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HAMILTON’S PRINCIPLE AND NUMERICAL
~OLUTION OF THE VLASOV EQUATIONS

(H. R. Lewis)

The Vlasov system of integro-partial

differential equations, expressed in terms of

Lagrangian variables for the particles and Euler-

ian variables for the electromagnetic field, can be

derived from Hamilton’s principle by using the

Lagrangian that was given by Lo# and by Stur -

rock. 2 That Lagrangian can be generalized to

include systems in which there are present any of

a large class of material media that exhibit non-

linear polarizability and magnetizability, and also

to include forces of nonelectromagnetic character.

These possibilities allow convenient imposition of

certain kinds of particle and Yield boundary con-

ditions for finite systems. Not only can the exact

equations of motion for these systems be derived

from Hamilton’s principle, it can also be used to

derive approximations to the exact equations of

motion. The approximate system of equations to

be emphasized here is a system of ordinary dif-

ferential equations in time, although the basic

method can be used to derive other approximate

systems of equations --i. e. , a system of difference

equations, The method can be applied to any

Lagrangian system.

The first step in solving equations

approximately by any method is to choose the

form in which the desired functions are to be

represented. A common way of representing a

function of continuous variables approximately is

>= 0- specify the function on a mesh, i. e. , to specify

%~g ,_ t~e functi~n at ‘each of a set” of discrete values of
:-
‘~~ ~the arguments. Another method of representation
?~

= 0 ‘– frequently used is to approximate the function by:=- ~
if=

.–~;

a linear combination of a finite number of linearly
z~
n======= ~~dependent basis functions. The type of rep-

~~~ ; resentation chosen is really a combination of these

a-m : .~two, because the differential equations in time that
~ L
~. are derived must gene rally be solved numerically,

.

whereas the dependence of the unknown functions

on other variables will be represented by linear

combinations of linearly independent basis functions.

Let g(x, t) be one of the functions to be represented,

where t is time and x denotes the remaining argu-

ments of g. For each particular value of t,

g(x, t) may be approximated by a linear combination

of a fhite number of linearly independent basis

functions, say $i(x). The coefficients in the expan-

sion are functions of t only, so that the representa-

tion of g(x, t) is

g(x, t) =i~~ ai (t)*i(x). (1)

Suppose that all the unknown functions are approxi-

mated in this fashion: the problem then is to de-

rive equations that determine the time evolution of

the time-dependent coefficients and to solve those

equations. The differential euqations that are

chosen to determine the time evolution of the co-

efficients will clearly be ordinary differential

equations, and, from the standpoint of numerical

analysis, that in itself may be a distinct advantage

over having to work with a system of integro -

partial differential equations. By choosing the

basis functions appropriately, the system of ordin-

ary differential equations can be put into a form for

which there are standard finite-difference methods

of numerical solution whose properties are rela-

tively well understood. At least one such method is

formulated in a way that guarantees numerical

stabiLity. 3 ‘4

The mere fact of requiring that the unknown

functions be approximated in the way illustrated by

Eq. (1 ) does not specify the differential equations

that determine the time evolution of the coefficients.

In fact, there are infinitely many systems of equa-

tions for the coef<lcients that can be derived from

the exact integro -differential equations. The

solutions of these different systems of equations

will differ in the fidelity with which they represent

the time evolution of the unknown functions , and it

1 I
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is desirable to have a criterion for choosing one ,11 THE MOTION OF A TIME-DEPENDENT

the infinitely many systems. The method proposed HARMONIC OSCILLATOR , AND THE
MOTION O F A CI-LAI?f; ED PARTICLE IN

for choosing a system is to substitute the approx- A CIJLSS OF TIME -OFPENDENT, AXIALLY

imate representations of the unknown functions into SYMMETRIC ELECTROMAGNETIC FIELDS

the Lagrangian density and then to determine the (H. R. Lewis)

system of differential equations for the time-
The exact invariant described for a time -

dependent coefficients by applying Hamilton’s
dependent harmonic oscillato# ‘z can be used to

principle. The only difference between this procedure
derive an elegant representation of the general

and using Hamiltonis principle to derive the exact
solution of the equations of motion for the oscilla -

equations is that the functional variations are
tor. This solution can be used to obtain the general

restricted to be within the class of functions
solution of the equations of motion for a charged

chosen for approximating the unknown functions.

In some useful sense, the system of equations so
particle in certain electromagnetic fields.

derived should approximate e the exact equations as The equations of motion for a time-dependent

weIl as is possible. harmonic oscillator are equivalent to those for a

It may be hoped that this procedure based
particle moving in a certain type of electromagnetic

field which is a superposition of two components.
on Hamilton!s principle will prove pa reticularly

One component is a time-dependent, anally
advantageous for nonlinear systems, such as the

symmetric, uniform magnetic field and the assoc -
Vlasov system, and that some useful properties

iated induced electric field that corresponds to
of the approximate system of equations can be

zero charge density. The other component is the
derived. Details of the method are described in

radial electric field produced by a time-dependent,
a LASL Report. 5

axially symmetric, uniform charge distribution.
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The quantities q and n may be complex.
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Equations (1 ) and (2) can be simplified

significantly by replacing the variables q and t by

variables Q and 7 defined by

It is easily verified that the expression for I in

terms of Q and T is

(4)

(2’)

The differential equation for Q as a function of

T corresponding to Eq. (1 ) is

d2Q—+ Q=O. (5)
d72

The general solution of Eq. (5) is

Q . AeiT + Be”iT, (6)

where A and B are arbitrary complex constants,

and I, A, and B are related by

I = 2AB.

Therefore, the general solution of Eq. (5) can be

written as

i~o . ~B, and ~ and To are arbitrary
where ue
real constants. Equation (7) is an elegant rep-

resentation of the general solution of lZq. (1 ).

There is one representation for each p that satis -

fies Eq. (3).
———-- Q

r .. .-
Charged Particle

Consider a particle of mass m and charge e

moving in an electromagnetic field defhed by the

potentials

.C
..-...

and—..

A=$3(t):x G
-—..-. . . . .. —.. .

1(8)

I
A

where r is the position vector, k is a unit vector—

along the symmetry axis, > is distance from the

symmetry axis, x and y are carte sian coordinates

perpendicular to the symmetry axis, and ~(t) and

B(t) are arbitrary piecewise continuous functions.

The electric and magnetic fields are

g=. vq). :~

=-~q(tj (x~+yf)-~~(t)txg

~=VXA

. B(t)~,

where ? and ~ are unit vectors along the positive

x and y directions, respectively. The equations

of motion for the particle are

& = -$ I)(L)X i- ~ ;(t)y i- B(t);

t

(9)
ey = - :Il(t)y - ; Jl(t)x - B(t);,

where

C.&.

The equations of motion can be written simply in

terms of a complex variable, q, defined by

iO - ~~t B(t’)dt’
re =x+iy=qe . (lo)

where (11)

The quantities r and 9 are the usual cylindrical

coordinates of the particle. The equation satisfied

by q is

c2i + &(t)q = o,

d, (t) = ~ B2 (t) + ~(t) I

The function 02(t) may be negative.

Since Eq. (1 1 ) is that of a time-dependent

harmonic oscillator, we can now combine Eqs.

(7) and (10 ) to obta~n expressions for r and .9 as

functions of t. The result is

~ IQ[R=L=

and

9 = argQ - ~~t” B(t’)dt’, I

where p is q solution of Eq. (3), T is defined by

Eq. (4), and where

(12)
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‘B(t) ]p9=r2[@+2c
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