be due to the large difference between the intcrchain and
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in[ruchainbinding.Ii At ~mbien[Conditions,the e]~s[i~propcl”[icsof [k po]ym~rfil”~

dominated by the weak intcrchain binding, producing a rather small bulk modulus and

sound speed. As the intcrchitinseparation is reduced under pressure, the bulk modulus

and Us both increase rapidly un[il the interchain spacing btxmmcs compw-able [o the

intrachain spacing, at which point the I-iugonio[ becomes linear. The new EOS t-or

epoxy clearly providesa good fit to all of the cxperirnentid&IItiin Fig. 1. In con[rtist,

the theoretical Hugoniot for material number 7601 fails to md[ch the experimental

sound speed data.

Although the current E(M for epoxy is similar [o ma[eria] numhcr 7601, the ncw

SESAME EOS for epoxy should provide a better description of”CUM.Icpox~”mmr

ambient conditions. The ncw EOS should he very reliahle for all applications involving

shock loading, or other processes that stay close to the principal Hugt-mio[.Matelitil

number 7603 will be added to the SESAME library in the near future.
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Figure 1. The currcn[ theoretical Hugoniot for epoxy (solid line) is mmpnrcd wi[h
[he [hcoretical Hugoniot for material number 7601 (dashed line) and with cxpcrimcn[til
Hugoniot and sound speed data from Ref. 2 (diamonds) and Ref. 4 (sum).
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