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ORBEOS:
A SPHERICAL, FULLY MULTIDIMENSIONAL

FLUX-CORRECTED TRANSPORT HYDRODYNAMICS CODE

by

Anthony J. Scannapieco

ABSTRACT

ORBEOS is a two-dimensional (r-0), Eulerian hydro-
dynamics code with tabular equation of state (EOS), that
uses a fully multidimensional flux —corrected transport
algorithm to solve the fluid equations. This
flux—corrected transport (FCT) algorithm, developed by
S. T. Zalesak, 1s Carteslan and accurate to any desired
order in space and to second order in time. The
algorithm used in ORBEOS was modified for spherical
geometry and is accurate in space to fourth order.
Although this algorithm has been used before to solve
the continuity equation, it is used in ORBEOS for the
first time as the basic algorithm in a full hydrocode.
The physical equations solved in the code and their
finite-difference representations are described, and it
is shown why the fully multidimensional algorithm better
represents Incompressible flows and does not lead to
virtual sources as does the older one-dimensional FCT
algorithm wusing Strang-type time-step differencing to
handle multidimensional problems. Several test problems
are presented and discussed.



I. ORBEOS

Studies of fluid instabilities in imploding spherical systems made it
obvious that a computer code that could follow the evolution of the instabil-
ities into the far nonlinear regime and run in a reasonable time on the CDC 7600
computers (i.e., in less than 60 min of CPU time) was needed. We wrote a code
that would specifically satisfy these two requirements. That code is ORBEOS.

ORBEOS 1s a two-dimensional, Eulerian hydrocode that utilizes tabular
equations of state for real substancesj it also has the capability of running
with an ideal gas equation of state. The geometry of the code is spherical
(i.e., * = 0) in which all fluid quantities are independent of the azimuthal
angle ¢. This translates into a system in which the z-axis is the axis of
rotational symmetry, as shown in Fig. l. All fluid quantities depend only on r
and 6. The physics contained in the code is that of a compressible fluid.
(Later, more physics was introduced; however, later versions of the code and the
physics contained therein will not be discussed in this report.) This choice of
limiting the physics was made to isolate the basic aspects of the fluid insta-
bilities without the complications introduced by a multitude of physical

mechanisms.

Fig. 1. Geometry of ORBEOS. All fluid quantities are independent of ¢.




The physical equations chosen for study with the code are, in component

form,
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where

p = fluid density ,
U, = radial fluid velocity |,
Ug = angular fluid velocity s
T = temperature ,
P = scalar pressure ,
€ = specific energy , and

Cy = specific heat at constant density .



Equation (1), above, is the equation for mass conservation, Eqs. (2) and (3) are
the equations of radial and angular momentum density transport, and Eq. (4) is
the energy equation written in terms of the fluid temperature.

Equations (5), (6), and (7) are equations-of-state relations that, for
ORBEOS, are obtained from tables compiled for real substances.

For a discrete variable representation of the above system of equations see
Fig. 2, which is the finite grid representation of the continuous geometry shown
in Fig. 1. Note that the discrete geometry is two—-dimensional (i.e., r - O)
because of the symmetry of the system with respect to ¢. Figure 2 shows the
indexing conventions used in ORBEOS. The computational mesh is uniformly spaced

in both r and O with mesh spacings of Ar in radius, and AO in angle so that

rp = Ar¥(I - 1) (8)
and
0y = 40%(J - 1) . : (9
J=l 2 3 4 AN,
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Fig. 2.

ORBEOS finite grid representation of continuous geometry shown in
Fig. 1.



A crucial aspect of the code is its boundary conditions.

ORBEOS’s boundary conditions were chosen to best represent the physical
systems in which we are interested.

Along the rotational axis of symmetry (J = 1, I = 1, NRMAX) the boundary
conditions are "physical"; they are :

(1) symmetric in p, T, and pUL,

p(I,-1) = p(1,2)

T(1,-1)

T(I1,2)
PUL(T,-1) = pU(1,2)
and 2) reflecting in pUy,
pUe(I)_l) = 'pUe(I,Z) ’ pUe(I)I) =0 .

Along the surface of maximum ©(J = NAMAX; I = 1, NRMAX) the boundary
conditions are reflectings they are

(1) symmetric in p, T, and pU,,

p(I, NAMAX+1) = p(I, NAMAX-1)

T(I, NAMAX+1) -

T(I,NAMAX-1)
pU.(I, NAMAX+1) = pU_(I,NAMAX-1) 3

and (2) reflecting in pUg s

pUy (I, NAMAX+1) = —pUg(I, NAMAX-1) , pUg(I, NAMAX) = O .

At the origin point (J = 1, NAMAX; T = 1) the boundary conditions are
"physical’; they are
(1) symmetric in p, and T,

p(_I)J) =p(2,J)
T(_I)J) = T(Z)J) H

(2) reflecting in pU.,



pUL(=1,3) = =-pU_(2,3) ; pUL(1,3) =0 ;

and (3) pUe(l,J) =0 .
Along the mesh points (I =1, J = 1, NAMAX), all fluid'quantities of a given
type (e.g., density, temperature, momentum density) are set equal to the average
value of that particular quantity for all indices representing the origin point.
Along the surface of maximum r (J = 1, NAMAX; I = NRMAX), two types of
boundary conditions are possible, elther reflecting or transmitting. The
reflecting boundary conditions are

(1) symmetric in p, T, and pUg »

p (NRMAX+1, J) = p(NRMAX-1, J)

T(NRMAX+1, J)

T(NRMAX-1, J)

pUg(NRMAX+1, J) = pUg(NRMAX-1, J) 3

and (2) reflecting in pU.
pU_(NRMAX+1, J) = —pU_(NRMAX-1, J) , pU.(NRMAX, J) =0 .

The transmitting boundary conditions age
(1) p(NRMAX+1, J) = p(NRMAX-1, J)
(2) T(NRMAX+1, J) = T(NRMAX-1, J)
(3) pU (NRMAX+1, J) = pU.(NRMAX-1, J)
and (4) pUe(NRMAX+1, J) = pUe(NRMAX—l, J).

These transmitting boundary conditions in reality represent "no-force" boundary
conditions along the surface of maximum r. This choice of transmitting boundary
is not the only choice possible in a Eulerian code.

The designations "physical", "reflecting”, and "transmitting" assoclated
with a boundary are better understood if we realize that "physical"” indicates
that the geometrical symmetries dictate the boundary conditions. For example,
along the axis of rotational symmetry and at the origin,the geometry requires
that the boundary conditions be given as above. However, the reflecting and
transmitting boundary conditions at the surfaces of maximum © and maximum r are
somewhat artificial. Only for Opax = n/2 1s the boundary condition on the
surface of maximum © a physical boundary condition; at any other value of O, .

the boundary conditions on that surface are only an approximation to reality;



the boundary condition on the surface of maximum r can only be chosen to best
represent the physical problem under investigation.
To obtain the discrete variable representation of Eqs. (1) through (7) an

integration of each equation over the volume element

ri+1/2  O5+1/2
§Vy 4y = 2m i i r? sin 0 dO dr, (10)

ry-1/2  935-172

where

tir1/2 = (rgqq t1)/2 (11)
and

044172 = (0441 + 04)/2 (12)

arecarried outy each result is then divided by Gvij‘ Along the axis of

rotational symmetry and at the origin of coordinates, the divergence theorem,

(13)
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was used.

If these integrations over the volume element, above, are carried out for
each of Eqs. (1) through (4), the following set of finite-difference equations is
obtained. ,

9p
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- (r2u,) ]
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At this point attention must turn to the type of numerical technique to be
used in solving the finite-difference set of Eqs. (14) through (18). In ORBEOS
we used a generalization to spherical geometry of a technique described by
Zalesak in 1978}‘ Note that in using this technique no explicit artificial
viscosity 1s introduced into the code.

Before proceeding to a discussion of the algorithm employed in ORBEOS, we
must introduce the units of measurement used in the code. These units are

neither cgs nor mks, but those commonly used in the laser—fusion program.

Unit of measurement Parameter
cm length
shk , [l(shk) = 10_8(5)] time
g mass
keV temperature
Je , [1(Jk) = 1012(erg)] energy

Note that as yet we have not considered how to advance the

finite-difference equations in time. This is done in the following section.



II. THE ALGORITHM
In May 1978, S. T. Zalesak published a paper in which he describes a new
alternative form for the flux—limiting phase of the flux-corrected transport
(FCT) algorithms of Boris, Book, and Hain.2_4
He points out several advantages of his new flux limiter over the flux
limiters previously used. The new flux limiter
1) 1is generalizable to multidimensions without resort to
Strang-type time splitting,5
2) eliminates "clipping'" for vanishing velocity and reduces
clipping at finite velocities, and
3) makes it possible, for the first time, to carry out
multidimensional FCT calculations for problems not
amenable to Strang-type time splitting, such as those
involving incompressible or nearly incompressible flow.
The third point, above, is most crucial for any algorithm to be used in a hydro-
code whose main purpose is to study fluid stability. To understand this
assertion, consider the basic equation solved by the FCT algorithm,

Qo
E
+
g
trh
]
o

’ (19)

Q
ct

where w 1s a generalized density and f is a generalized flux. Let us consider
specifically the situation where w = p (i.e., a fluid density) and f = py (i.e.,

a fluid momentum density), where v 1s the local fluid velocity. Equation (19)
becomes

ap .
SE.+ v py =0 , (20)

which 1s just the equation for conservation of mass. If we further assume that

the system is two dimensional and Cartesian, Eq. (20) written in component form

becomes

av av
8 L, 80, , B0 x Y)

— - = . 21
TR Y 3y 0 (21)
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Next, assume that v is a known function of p

y=1y) . (22)

Equation (21) can be advanced in time in two ways: by Strang-type time-step
splitting, or by the use of a fully two-dimensional algorithm. A typical
Strang-type time-step splitting scheme is shown below.

VO v (%) (23)
sv_ ©°
hx o _ 6t o 60° o X
- — —_+ 4
p p . (v, — * 0% = ) (24)
vxhx = vx(phX) , (25)
s hx
oX = p® - g¢ (v,hx 800 L o Tx ) (26)
X §x §x ?
X . x
& vy(o ) (27)
sv X
hy _ .x _ §t x 6p* +oX Y
P P - (Vy 6_}’- P Ty ) ’ (28)
v = v (") , and (29)
hy
X Sv
n_ X _g hy 8p™ . x 'y
o o t (vy S e (30)

where 8/8x and §/8y represent finite-difference approximations to the x and y
derivatives, and where the superscript o stands for old, hx for half-step
X, ¥ for full step x, hy for half-step y, and n stands for new. If we
resubstitute into the algorithm and write p" in terms of old quantities, o ,

the expression for p" becomes, to second order in §t,

11



o o
o s (128N 800 2N 800 (0 800, o S
2 9p° 6x 30° 8y X 8x §
v © o o sv ©
+(1_5t y 6o (v°6° +0° )
2 30° Sy Yy &y Sy
av_© o §v_ ° sv_©
106 X 069 o X 06 069 o X
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§ y o %p o X y $p P y 2
+ p% = 2P+ + 2 + 0(St . (31
P Sy 3p° (vx §x P §x 2 Oy 2 Oy )]} ( )) (3D

We see that if va°/6x + Gvy°/6y = 0 in the above algorithm,this is true
only to first order in 8t. The condition that the flow be incompressible is not
met by this Strang-type time-step splitting algorithm.

Alternatively, a fully two-dimensional algorithm, similar to that described
by Zalesak,would be

vo = v(p%) , (32)
sv_° sv . ©°
h _ .o _ St o Gpo + o 590 + 0° X 4 y 33
A AU R G - 5] (33)
v = y(o™) , and (34)
h h sv.h sv b
n o h Sp h Sp h X y
o™ =p el Sty et (o 5y )] (35)

Clearly, if va/Gx + Gvy/éy = 0, then the above algorithm preserves this
condition to all orders of 8§t. Thus, if the flow is incompressible, this
algorithm will mirror that fact exactly.

12




In fluid stability studies this feature of the fully two-dimensional
algorithm is important, because if(g * X)should be physically zero but is not
numerically zero, a virtual source is introduced into the continuity equation
that can lead to anamolous peaks and valleys in the solution.

For reasons mentioned above we used in ORBEOS the fully multidimensional
FCT technique described by Zalesak, though generalized to r — O geometry.

A natural consequence of using a two—dimensional algorithm is the
possibility of treating problems all the way to the origin of coordinates in
spherical geometry, which 1s not true for a one-dimensional FCT algorithm using
Strang-type time-step splitting.

For detalls of the technique, see Ref. 1. The basic philosophy of the
FCT technique,simply stated, is that two algorithms are used to carry out the
transport of the fluid quantities: An algorithm low-order, in space, that is
highly diffusive but gives smooth results, is combined, through the medium of a
flux-limiter, with a high-order algorithm that is very nondiffusive but causes
ripples in the solution. The combination produces an algorithm that is accurate

to any desired order in space and to second order in time.

III. RESULTS

ORBEOS has been used to solve numerous problems; three are discussed
herein: the‘imploding spherical shell, the spitting cone, and the imploding
spherical shell with perturbations. Note that in none of these cases was
artificial viscosity introduced to handle shocks.

We monitored how well the code was conserving mass and total energy. In
each case mass was conserved to an accuracy better than 1%, whereas total energy
was conserved to better than 3Z%.

A word about the peculiarities of the three-dimensional display package
used in ORBEOS (i.e., DISPLA): the radius and angle are displayed in a
rectangular fashion. Three facts must be kept in mind when viewing the figures.

(1) The line at r = 0 in the figures is in reality a point

and all quantities along that line are equal.
(2) The line at © = 0 is the axis of rotational symmetry.
(3) The values along the axis labeled density are, in all

cases, on a base-10 logarithmic scale.

13



A. Imploding Shell

As the name implies, a shell was imploded symmetrically towards the origin
of coordinates. An ideal equation of state was assumed. The maximum angle,

O paxs Was 45°, whereas the maximum radius, r

na x» Was 50 um. The computational

ma
grid contained 51 equally spaced points in the radial direction and 5 equally
spaced points in the angular direction (i.e., Ar = 1 um and AG = 11.250). The
shell was 10 pym thick and centered at the radius r = 75 pm. Shell density was
1.0 g/cm3. The shell contained a gas at density 0.02 g/cm3, referred to as the
"fuel," and the outside of the shell was surrounded by a 10-um-thick layer of a
gas at 0.1 g/cm3. Initially, the pressure of the outside layer of gas was to be
10 times the constant pressure throughout the shell and the fuel. The boundary
condition at Tnax Was reflecting. See Fig. 3.

During the initial phase of the implosion,a shock passes through the shell
and compresses the shell to a density of ~4 g/cm3, as shown in Figs. 4 and 5.
After initial compression, the shell begins to move inward compressing the low-
density fuel. As the shell implodes, several shocks pass into the fuel and
reflect at the origin. As the shell approaches the origin,the densities of both
the shell and the fuel increase (compare Fig. 6 with Figs. 4 and 5) until the
shell and fuel configuration reflects at the origin. Immediately after
reflection (Fig. 7) the density is ~36 g/cm3.

In this problem we tested the capabilities of ORBEOS in the radial
direction without introducing the complications of angular motion. Reflection

of the shocks at the origin of coordinates was of particular interest.

B. Spitting Cone

A cone of 45° half-angle (i.e., Omax) was chosen with a constant density of

1.0 g/cm3 throughout. The temperature in a sheet between 0O = 25° and 0 = 459,
running from r = 0 to r = r_ .. on the outside of the cone, was chosen to be 25
times higher than the temperature inside this hot sheet. Again, an ideal gas
was chosen as the computational medium. This initial configuration leads to an
implosion of the gas in the hot sheet towards the axis of rotational symmetry,
0 = 0°, The imploding shock reaches the axls of rotational symmetry near the

origin first, and proceeds outward in r toward r hence, the name Spitting

max’
Cone. Figures 8, 9, and 10 show the time evolution of this system.

14



The number of computational points in the radial direction was 26, whereas
in the angular direction 25 points were used. The increments in radius and
angle were uniform and equal to Ar = 1 um and AG = 1.87°, respectively. In this
problem we tested the capabilities of ORBEOS in both the angular and radial
directions. How the code handled shocks reflected at the axis of rotational
symmetry was of particular interest. The boundary condition at Coax Was

ax
reflecting.

C. TImploding Sphere with Perturbations

A shell was assumed to implode a low-density gas. However, the shell
contained a Taylor—unstable sinusoidal perturbation in radius on its outside
surface. This problem models the Taylor instability in a converging spherical
system. An aluminum equation of state was chosen for the computational )
medium. The maximum angle, emax’ was 90° so that the reflecting boundary
condition on the surface,Omax,was physical; this represents a simulation of a
full sphere. The maximum radius was 50 um. The computational grid contained 51
equally spaced points in radius and 36 equally spaced points in angle (i.e.,

Ar = 1 um and A® = 2.579).
The initial fluid density on the mesh is given algebraically as

p = 0.02 g/cm3 , r < 36 um

p = 1.0 g/cn> , 36 < r < 39 um

p = (0.1, pg) g/cm3, 39 <r< 50 um |,
where

pg = exp{[r[l - 0.022 cos (6n0/0_, )] - 3912/p%} (36)
and

D = 5.0/ VY-%n (0.1) ym . (37)

15



and the boundary condition at r

The initial pressure was
P=290 Jk/cm3 r < 39 ym ,
P=1.0x 100% Jk/em® 39<r< 50 um ,

max ¥as reflecting.

The wavelength of the initial perturbation was ~21 pm. Figure 11 shows the

initial density profile. As the system evolved,the perturbations grew in

amplitude as seen in Figs. 12, 13, and 1l4.

A diagnostic was introduced into the code specifically for this problem.

2
[ou “dv
a = , (38)
fo(u,2 + Ug?)av

which is the ratio of total radial kinetic energy to total kinetic energy. In

this problem even though the fingers appear to have grown to large amplitude,

the smallest value of a was ~0.97, which means that only 3% of the total kinetic

energy was in the angular direction. Therefore, the structures form predominant-

ly due to differences in the radial momentum at different angles.
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Fig. 3. 1Initial density configuration of imploding spherical shell.

for details.

See text
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Fig. 4.

Shock beginning its passage through spherical shell.
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Fig. 5.

Compression of original shell after passage of shock.

19




20

1A )

NENSITY

Fig. 6.




DENSITY

VR X "W L. AN R U WAL NCTY.T

Shell after rebound from the origin.

Fig. 7.
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Fig. 8. Initial density configuration of the spitting—cone problem.
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Fig. 9. Shock wave just reaching the axis of rotational symmetry near the
origin of coordinates. Note the structure of the axially directed
shock.
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Fig. 10.

Axial shock propagating along the axis of rotational symmetry.
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Initial density configuration for imploding spherical shell with

perturbations.

Fig. 11.

See text for details.
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Shell after passage of shock.
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Development of Taylor instability on outside of the shell.
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001025 $ 5.00 A02 151175 $11.00 A08 301.325 $17.00 Al4 451475 $23.00 A20
026-050 6.00 A03 176-200 12.00 A9 326-350 18.00 AlS 476-500 24.00 A2
051075 7.00 AD4 201-225 13.00 Al0 351-375 19.00 Al6 501-525 25.00 A22
076-100 8.00 A0S 226-250 14.00 All 376400 20.00 A7 526-550 26.00 A23
101125 9.00 A06 251-27S 15.00 Al2 401425 21.00 AlS8 551-575 27.00 A24
126.150 10.00 A07 276-300 16.00 A1l 426450 22,00 Al9 5§76-600 28.00 A2S
601-up t A99

tAdd $1.00 for each additional 25-page increment or portion thereof from 601 pages up.




