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ORBEOS :

A SPHERICAL, FULLY MULTIDIMENSIONAL

FLUX-CORRECTED TRANSPORT HYDRODYNAMICS CODE

by

Anthony J. Scannapieco

ABSTRACT

ORBEOS is a two-dimensional (r-~), Eulerian hydro-
dynamics code with tabular equation of state (EOS), that
uses a fully multidimensional flux-corrected transport
algorithm to solve the fluid equations. This
flux-corrected transport (FCT) algorithm, developed by
S. T. Zalesak, is Cartesian and accurate to any desired
order in space and to second order in time. The
algorithm used in ORBEOS was modified for spherical
geometry and is accurate in space to fourth order.
Although this algorithm has been used before to solve
the continuity equation, it is used in ORBEOS for the
first time as the basic algorithm in a full hydrocode.
The physical equations solved in the code and their
finite-difference representations are described, and it
is shown why the fully multidimensional algorithm better
represents incompressible flows and does not lead to
virtual s,ources as does the older one-dimensional FCT
algorithm using Strang-type time-step differencing to
handle multidimensional problems. Several test problems
are presented and discussed.



I. ORBEOS

Studies of fluid instabilities in imploding spherical systems made it

obvious that a computer code that could follow the evolution of the instabil-

ities into the far nonlinear regime and run in a reasonable time on the CDC 7600

computers (i.e., in less than 60 min of CPU time) was needed. We wrote a code

that would specifically satisfy these two requirements. That code is ORBEOS.

ORBEOS is a two-dimensional, Eulerian hydracode that utilizes tabular

equations of state for real substances; it also has the capability of running

with an ideal gas equation of state. The geometry of the code is spherical

(i.e., r - Q) in which all fluid quantities are independent of the azimuthal

angle $. This translates into a system in which the z–axis is the axis of

rotational symmetry, as shown in Fig. 1. All fluid quantities depend only on r

and Q. The physics contained in the code is that of a compressible fluid.

(Later, more physics was introduced; however, later versions of the code and the

physics contained therein will not be discussed in this report.) This choice of

limiting the physics was made to isolate the basic aspects of the fluid insta-

bilities without the complications introduced by a multitude of physical

mechanisms.

.

.

Fig. 1. Geometry of ORBEOS. All fluid quantities are independent of $.
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The physical equations chosen for study with the code are, in component

form,

(1)

spur

at +A~(r2PUrUr) +rS~ne+(PUrU6 sin@) -P5!!! =-Y
r2 ar r ar ‘

(2)

.

g+la
at

——
r2 ar

(r2U T)+ 1r —~ (UeT sin~) =
r sin O ao

p = P(P,T) ,

s = ~(P,T) ,

Cv =(~) ,

where

P=

u= =

U8 =

T=

P=

&=

Cv =

P

fluid density ,

radial fluid velocity ,

angular fluid velocity ,

temperature ,

scalar pressure ,

specific energy s and

specific he”atat constant density .

9 (4)

(5)

(6)

(7)
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Equation (l), above, is the

the equations of radial and

the energy equation written

equation for mass conservation, Eqs. (2) and (3) are

angular momentum density transport, and Eq. (4) is

in terms of the fluid temperature.

Equations (5), (6), and (7) are equations-of-state relations that, for

ORBEOS, are obtained from tables compiled for real substances.

For a discrete variable representation of the above system of equations see

Fig. 2, which is the finite grid representation of the continuous geometry shown

in Fig. 1. Note that the discrete geometry is two-dimensional (i.e., r - ~)

because of the symmetry of the system with respect to $. Figure 2 shows the

indexing conventions used in ORBEOS. The computational mesh is uniformly spaced

in both r and O with mesh spacings of Ar in radius, and AO in angle so that

rl = Ar*(I - 1) , (8)

and

‘J = A@*(J - 1) . (9)

,

Fig. 2. ORBEOS finite grid representation of continuous geometry shown in
Fig. 1.
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A crucial aspect of the code is its boundary conditions.

ORBEOS’S boundary conditions were chosen to best represent the physical

systems in which we are interested.

Along the rotational axis of symmetry (J = 1, I = 1, NRMAX) the boundary

conditions are “physical”; they are
.

(1) symmetric inp, T, andpUr,

P(I,-l) =P(I,2)

T(I,-1) = T(I,2)

PUr(I,-l) = PUr(I,2) ;1

and 2) reflecting in PUgj

PU6(I,-1) = 7)U6(I,2) , PU6(I,1) = O ●

Along the surface of maximum O(J = NAMAX; I = 1, NRMAX) the boundary

conditions are reflecting; they are

(1) symmetric inp, T, and PUr,

,

P(I, NAMAX+I) =P(I, NAMAX-1)

T(I, NAMAX+l)= T(I;NAMAX-1)

PUr(I, NAMAX+l) = PUr(I,NAMAX-l) ;

and (2) reflectingin pUe$

pU6(I, NAMAX+l) = ~U6(I, NAMAX-1) , PU6(I, NAMAX) = O .

At the origin point (J = 1, NAMAX; I = 1) the”boundary conditions are

“physical”; they are

(1) symmetric inp, and T,

p(-l,J) = p(2,J)

T(-l,J) = T(2,J) ;

(2) reflecting in pUr,



PU=(-l,J) = -PU=(2,J) ; PUr(l,J) = O ;

and (3) PUe(l,J) =0 .

Along the mesh points (I = 1, J = 1, NAMAX), all fluid quantities of a given

type (e.g., density, temperature, momentum density) are set equal to the average

value of that particular quantity for all indices representing the origin point.

Along the surface of maximum r (J = 1, NAMAX; I = NRMAX), two types of

boundary conditions are possible, either reflecting or transmitting. The

reflecting boundary conditions are

(1) symmetric in P, T, and PUe ,

p(NRMAX+l, J) = P(N’RMAX-l, J)

T(NRMAX+l, J) = T(NRMAX-1, J)

pU~(NRMAX+l, J) = ~U8(NRMAX-1, J) ;

and (2) reflecting in PUr ;

pUr(NRMAX+l, J) = -PUr(NRNAX-l, J) , PUr(~, J) = O ●

The transmitting boundary conditions are

(1) P(NRMAX+l, J) ‘P(NRMAX-l, J)

(2) T(NRMAX+l, J) =T(NRNAX-1, J)

(3) PU=(NRMAX+l, J) =pUr(NRMAX-l, J)

and (4) PUQ(NRMAX+l, J) ‘PIJe(NH-l, J).

These transmitting boundary conditions in reality represent “no-force” boundary

conditions along the surface of maximum r. This choice of transmitting boundary

is not the only choice possible in a Eulerian code.

The designations “physical”, “reflecting”, and “transmitting” associated

with a boundary are better understood if we realize that “physical” indicates

that the geometrical symmetries dictate the boundary conditions. For example,

along the axis of rotational symmetry and at the origin,the geometry requires

that the boundary conditions be given as above. However, the reflecting and

transmitting boundary conditions at the surfaces of maximum (3and maximum r are

somewhat artificial. Only for Omax = T/2 is the boundary condition, on the

surface of maximum Q a physical

the boundary conditions on that

6

boundary condition;

surface are only an

at any other value of Gmax

approximation to reality;

9
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the boundary condition on the surface of maximum r can only be chosen to best

represent the physical problem under investigation.

To obtain the discrete variable representation of Eqs. (1) through (7) an

integration of each equation over the volume element

ri+l/2 Qj+l/2

/! r2 sin @ dCldr,~“ij = 2=

ri-1/2 @j-1/2

where

ri+l/2 = (ri+l +ri)/2 ,

and

~j+l/2 = (ej+~+ej)/2

(lo)

(11)

(12)

arecarried out; each result is then divided by 6Vij. Along the axis of

rotational symmetry and at the origin of coordinates, the divergence theorem,

$A”dS=jV” AdV ,

s- - v- -

(13)

was used.

If these integrations over the volume element, above, are carried out for

each of Eqs. (1) through (4),the following set of finite-difference equations is
/

obtained.

a~ij + 3

TE- 31 [[r2purli+l/2,j -[r2pur)i ~/2,jl
(ri+l/23 - ri-1/2

3bi+l/22 - ri_l/22)[(PLTg sin ‘)i,j+l/2 - (PUe SinQ)i,j-1/21

+ . 0, (14)
2(ri+l/23 - ‘i-1/2 3)(COS Qj_l/2 - Cos ej+l/2)



a(Pur)ij +

at

3
31 [(r2pururli+112, j-{r2pururli_1f 2,jl

(ri+l/23 - ri-1/2

3(ri+l/22 - ri_l/22)[(pUrUe sin~)i,j+l/2 - (P”rue ‘in ‘)i,j-l/2]

+

2(ri+l/23 - ‘i-l/23)(c0s ‘j-l/2 - Cos ‘j+l/21

(p%%) ~ ~ + ‘pi+l/2,j - ‘i-l/2, j) = ~
9

(ri+l/2
9

ri - ri-1/2)

(15)

abue)ij + 3
[(r2PU~Ur)i+1,2, j - (r2pueur)~_~/2, j]

at
(q+~/23 - ri-1/23,

3(ri+l/22 - ri_~/22)[(PUeUe sin@)i,j+l/2 - (p”fJufl ‘in ‘)i,j-l/2]

+

2(ri+l/23 - ri_l/23)(cos ‘j-l/2 - Cos ‘j+l/2)

(Pqjq) ‘pi,j+l/2
+

- ‘i,j-l/2) = ~
9

‘i
i,j + ri(Qj+l/2

- ‘j-l/2)

aTi,j
+

3

at
31 [(r2Tur)i+l/2, j - (r2Tur)~_~/2, j]

(ri+~/23 - ri-1/2

3(ri+l/22 - ri_l/22)[(TUe sinQ)i,j+l/2 - (TUe sin @i, j-1/21

+

2(ri+l/23 - ri-1/23)(COS ‘j_~/2 - Cos ‘j+l/2)

●

.

.
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Oi,j-Cv
i,jpi,jTi>j

_ (aP/aT)i, jp~,j]

+
cvi jPi,j(ri+l/23 - ri-1/23,

9

x [(ri+l/22ur )+(ri+~/22-ri_~/22)
i+l/2, j

- ri_l/22Ur
i-1/2,j

)(in ~j+l/2”e~ j+l/2 _ ~inoj_l/2uei,j-l/2 ] = ()

x
2[COS ‘ej-1/2

, and
- Cos oj+l/2J

L5Vi,j==* (ri+l/23 - ri-1/23)(COS Qj-1/2 - Cos Qj+l/2) ●

(17)

(18)

At this point attention must turn to the type of numerical technique to be

used in solving the finite-difference set of Eqs. (14) through (18). In ORBEOS

we used a generalization to spherical geometry of a technique described by

Zalesak in 1978.1 Note that in using this technique no explicit artificial

viscosity is introduced into the code.

Before proceeding to a discussion of the algorithm employed in ORBEOS,we

must introduce the units of measurement used in the code. These units are

neither cgs nor inks,but those commonly used in the laser-fusion program.

Unit of measurement Parameter

cm length

shk , [l(shk) = 10-8(s)] time

g mass

keV temperature

.nc, [l(Jk) ~ 1012(erg)] energy

Note that as yet we have not considered how to advance the

finite-difference equations in time. This is done in the following section.

9



II. THE ALGORITHM

In May 1978, S. T. Zalesak published a paper in which he describes a new

alternative form for the flux-limiting phase of the flux-corrected transport

(FCT) algorithms of Boris, Book,and Hain.2-4

He points out several advantages of his new flux limiter over the flux

limiters previously used. The new flux limiter

1) is generalizable to multidimensions without resort to

Strang-type time splitting, 5

2) eliminates “clipping” for vanishing velocity and reduces

clipping at finite velocities, and

3) makes it possible, for the first time, to carry out

multidimensional FCT calculations for problems not

amenable to Strang-type time splitting, such as those

involving incompressible or nearly incompressible flow.

The third point, above, is most crucial for any algorithm to be used in a hydro-

code whose main purpose is to study fluid stability. To understand this

assertion, consider the basic equation solved by the FCT algorithm,

aw
+V”f=o,

3’F--

where w is a generalized density and f is a generalized flux.

specifically the situation where w ~ P (i.e., a fluid density)

(19)

Let us consider

and ~ s p~ (i.e.,

a fluid momentum density) , where ~ is the local fluid velocity. Equation (19)

becomes

ap
+V”

z-

which is just

the system is

becomes

pv=o, (20)

the equation for conservation of mass. If we further assume that

two dimensional and Cartesian, Eq. (20) written in component form

ap ap+v ap avx 3V
~+v

x ax Y-
+p(=+ +)=0 ●

10

(21)



Next, assume that ~ is a known function of p

Equation (21) can be advanced in time in two ways: by Strang-type time-step

splitting, or by the use of a fully two-dimensional algorithm. A typical

Strang-type time-step splitting scheme is shown

v 0 = VXbo) ,x

v hx hx
x = VX(P ) ,

~ hx

Px= PO- at (Vxhxw+po
(SX +)

‘Yx
= VY(PX) )

phy=px_~ z (VX6PX
Y ~

+

hy
‘Y

= Vy(Phy) , and

Pn=Px -
h ~Px +dt (Vy y ~

where 6/6x and cS/6yrepresent

dVyx
Px —)6y

~vyhy

Px —)ay

finite-difference

below.

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

approximations to the x and y

derivatives, and where the superscript o stands for old, hx for half-step

x, x for full step x, hy for half-step y, and n stands for new. If we

resubstitute into the algorithm and write pn in terms of old quantities, o ,

the expression for pn becomes, to second order in dt,



I

avxo~po _ at avyodpo
Pn=Po - 6t((l-9— —

2 3P0 6X
—w) (Vx”x+pod;o)
ap” 6X

~t a~yo ~pO
+(1- ————

2 3P0
~) (’Jyc’g+Po~)

We see that if 6vxo/6x + 6vy0/6y ~ O in the above algorithm,this is true

only to first order in tit. The condition that the flow be incompressible is not

met by this Strang-type time-step splitting algorithm.

Alternatively, a fully two-dimensional algorithm, similar to that described

by Zalesak,would be

f = qpo) ,

~h=po_~
6VX0 dvy”

z [V06P0
o+Vodp

_+po
x x Y tiy (—+ —6X &y ‘]

9

Vh = ~(ph) , and

h 13vxh dvyhhtiPh+vh~+ph(—
Pn=Po- at [Vx ~

dy ‘]
+— .

Y Csy 6X

(32)

(33)

(34)

(35)

I

.

Clearly, if 6vx/6X + 6vy/~Y ~ 0, then the above algorithm preserves this

condition to all orders of at. Thus , if the flow is incompressible, this

algorithm will mirror that fact exactly.

12
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In fluid stability studies this feature of the fully two-dimensional

algorithm is important, because if(~ “ ~)should be physically zero but is not

numerically zero, a virtual source is introduced into the continuity equation

that can lead to anamolous peaks and valleys in the solution.

For reasons mentioned above we used in ORBEOS the fully multidimensional

FCT technique described by Zalesak, though generalized to r - Elgeometry.

A natural consequence of using a two-dimensional algorithm is the

possibility of treating problems all the ~ to the origin of coordinates in——

spherical geometry, which is not true for a one-dimensional FCT algorithm using

Strang-type time-step splitting.

For details of the technique, see Ref. 1. The basic philosophy of the

FCT technique,simply stated, is that two algorithms are used to carry out the

transport of the fluid quantities: An algorithm low-order, in space, that is

highly diffusive but gives smooth results, is combined, through the medium of a

flux-limiter, with a high-order algorithm that is very nondiffusive but causes

ripples in the solution. The combination produces an algorithm that is accurate

to any desired order in space and to second order in time.

III. RESULTS

ORBEOS has been used to solve numerous problems; three are discussed

herein: the imploding spherical shell, the spitting cone, and the imploding

spherical shell with perturbations. Note that in none of these cases was

artificial viscosity introduced to handle shocks.

We monitored how well the code was conserving mass and total energy. In

each case mass was conserved to an accuracy better than 1%, whereas total energy

was conserved to better than 3%.

A word about the peculiarities of the three-dimensional display package

used in ORBEOS (i.e., DISPLA): the radius and angle are displayed in a

rectangular fashion. Three facts must be kept in mind when viewing the figures.

(1) The line at r = O in the figures is in reality a point

and all quantities along that line are equal.

(2) The line at Q = O is the axis of rotational symmetry.

(3) The values along the axis labeled density are, in all

cases, on a base-10 logarithmic scale.

13



A. Imploding Shell

As the name implies, a shell was imploded symmetrically towards the origin

of coordinates. An ideal equation of state was assumed. The maximum angle,

@max, was 45° , whereas the maximum radius, rmax, was 50 vm. The computational

grid contained 51 equally spaced points in the radial direction and 5 equally

spaced points in the angular direction (i.e., Ar = 1 pm and AQ = 11.250). The

shell was 10 ~m thick and centered at the radius r = 75 pm. Shell density was

1.0 g/cm3. The shell contained a gas at density 0.02 g/cm3, referred to as the

“fuel,” and the outside of the shell was surrounded by a 10–pm–thick layer of a

gas at 0.1 g/cm3. Initially, the pressure of the outside layer of gas was to be

10 times the constant pressure throughout the shell and the fuel. The boundary

condition at rmax was reflecting. See Fig. 3.

During the initial phase of the implosion,a shock passes through the shell

and compresses the shell to a density of -4 g/cm3, as shown in Figs. 4 and 5.

After initial compression, the shell begins to move inward compressing the low-

density fuel. As the shell implodes, several shocks pass into the fuel and

reflect at the origin. As the shell approaches the origin,the densities of both

the shell and the fuel increase (compare Fig. 6 with Figs. 4 and 5) until the

shell and fuel configuration reflects at the origin. Immediately after

reflection (Fig. 7) the density is -36 g/cm3.

In this problem we tested the capabilities of ORBEOS in the radial

direction without introducing the complications of angular motion. Reflection

of the shocks at the origin of coordinates was of particular

B. Spitting Cone

A cone of 45° half-angle (i.e., @mx) was chosen with a
a

interest.

constant density of

1.0 g/cm~ throughout. The temperature in a sheet between O = 25° and @ = 45°,

running from r = O to r = rmax on the outside of the cone, was chosen to be 25

times higher than the temperature inside this hot sheet. Again, an ideal gas

was chosen as the computational medium. This initial configuration leads to an

implosion of the gas in the hot sheet towards the axis of rotational symmetry,

Q = OO. The imploding shock reaches the axis of rotational symmetry near the

origin first, and proceeds outward in r toward rmax; hence, the name Spitting

Cone. Figures 8, 9, and 10 show the time evolution of this system.

.

.
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The number of computational points in the radial direction was 26, whereas

in the angular direction 25 points were used. The increments in radius and

angle were uniform and equal to Ar = 1 ~m and A(3= 1.87°, respectively. In this

problem we tested the capabilities of ORBEOS in both the angular and radial

directions. How the code handled shocks reflected at the axis of rotational

symmetry was of particular interest. The boundary condition at rmax was

reflecting.

c. Imploding Sphere with Perturbations

A shell was assumed to implode a low-density gas. However, the shell

contained a Taylor-unstable sinusoidal perturbation in radius on its outside

surface. This problem models the Taylor instability in a converging spherical

system. An aluminum equation of state was chosen for the computational
-

medium. The maximum angle, Gmax, was 90° so that the reflecting boundary

condition on the surface,~max,was physical; this represents a simulation of a

full sphere. The maximum radius was SO Mm. The computational grid contained 51

equally spaced points in radius and 36 equally spaced points in angle (i.e.,

Ar = 1 ~m and AEl= 2.570).

The initial fluid density on the mesh is given algebraically as

p = 0.02 g/cm3 , r < 36 pm

P = 1.0 g/cm3 , 36grG39Bm

P = (0.1, f3e)g/cm3, 39<r<50~m,

where

Pe = exp{[r[l - 0.022 COS (6mG/E)max)] - 39]2/D2} ,

and

D = 5.0/ ~-gn (0.1) ~m .

(36)

(37)

15



The

P=

P’

initial pressure was

O Jk/cm3 r g 39 ym ,

1.0 x 10-4 Jk/cm3 39<r G50pm ,

and the boundary condition at rmax was reflecting.

The wavelength of the initial perturbation was -21 pm. Figure 11 shows the

initial density profile. As the system evolved,the perturbations grew in

amplitude as seen in Figs. 12, 13, and 14.

A diagnostic was introduced into the code specifically for this problem.

~pUr2dV

a= s

/P(Ur2 + Ue2)dV

(38)

which is the

this problem

the smallest

ratio of total radial kinetic energy to total kinetic energy. In

even though the fingers appear to have grown to large amplitude,

value of a was -0.97, which means that only 3% of the total kinetic

energy was in the angular direction. Therefore, the structures form predominant-

ly due to differences in the radial momentum at different angles.
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Fig. 3. Initial density configuration of imploding spherical shell. See text
for details.
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Fig. 4. Shock beginning its passage through spherical shell.
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Fig. 5. Compression of original shell after passage of shock.
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Fig. 6. Imploding shell just prior to hitting the origin of coordinates,
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Fig. 7. Shell after rebound from the origin.
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Fig. 9. Shock wave just reaching the axis of rotational symmetry near the
origin of coordinates. Note the structure of the-axial~y directed
shock.
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Fig. 10. Axial shock propagating along the axis of rotational symmetry.
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11. Initial density configuration for imploding spherical shell with
perturbations. See text for details.
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Fig. 12. Shell after passage of shock.

,

i,

I

I

,

.

26



r DENSITY

Fig. 13. Development of Taylor instability on outside of the shell.
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Fig. 14. Compare size of Taylor spikes at this later time with those in
Fig. 13.
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