LAMS-3067

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA ° LOS ALAMOS NEW MEXICO

LOS ALAMOS CRITICAL-MASS DATA

LEGAL NOTICE

. .

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

1

Ç,

٢

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price \$ 1.50. Available from the

Office of Technical Services U. S. Department of Commerce Washington 25, D. C.

. . . .

LAMS-3067 UC-46, CRITICALITY STUDIES TID-4500 (28th Ed.)

LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO

REPORT WRITTEN: April 1964 REPORT DISTRIBUTED: May 6, 1964

LOS ALAMOS CRITICAL-MASS DATA

by

H. C. Paxton

Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission

All LAMS reports are informal documents, usually prepared for a special purpose and primarily prepared for use within the Laboratory rather than for general distribution. This report has not been edited, reviewed, or verified for accuracy. All LAMS reports express the views of the authors as of the time they were written and do not necessarily reflect the opinions of the Los Alamos Scientific Laboratory or the final opinion of the authors on the subject.

×,

¥

ABSTRACT

J

۶.

•

:_

Tabulated are critical masses of simple systems, which have been measured at Los Alamos through the year 1963.

с. С

TABLE OF CONTENTS

.

۳.

۹.

.-

-

																							Ρ	age
ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
INTRODUCT	101	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9

TABLES

IAl	Highly Enriched U Metal, Unreflected 11
IA2	U(93.4) - U(N) Metal Cylinders, Unreflected
IA3	U(93.3) - U(N) Metal Cylinders, 15.00" Diameter, Unreflected
IBl	Enriched U Metal Sphere or Pseudosphere, U(N) Reflector
IB2	Enriched U Metal Cylinder, Pseudocylinder or Parallelepiped, U(N) Reflector 15
IB3	Miscellaneous Enriched U Metal, U(N) Reflector
ICl	Highly Enriched U Metal, Reflector of Th, W, WC, Mo or Mo ₂ C
IC2	Highly Enriched U Metal, Reflector of Zn, Cu, Ni, Co, or Fe
IC3	Highly Enriched U Metal, Reflector of Ti, Al, Al ₂ O ₃ , Mg, Be, or BeO
IC4a	Highly Enriched U Metal, Complete Graphite Reflector

5

TABLES (Continued)

...•

. .

>

τ.

-

		Page
IC4b	Highly Enriched U Metal, Partial Graphite Reflector	21
1C5	Highly Enriched U Metal, Reflector of D_2^0 (99.8%)	22
IC6a	Highly Enriched U Metal, Complete Reflector of H ₂ 0 or Polyethylene	23
IC6b	Highly Enriched U Metal, Complete Reflector of Paraffin	24
IC6c	Highly Enriched U Metal, Partial Reflector of H ₂ 0, Polyethylene, Lucite, or Paraffin	25
IC7	Highly Enriched U, Mixed Reflector	26
IIAl	U(93.3) Metal Cylinders Diluted with Fe, Ni, Cu, or Zn, 15" Diameter, Unreflected	27
11A2	U(93.3) Metal Cylinders Diluted with Mo, Ta, or W, 15" Diameter, Unreflected	28
IIA3	U(93.3) Metal Cylinders Diluted with Al, Zr, or Hf, 15" Diameter, Unreflected	29
IIBl	U(93.3) - Graphite Cylinders, Unreflected	30
IIB2a	Graphite-Moderated Highly-Enriched U, Reflector of Graphite	31
IIB2b	Graphite-Moderated Highly-Enriched U, Reflector of Be (Plus some Graphite)	32
IIC 1	Lucite Moderated U(93.16), Unreflected	33
IIC2a	Lucite Moderated U(93.16), \geq 6" Thick Lucite Reflector	34
IIC2b	Lucite Moderated U(93.16) Slabs, 6" Thick Lucite Reflectors on Two Large Surfaces Only	35
IIDl	Lucite-Graphite Moderated U(93.16), Unreflected	36

TABLES (Continued)

-

r .

۷.

.

-

IID2a	Lucite-Graphite Moderated U(93.16), Lucite Reflected
I ID2b	Lucite-Graphite Moderated U(93.16) Slabs, 6" Thick Lucite Reflectors on Two Large Surfaces Only
IIEl	Diffuse U(93.1) Reflected by Thick D ₂ O or Be (Cavity Assemblies)
IIE2	U(93.65)0,F,-D,O Solutions, Bare,D,O or Graphite Reflected 40
IIFla	$U(14.67)O_2SO_4-H_2O$ Solution, Sphere 41
IIF1b	U(93.5)-Phosphate Aqueous Solution, Cylinders, 3.0" Thick Fe Reflector 42
IIF2	Enriched-Uranium Hydride Composition 43
IIF3	Lattices of U(94) Metal Units, H ₂ O Moderated, H ₂ O Reflected
IIIAl	Plutonium-Metal Spheres 45
111A2	Plutonium-Metal Cylinders 46
IIIBl	Diluted Pu Cylinders, 6.0" Diameter, Unreflected
11182	Diluted Pu Cylinders, 6.0" Diameter, 2.0" Thick U(~0.3) Reflector 48
IIIB3	Diluted Pu Cylinders, 6.0" Diameter, 4.5" Thick U(~0.3) Reflector 49
IIIB4	Diluted Pu Cylinders, 6.0" Diameter, 7.5" Thick U(~0.3) Reflector 50
IIIB5	Diluted Pu Cylinders, 6.0" Diameter, 2.0" Thick Th Reflector 51
IIIB6	Diluted Pu Cylinders, 6.0" Diameter, 4.5" Thick Th Reflector

Page

TABLES (Continued)

		Page
IIIB7	Diluted Pu Cylinders, 6.0" Diameter, 7.5" Thick Th Reflector	53
IV	U-233 Metal Spheres	54
VA	Pu or U-233 Metal Spheres Within U(~93) Metal Spheres	55
VВ	Pu Metal Cylinder Within U(93.2) Metal Cylinder, Thick U(N) Reflector	56
REFERE	NCES	57

-

. •

٩.

INTRODUCTION

Numerous Los Alamos critical mass data have been published only as points on curves, frequently after adjustment to "standard" conditions (e.g., to uniform values of U^{235} enrichment and density), and usually without indication of reliability. Under these conditions, original data tend to become lost. It is the purpose of this compilation to retrieve original critical masses and to give some means of judging the quality of measurements.

3

÷

Indexes of accuracy are probable error, if it has been estimated, the maximum mass of fissile material used in the measurement, or the maximum central-source neutron multiplication attained. For nonhydrogenous systems a multiplication of 10 usually corresponds to a core mass that is 70% to 80% of critical, 20 corresponds to 85% to 90% of the critical mass, 50 corresponds to 93% to 97%, and 100 corresponds to 96-1/2% to 98-1/2%. Generally, the probable error in critical mass is about one-quarter of the difference between the critical mass value and the maximum mass This estimate may be valid down to an indicated employed. probable error of 1% to 2%, beyond which the probable error is usually controlled by the precision with which the composition and geometry of the system can be described. Maximum multiplication is not a reliable index of accuracy for hydrogen-moderated assemblies because of the severe influence of neutron-spectral distortion.

Not included in this compilation are several critical assemblies that cannot be described adequately by simple entries in tables (e.g., assemblies with nonuniform cores). Also omitted are a few critical mass estimates for which the maximum mass used was less than three-quarters of the critical value.

The following symbolism appears in the tables of critical masses:

m – critical mass of core c
m _{max} - maximum mass used, in same units as m _c
M _{max} - maximum central source neutron multiplication attained
h _c – critical height of cylindric core
d – diameter of core
L x H x W - length times height times width of parallelepiped
ρ - density
w/o - weight percent
v/o - volume percent
U(93) - enriched uranium containing 93 w/o U 235
U(N) - uranium with natural isotopic composition

1 :

• •

્ર

TABLE IA1

HIGHLY ENRICHED U METAL, UNREFLECTED

Corrected empirically for influence of supports and small (~0.4") source cavity unless noted otherwise

reference	shape	components	material	$\overline{\rho}$ (total U) (g/cm ³)	h _c /d	^m c (kg U ²³⁵)	^m max (kg U ²³⁵)	Mmax
(1)	sphere ^a	thick sections	U(93.8)	18.75	-	48.8 ± 1/2%	critic	al
(2)	sphere	thick shells	U(93.9)	18.75	-	48.7 ± 1/2%		142
(3)	pseudosphere	~ 0.4 " rings ^b	U(93.9)	18.5 ± 0.1	-	50.9	49.8	150
(4)	psuedosphere	~ 0.4 " rings ^b	U(93.9)	18.5 ± 0.1	-	50.6	50.0	180
(4)	cyl 4.75" dia	~0.4" rings ^b	U(93.8)	18.5 ± 0.1	-	>94	70.8	13
(4)	cyl 5.50" dia	~0.4" rings ^b	U(93.8)	18.5 ± 0.1	1.76	66.2	61.4	96
(4)	cyl 6.37" dia	~ 0.4 " rings ^b	U(94.0)	18.5 ± 0.1	0.95	55.3	52.6	85
(4)	cyl 7.00" dia	\sim 0.4" rings ^b	U(94.0)	18.5 ± 0.1	0.72	55.6	54.0	76
(4)	cyl 7.50" dia	\sim 0.4" rings ^b	U(94.0)	18.5 ± 0.1	0.61	58.2	55.9	54
(5)	cyl 15.00" dia	0.3 cm plates	U(93.3)	17.9	0.214	155.3 ± 0.6	151	67
(5)	cyl 21.00" dia	0.3 cm plates	U(93.2)	17.9	0.141	281.2 ± 0.7	270	68

^a Corrected for slight asphericity

^b Uncorrected for 0.06 in.³ central source cavity; corrected empirically for effect of supports

TABLE IA2

U(93.4) - U(N) METAL CYLINDERS, UNREFLECTED

Indicated layers are combinations of 10.5" diameter, 0.8 cm thick U(93.4), and 0.6 cm thick U(N)

Corrected from partial terminating sandwich to fractional sandwich of proper composition

Corrected for reflection effect of support

All systems critical

Reference (6)

average	repeated thicknes	layers, s (cm)	$\overline{\rho}$ (total U)	diameter (in)	h _c	h_/d	^m c (kg 11 ²³⁵)
composition	0(30.4)	0(11)	<u>(6/0m/)</u>	(14.)	(140)		
U(53.6)	0.8 ^a	0.6	18.7	10.50	6.10	0.581	86.8 ± 1/2%
U(37.7)	0.8	1.2 ^b	18.75	10.50	10.04	0.956	$100.7 \pm 1/2\%$
U(29.0)	0.8	1.8 ^b	18.8	11.42 av ^C	13.45	1.178	$123.0 \pm 1\%$

^a Starts with 0.8 cm U(93.4) at base of stack

^b Starts with 0.6 cm U(N) at base of stack

^c Basic stack of plates extended by blocks of U(94) and U(N) in proper proportion

r i

TABLE IA3

~.

٦.

- :

U(93.3) - U(N) METAL CYLINDERS, 15.00" DIAMETER, UNREFLECTED

Indicated layers, combinations of 0.3 cm thick U(93.3) and U(N), 0.6 cm U(N) or 1.5 cm U(N), start with U(N) at bottom and end with portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

average	repeated thicknes	layers, ss (cm)	P(total_U)	hc	5 /4	me ope	max
composition	U(93.3)	U(N)	(g/cm ³)	(in.)		(kg U^{233})	(kg U ²³⁵)
U (93.3)	0.3	0	18.06	3.18	0.212	155.2ª	151
U (86.4)	3.6	0.3	18.08	3.36	0.224	152.1	146
U (83.4)	2.4	0.3	17.95	3.50	0.233	151.6	146
U (80.5)	1.8	0.3	17.98	3.60	0.240	150.8	146
U (77.7)	1.5	0.3	17.98	3.70	0.247	149.8	146
U (75_1)	1.2	0.3	18.19	3.77	0.252	149.1	146
U (70.5)	0.9	0.3	18.16	4.00	0.266	148.2	146
U (65.5)	3.6	1.5	18.33	4.05	0.270	140.8	136
U (64.4)	0.6	0.3	18.21	4.34	0.289	147.6	142
U (56.6)	2.4	1.5	18.37	4.60	0.306	138.5	136
U (57.1) ^c	2.1	1.5	18.34	4.66	0.311	141.2	137
U (50.5)	1.8	1.5	18.35	5.25	0.350	140.9	137
U (50.7) ^c	1.5	1.5	18.44	5.25	0.350	142.2	141
U (47.0)	0.6	0.6	18.42	5.53	0.369	138.8	134
U (47.1)	0.3	0.3	18.25	5.61	0.374	139.8	134
U (44.2)	1.2	1.5	18.49	5.92	0.394	140.1	137
U (38.0)	0.9	1.5	18.49	7.02	0.468	142.9	140
U (31.6)	0.3	0.6	18.51	8.23	0.548	139.2	135
U (28.9)	0.6	1.5	18.32	9.63	0.642	147.5	144
U (23.9)	$\begin{pmatrix} 0.3\\ 0.3 \end{pmatrix}$	$\begin{pmatrix} 1.5\\ 0.3 \end{pmatrix}^{b}$	18,65	11.73	0.782	151.6	149
U (21.3)	$\begin{pmatrix} 0.3\\ 0.3 \end{pmatrix}$	$\begin{pmatrix} 1.5\\ 0.6 \end{pmatrix}^{b}$	18.62	14.15	0.943	162.6	155
U (19.3)	$\begin{pmatrix} 0 & .3 \\ 0 & .3 \end{pmatrix}$	$\begin{pmatrix} 1 & 5 \\ 0 & 9 \end{pmatrix}^{b}$	18.66	17.85	1.190	185.8	175

^a Corrections not as detailed as those for next-to-last item in Table IAl

 $^{\rm b}$ The 1.5 cm U(N) plate was at base of stack; it alternates with the thinner U(N) in successive sandwiches

^c Extra U(93.3) plates at top of stack

TABLE IB1

ENRICHED U METAL SPHERE OR PSEUDOSPHERE, U(N) REFLECTOR

	core				•• • • • •		_		
			<pre>p (total U)</pre>		reflector		^m c		
shape	components	material	(g/cm ³)	shape	(in.)	<u>ρ (g/cm³)</u>	$(kg U^{235})$	M _{max}	
sphere	hemispheres	U(93.2)	18.62	sphere	7.09	19.0	16.65 ± 0.05	critical	
sphere	nesting shells	U(93.9)	18.75	sphere	3.92	19.0	18.55 ± 0.1	167	
sphere	nesting shells	U(93.9)	18.75	sphere	3.52	19.0	19.2 ± 0.2	53	
sphere	nesting shells	U(93.9)	18.75	sphere	1.76	19.0	24.9 ± 0.15	141	
sphere	nesting shells	U(93.9)	18.75	sphere	0.695	19.0	34.0 ± 0.15	156	
pseudosphere	~0.4" rings	U(93.8)	18.5 ²	pseudosphere	1.87	18.7	24.6	160	
pseudosphere	~0.4" rings	U(93.8)	18.5 ^a	pseudosphere	0.99	18.7	32.4	34	
pseudosphere	1/2" min blocks	U(94)	18.7	pseudosphere	ll av	19.0	16.2	critical	
pseudosphere	1/2" min blocks	U(94.13)	18.7	pseudosphere	9 av	19.0	16.39 ± 0,07	critical	
pseudosphere	1/2" min blocks	U(80.5) ^b	18.7	pseudosphere	8-3/4 av	19.0	18.3	critical	
pseudosphere	1/2" min blocks	U(67.6) ^b	18.75	pseudosphere	8-1/2 av	19.0	20.8	critical	
pseudosphere	1/2" min blocks	U(66.6) ^b	18.75	pseudosphere	8-1/2 av	19.0	21.2	critical	
pseudosphere	1/2" min blocks	U(47.3) ^b	18.8	pseudosphere	7-3/4 av	19.0	27.1	critical	
pseudosphere	1/2" min blocks	U(94)	16.0 ^C	pseudosphere	8-3/4 av	19.0	19.7	critical	
pseudosphere	1/2" min blocks	U(94)	15.8 ^C	pseudosphere	8-3/4 av	19.0	20.1	critical	
pseudosphere	1/2" min blocks	U(94)	13.1 ^c	pseudosphere	8-1/4 av	19.0	25.3	critical	
pseudosphere	1/2" min blocks	U(94)	9.35 [°]	pseudosphere	7-1/4 av	19.0	37.0	critical	
pseudosphere	1/2" min blocks	U(78.7)	~17.8	sphere	19 o.d.	19.0	21.9	critical	
	shape sphere sphere sphere sphere sphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere pseudosphere	shapecomponentsspherehemispheresspherenesting shellsspherenesting shellsspherenesting shellsspherenesting shellsspherenesting shellsspherenesting shellspseudosphere~0.4" ringspseudosphere1/2" min blockspseudosphere1/2" min blocks	coreshapecomponentsmaterialspherehemispheresU(93.2)spherenesting shellsU(93.9)spherenesting shellsU(93.9)spherenesting shellsU(93.9)spherenesting shellsU(93.9)spherenesting shellsU(93.9)spherenesting shellsU(93.9)spherenesting shellsU(93.8)pseudosphere~0.4" ringsU(93.8)pseudosphere1/2" min blocksU(94.13)pseudosphere1/2" min blocksU(80.5) ^b pseudosphere1/2" min blocksU(66.6) ^b pseudosphere1/2" min blocksU(66.6) ^b pseudosphere1/2" min blocksU(94)pseudosphere1/2" min blocksU(94)	core \overline{p} (total U)shapecomponentsmaterial $\overline{(g/cm^3)}$ spherehemispheresU(93.2)18.62spherenesting shellsU(93.9)18.75spherenesting shellsU(93.9)18.75spherenesting shellsU(93.9)18.75spherenesting shellsU(93.9)18.75spherenesting shellsU(93.9)18.75pseudosphere $\sim 0.4"$ ringsU(93.8)18.5 ^a pseudosphere $1/2"$ min blocksU(94.13)18.7pseudosphere $1/2"$ min blocksU(94.13)18.7pseudosphere $1/2"$ min blocksU(66.6) ^b 18.75pseudosphere $1/2"$ min blocksU(66.6) ^b 18.75pseudosphere $1/2"$ min blocksU(94)16.0 ^c pseudosphere $1/2"$ min blocksU(94)15.8 ^c pseudosphere $1/2"$ min blocksU(94)13.1 ^c pseudosphere $1/2"$ min blocksU(94)9.35 ^c pseudosphere $1/2"$ min blocksU(94)9.35 ^c pseudosphere $1/2"$ min blocksU(94)9.35 ^c pseudosphere $1/2"$ min blocksU(94.7) ~ 17.8	core\$\bar{pe}\$componentsmaterial(g/cm ³)shapespherehemispheresU(93.2)18.62spherespherenesting shellsU(93.9)18.75spherespherenesting shellsU(93.9)18.75spherespherenesting shellsU(93.9)18.75spherespherenesting shellsU(93.9)18.75spherespherenesting shellsU(93.9)18.75spherepseudospherenesting shellsU(93.8)18.5 ^a pseudospherepseudosphere~0.4" ringsU(93.8)18.5 ^a pseudospherepseudosphere1/2" min blocksU(94.13)18.7pseudospherepseudosphere1/2" min blocksU(94.13)18.7pseudospherepseudosphere1/2" min blocksU(66.6) ^b 18.75pseudospherepseudosphere1/2" min blocksU(66.6) ^b 18.75pseudospherepseudosphere1/2" min blocksU(47.3) ^b 18.8pseudospherepseudosphere1/2" min blocksU(94)16.0 ^c pseudospherepseudosphere1/2" min blocksU(94)15.8 ^c pseudospherepseudosphere1/2" min blocksU(94)13.1 ^c pseudospherepseudosphere1/2" min blocksU(94)9.35 ^c pseudospherepseudosphere1/2" min blocksU(94)9.35 ^c pseudospherepseudosphere1/2" min blocksU(78.7)~17.8sphere <td>corereflector thicknessshapecomponentsmaterial(g/cm^3)reflector shapethickness (1n.)spherehemispheresU(93.2)18.62sphere7.09spherenesting shellsU(93.9)18.75sphere3.92spherenesting shellsU(93.9)18.75sphere3.52spherenesting shellsU(93.9)18.75sphere1.76spherenesting shellsU(93.9)18.75sphere0.695pseudosphere$\sim 0.4"$ ringsU(93.8)18.5^apseudosphere1.87pseudosphere$\sim 0.4"$ ringsU(93.8)18.7pseudosphere0.99pseudosphere1/2" min blocksU(94.13)18.7pseudosphere11 avpseudosphere1/2" min blocksU(67.6)^b18.75pseudosphere8-3/4 avpseudosphere1/2" min blocksU(66.6)^b18.75pseudosphere8-1/2 avpseudosphere1/2" min blocksU(94)16.0^cpseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)15.8^cpseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)13.1^cpseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)13.1^cpseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)9.35^cpseudosphere8-1/4 avpseudosphere1/2" min blocksU(94)9.35^cpseud</td> <td>core reflector \overline{p} (total U) \overline{p} (total U) reflector shape $(1n.)$ \overline{p} (g/cm³) shape thickness sphere hemispheres U(93.2) 18.62 sphere 7.09 19.0 sphere nesting shells U(93.9) 18.75 sphere 3.92 19.0 sphere nesting shells U(93.9) 18.75 sphere 3.52 19.0 sphere nesting shells U(93.9) 18.75 sphere 1.76 19.0 sphere nesting shells U(93.9) 18.75 sphere 0.695 19.0 pseudosphere $\sim 0.4"$ rings U(93.8) 18.5⁴ pseudosphere 0.897 18.7 pseudosphere 1/2" min blocks U(94.13) 18.7 pseudosphere 9 av 19.0 pseudosphere 1/2" min blocks U(66.6)^b 18.75 pseudosphere 8-1/2 av 19.0 pseudosphere 1/2" min blocks</td> <td>reflector """"""""""""""""""""""""""""""""""</td>	corereflector thicknessshapecomponentsmaterial (g/cm^3) reflector shapethickness (1n.)spherehemispheresU(93.2)18.62sphere7.09spherenesting shellsU(93.9)18.75sphere3.92spherenesting shellsU(93.9)18.75sphere3.52spherenesting shellsU(93.9)18.75sphere1.76spherenesting shellsU(93.9)18.75sphere0.695pseudosphere $\sim 0.4"$ ringsU(93.8)18.5 ^a pseudosphere1.87pseudosphere $\sim 0.4"$ ringsU(93.8)18.7pseudosphere0.99pseudosphere1/2" min blocksU(94.13)18.7pseudosphere11 avpseudosphere1/2" min blocksU(67.6) ^b 18.75pseudosphere8-3/4 avpseudosphere1/2" min blocksU(66.6) ^b 18.75pseudosphere8-1/2 avpseudosphere1/2" min blocksU(94)16.0 ^c pseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)15.8 ^c pseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)13.1 ^c pseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)13.1 ^c pseudosphere8-3/4 avpseudosphere1/2" min blocksU(94)9.35 ^c pseudosphere8-1/4 avpseudosphere1/2" min blocksU(94)9.35 ^c pseud	core reflector \overline{p} (total U) \overline{p} (total U) reflector shape $(1n.)$ \overline{p} (g/cm ³) shape thickness sphere hemispheres U(93.2) 18.62 sphere 7.09 19.0 sphere nesting shells U(93.9) 18.75 sphere 3.92 19.0 sphere nesting shells U(93.9) 18.75 sphere 3.52 19.0 sphere nesting shells U(93.9) 18.75 sphere 1.76 19.0 sphere nesting shells U(93.9) 18.75 sphere 0.695 19.0 pseudosphere $\sim 0.4"$ rings U(93.8) 18.5 ⁴ pseudosphere 0.897 18.7 pseudosphere 1/2" min blocks U(94.13) 18.7 pseudosphere 9 av 19.0 pseudosphere 1/2" min blocks U(66.6) ^b 18.75 pseudosphere 8-1/2 av 19.0 pseudosphere 1/2" min blocks	reflector """"""""""""""""""""""""""""""""""	

^a Uncorrected for 0.06 in.³ central source cavity

^b Average concentration of mixed 1/2" cubic units of U(94) and U(N)

^C Average density with 1/2" cubic voids distributed throughout core; corrected experimentally for effect of tubular Al spacers within voids

		core				reflector				
reference	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	shape	av thickness (in.)	ρ (g/cm ³)	^m c (kg U ²³⁵)	(kg U ²³⁵)	Mmax
(8)	pseudocylinder ²	4.00 x ~4.5 av dia	U(94)	18.7	pseudosphere	~9 av	19.0	16.9	critic	a l
(8)	parallelepiped ^a	4.00 x 4.00 x ~3.5	U(94)	18.7	pseudosphere	~9 av	19.0	16.9	critic	al
(8)	parallelepiped [®]	5.00 x 5.00 x ~2.5	U(94)	18.7	pseudosphere	~8-3/4 av	19.0	18.2	critic	a 1
(8)	parallelepiped [®]	7.50 x 7.50 x ~1.5	U(94)	18.7	pseudosphere	~8-1/4 av	19.0	25.4	24.3	
(8)	parallelepiped ²	7.50 x 3.00 x ~3.0	U(94)	18.7	pseudosphere	~8-1/2 av	19.0	19.8	critic	a l
(8)	parallelepiped ²	6.00 x 3.50 x ~3.0	U(94)	18.7	pseudospbere	~8-3/4 av	19.0	18.2	critic	a 1
(4)	cylinder ^b	$3.98 \text{ dia. } h_c/d = 3.51$	U(93.7)	18.5	cylinder	1.12	18.7	49.5	~43	67
(4)	cylinder ^b	3.98 dia, $b_c/d = 2.15$	U(93.7)	18.5	cylinder	1.87	18.7	30.4	~30	200
(4)	cylinder ^b	4.75 dia. b _c /d = 1.38	U(93.8)	18.5	cylinder	1.12	18.7	33.0	~31.5	59
(4)	cylinder ^b	4.75 dia, b _c /d = 1.03	U(93.8)	18.5	cylinder	2.00	18.7	24.6	~24	100
(4)	cylinder ^b	5.50 dis, $h_c/d = 0.84$	U(93.8)	18.5	cylinder	1.12	18.7	31.3	~31	96
(4)	cylinder ^b	5.50 dia. h _c /d = 0.67	U(93.8)	18.5	cylinder	2.00	18.7	25.0	~24	96
(4)	cylinder ^b	6.37 dia, $h_c/d = 0.565$	U(94.0)	18.5	cylinder	1.12	18.7	32.4	~31.5	66
(4)	cylinder ^b	8.37 dia, $h_c/d = 0.47$	U(94.0)	18.5	cylinder	2.00	18.7	27.4	~26	43
(4)	cylinder ^b	7.00 dia, $b_c/d = 0.46$	U(94.0)	18.5	cylinder	1.12	18.7	35.3		38
(4)	cylinder ^b	7.50 dia, $b_c/d = 0.41$	U(94.0)	18.5	cylinder	1.12	18.7	38.0		107
(4)	pseudocylinder ^a	3.0 av dia, h _c /d = 3.08	U(94)	18.7	pseudosphere	~8 av	18.9	21.3	20.7	
(4)	pseudocylinder ²	4.0 av dia. h _c /d = 1.00	U(94)	18.7	pseudospbere	~9 av	18.9	16.66	critics	1
(4)	pseudocylinder ^a	6.5 av dia, $b_{c}/d = 0.31$	U(94)	18.7	pseudospbere	~8-1/2 av	18.9	20.3	19.6	
(4)	pseudocylinder ²	8.3 av dia, h _c /d = 0.18	U(94)	18.7	pseudosphere	~7-3/4 av	18.9	25.7	24.9	
(11)	cylinder ^C	5.25 dia, b _c /d = 1.25	U(93.3)	18.75	cylinder	0.500	18.8	40.7 ± 0.1		1000
(11)	cylinder ^C	5.25 dia. h _c /d = 0.965	U(93.3)	18.75	cylinder	1.000	18.8	31.4 ± 0.1		500
(12)	cylinder ^d	15.00 dia, h _c /d = 0.91	U(93.4)	17.7	cylinder	3.00	18.9	65.4 ± 1.0		52
(12)	cylinder ⁰	3.24 dia. b _c /d = 8.8	U(93.2)	18.7	cylinder	2.75	18.9	65.5 ± 1.0		52
(13)	cylinder ^f	15.00 dia x 12.75	U(18.25)	18.75	cylinder	3.00	19.0	112.5 ± 0.7	critics	1

ENRICHED U METAL CYLINDER, PSEUDOCYLINDER OR PARALLELEPIPED, U(N) REFLECTOR (LAST ITEM DEPLETED U)

TABLE IB2

* Core of 1/2" min blocks

^b Core of ~0.4" nesting rings; uncorrected for 0.08 in.³ central source cavity

^C Core of dimcs 1.20" to 0.075" thick; m corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

^d Core of 0.3 cm discs of U(93.4). m_c corrected for influence of support structure ^e Core of thick plates; reflector U depleted to ~0.3% U²³⁵

^f Core of alternating 0.3 cm discs of U(93.4) and 1.5 cm discs of U(N)

.

TABLE IB3 MISCELLANEOUS ENRICHED U METAL, U(N) REFLECTOR⁸

reference	core	reflector	kg U ²³⁵
(14)	annulus, 12.25" o.d. x 6.00"	1.00" thick, $\overline{\rho} = 19.0 \text{ g/cm}^3$,	77.2 ± 0.3
	i.d. x 3.01" high, stack of	completely envelops core	$(m_{max} > m_{c})^{b}$
	1/2" and 1/4" thick rings		
	$U(93.4), \bar{\rho}(U) = 18.7 \text{ g/cm}^3$		
(14)	annulus, 12.25" o.d. x 6.00"	3.00" thick, $\bar{p} = 19.0 \text{ g/cm}^3$,	52.2 ± 0.3
	i.d. x 2.03" high, stack of	completely envelops core	(m _{max} = 51.6)
	1/2" and 1/4" thick rings		
	$U(93.4), \bar{\rho}(U) = 18.7 \text{ g/cm}^3$		
(15)	pseudocylinder, 13.74" av	pseudocylinder 5.0" av	93.0
	dia x 12.00" av compo-	thickness, $\overline{\rho}$ = 18.9 g/cm ³	(M _{max} - 225)
	sition: ^C 18.1 v/o U(93.6),		
	ρ̄ = 3.38 g/cm ³ ; 13.6 v/o		
	U(N), ρ = 2.58 g/cm ³ ; 11.8		
	v/o Fe, $\overline{\rho}$ = 0.92 g/cm ³ ;		
	52.3 v/o Al, $\bar{p} = 1.40 \text{ g/cm}^3$;		
	4.2 v/o void		

m

. -

Ľ

3

1

- ^a Unlisted, is a nonuniform assembly of mixed plates and rings of U(93.4) and U(N) that enclose a near-central cylindrical cavity, 15.0" dia x 11.8"; outside dimensions of the assembly are 21.0" dia x \sim 21" high (S. J. Balestrini, G. A. Jarvis, J. D. Orndoff, December 1961). Average composition bounding cavity is U(27), \sim 4-1/2" thick U(N) rings form top and bottom of cylinder. At critical, the total mass is \sim 1400 kg U(N) and 339 kg U(93.4). Uncorrected for 1/4" thick steel plate supporting portion above cavity.
- ^b Corrected for small gap between assembly halves
- C Average thickness of core discs, blocks, and shaped Al fillers: U(93.6) ~0.4", U(N) ~0.3", Fe ~0.25", Al ~0.9"

-	_	
Ē	_	
-	•	
_	ч.	

ref	sbape	dimensions (in.)	material	<pre>p (total U)(g/cm³)</pre>	material	shape	tbickness (in.)	<pre>P (total) (g/cm³)</pre>	^m c (kg U ²³⁵)	^m max (kg U ²³⁵)	Max
(11)	sphere	(nesting shells)	U(93.9)	18.6	Th	sphere	1.81	11.48	34.7 ± 0.2	34.2	162
(16)	cylinder	5.967 dia, h _c /d - 0.59	U(93.16)	18.75	Th	(21.0" equi- lateral cyl)		11.9	28.0 ± 0.3	26.9	
(11)	sphere	(nesting shells)	U(93.9)	18.75	W-alloy ⁸	sphere	2.00	17.39	24.1 ± 0.2		159
(11)	sphere	(nesting shells)	U(93.9)	18.75	₩-alloy ²	sphere	4.00	17.39	19.4	18.3	44
(11)	cylinder	5.25 dia. h _c /d - 1.25 ^b	U(93.3)	18.75	₩-alloy ^C	cylinder	0.500	17.3	40.6 ± 0.1		1250
(11)	cylinder	5.25 dia, h _c /d = 0.97 ^b	U(93.3)	18.75	W-alloy ^C	cylinder	1.000	17.3	31.75 ± 0.1		128
(17)	cylinder	4.25 dia	U(93.5)	18.7	¥-alloy ^d	cylinder	2.00, but one end 3.00	17.3	27.36	critica	1
(8)	sphere	(shells) 0.83 1.d.	U(93.9)	18.45	#C	pseudospbers	2.9 av	~14.7	18.7	15.1	13
(8)	sphere	(shells) 0.83 1.d.	U(93.9)	18.45	WC	pseudosphere	4.5 av	~14.7	16.6	15.1	29
(8)	sphere	(shells) 0.83 1.d.	U(93.9)	18.45	WC.	pseudosphere	6.5 av	~14.7	16.3	15.1	36
(10)	pseudosphere	(1/2" min blocks)	U(78.5)	17.8	AC	(14" cube)		14.7	20.8 ^e	critica	1
(17)	cylinder	4.25 dia	U(93.5)	18.7	₩C	cylinder	2.00	~14.7	24.4	23.6	80
(11)	cylinder	5.25 dia, h _c /d = 1.29 ^b	U(93.3)	18.75	Жо (99.8 w∕o)	cylinder	0.500	10.53	41.7		210
(11)	cylinder	5.25 dia, h _c /d = 1.01 ^b	U(93.3)	18.75	Mo (99.8 w∕o)	cylinder	1.000	10.53	32.9	,	141
(11)	cylinder	5.25 dia. h _c /d = 1.23 ^b	U(93.3)	18.75	Mo2Ct	cylinder	0.500	9.57	39.9		270
(11)	cylinder	5.25 dia, h _c /d = 0.95 ^b	U(93.3)	18.75	Mo2Ct	cylinder	1.000	9.57	30.9		110

^b Core of discs 1.20" to 0.075" thick; m_c corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ contral cavity

^e For cylinders in this reflector, m_c/m_c (sphere) = 0.98, 0.96, 0.93 when h_c/d = 0.92, 0.63, 1.60, respectively

HIGHLY ENRICHED U METAL, REFLECTOR OF Th, W, WC, Mo OR Mo2C

² Composition 90 w/o W, 7 w/o Ni, 3 w/o Cu

d Composition 92 w/o W, 5.5 w/o Ni, 2.5 w/o Cu

f Composition 95 to 96 w/o Mo₂C. 4 to 5 w/o Ni

^C Composition 91.3 w/o N, 5.5 w/o Ni, 2.5 w/o Cu, 0.7 w/o Zr

core

TABLE IC1

reflector

TABLE IC2 HIGHLY ENRICHED U METAL, REFLECTOR OF Zn, Cu, Ni. Co, OR Fe

	core				reflector						_
ref	sbape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	material	sbape	tbickness (in.)	p (total) (g/cm ³)	(kg U ²³⁵)	(kg U ²³⁵)	Max
(11)	sphere	(nesting shells)	U(93.9)	18.7	Zn	sphere	2.00	7.04	30.0	28.5	52
(11)	sphere	(nesting shells)	U(93.9)	18.5	Zn	sphere	4.075	7.04	25.4 ± 0.3	23.9	46
(11)	sphere	(nesting shells)	U(93.9)	18.75	Cu	sphere	2.00	8.88	25.4 ± 0.2		118
(11)	sphere	(nesting shells)	U(93.9)	18.75	Cu	sphere	4.175	8.88	20.7 ± 0.2		141
(11)	cylinder	$5.25 \text{ dia,} h_c/d = 1.29^8$	U(93.3)	18.75	လမ	Cylinder	0.500	8.87	42.16 ± 0.1		330
(11)	cylinder	5.25 dia. h _c /d = 1.03 ^a	U(93.3)	18.75	വം	cylinder	1.000	8.87	33.44 ± 0.1		190
(8)	pseudosphere	(1/2" ≡in blocks)	U(94.0)	18.7	"A"-N1	pseudosphere	8-3/4 av	8.88	19.9	critic	1
(11)	sphere	(nesting shells)	U(93.9)	18.4	N1	sphere	2.00	8.35	27.6	25.9	42
(11)	cylinder	5.25 dia, h _c /d - 1.29 ²	U(93.3)	18.75	Ni (elect)	cylinder	0.500	8.79	42.0		170
(11)	cylinder	$5.25 d1a, h_c/d = 1.04^a$	U(93.3)	18.75	Ni (elect)	cylinder	1.000	8.79	34.0		190
(11)	cylinder	5.25 dia h _c /d = 1.27 ²	U(93.3)	18.75	Co (reag)	cylinder	0.500	8.72	41.5		102
(11)	cylinder	$5.25 \text{ dia,} h_c/d = 1.02^8$	U(93.3)	18.75	Co (reag)	cylinder	1.000	8.72	33.3		117
(11)	sphere	(nesting shells)	U(93.9)	18.6	Fe (cast)	sphere	2.00	7.18	29.7 ± 0.3	28.5	59
(11)	sphere	(nesting sbells)	u(93.9)	18.4	F ● (cast)	spbere	4.00	7.16	26.0 ± 0.2		143
(18)	sphere	(thick shells)	U(93.9)	18.52	steel	(80" cube)		~7.7	23.4		64
(11)	cylinder	5.25 dia, h _c /d = 1.42 ²	U(93.3)	18.75	Fs ^C	cylinder	0.500	7.78	46.3 ± 0.2		105
(11)	cylinder	5.25 dia, b _c /d = 1.18 ²	U(93.3)	18.75	F• ^C	cylinder	1.000	7.78	38.38 ± 0.1		340
(17)	c y lind ●r	4.25 dia	U(93 .5)	18.7	7• ^C	cylinder	4.00	7.78	33.8	26.9	13

^a Core of discs 1.20" to 0.075" thick; m_c corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

^b Cast Cu. 1/2 to 1 w/o impurity

C Steel, SAE 1020

•

TABLE 1C3

~.

÷.

Ę

:

		core				reflector				
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	material	shape	thickness (in.)	p (total) (g/cm ³)	^m c (kg_U ²³⁵)	Hnax
(11)	cylinder	5.25 dia, h _c /d - 1.61 ^a	U(93.3)	18.75	Ti ^b	cylinder	0.500	4.50	52.4 ± 0.6	16
(11)	cylinder	5.25 dia. h _c /d = 1.38 ⁸	U(93.3)	18.75	Ti ^b	cylinder	1,000	4.50	45.0 ± 0.1	125
(19)	sphere	(nesting shells)	V(93.18)	18.40	A1 (2014)	sphere	2.610 ± 0.03	2.82	34.71 ± 0.1	170
(11)	cylinder	5.25 dia. h _c /d - 1.59 ^a	U(93.3)	18.75	A1 (2S)	cylinder	0.500	2.70	52.0 ± 0.8	17
(11)	cylinder	5.25 dia. b _c /d = 1.35 ^a	U(93,3)	18.75	A1 (25)	cylinder	1.000	2.70	44.1 ± 0.1	200
(11)	cylinder	5.25 dia. h _c /d = 1.40 ^ª	U(93.3)	18.75	A1203	cylinder	0.500	2.76	45.5	~100
(11)	cylinder	$5.25 \text{ dia.} h_c/d = 1.14^{a}$	U(93.3)	18.75	A1203	cylinder	1.000	2.76	37.2	~150
(11)	cylinder	$5.25 dia, h_c/d = 1.66^{a}$	U(93.3)	18.75	Mg (FS-1)	cylinder	0.500	1.77	54.2 ± 0.7	13
(11)	cylinder	5.25 dia, h _c /d = 1.48 ⁸	V(93.3)	18.75	Mg (FS-1)	cylinder	1.000	1.77	47.7 ± 0.3	34
(11)	sphere	(nesting shells)	U(93,9)	18,5	Be	sphere	1.85	1.84	22.2 ± 0.2	100
(11)	sphere	(nesting shells)	U(93.9)	18.75	Be	sphere	1.89	1.84	21.6	24
(11)	sphere	(nesting shells)	U(93.8)	18.8	Be	Sphere	4.64	1.84	13.1 ± 0.2 ^c	143
(11)	cylinder	5.25 dia, h _c /d - 1.19 ⁸	U(93.3)	18,75	Be (Q¥V)	cylinder	0.500	1.84	38.89 ± 0.1	460
(11)	cylinder	5.25 dia. h _c /d = 0.90 ⁸	U(93.3)	18.75	Be (Q≌V)	cylinder	1.000	1.84	29.28 ± 0.1	210
(12)	cylinder	15.00 dia. h _c /d - 0.131	U(93.4)	17.7	Be	cylinder	1.00	1.80	93.9 ± 0.9	25
(12)	cylinder	15.00 dia, h _c /d = 0.090	U(93.4)	17.7	Be	cylinder	2.00	1.80	64.9 ± 1.0	23
(12)	cylinder	15.00 dia. h _c /d = 0.068	U(93.4)	17.7	Be	cylinder	3.00	1.80	49.0 ± 1.0	35
(12)	cylinder	15,00 dia, h _c /d - 0,053	U(93.4)	17.7	Be	cylinder	4.00	1.80	37.8 ± 0.5	13
(12)	cylinder	15.00 dia, h _c /d = 0.042	U(93.4)	17.7	Be	cylinder	5.00	1.80	30.4 ± 0.5	15
(11)	pseudosphere	(1/2" min blocks)d	U(94)	18.7	Be0	pseudosphere	2.35 av	2,69	19.7	85
(11)	pseudosphere	(1/2" min blocks) ^d	U(94)	18.7	BeO	pseudosphere	3.5 av	2.69	16.5	105
(10)	pseudosphere	(1/2" min blocks)	U(82.7)	17.8	Be0	(24" cube)		~2,69	10.3	critical

HIGHLY ENRICHED U METAL, REFLECTOR OF TI, A1, A1203, Mg, Be, OR BeO

^a Core of disca 1.20" to 0.075" thick; n_c corrected empirically for incidental reflection, diaphragm supporting part of assembly, and 0.05 in.³ central cavity

^b Composition 98.5 w/o Ti, 2.5 w/o Cr, 1 w/o Fe

 $^{\rm C}$ With 0.010" Cd between core and reflector, $\rm m_{c}$ = 14.0 kg U 235 (H $_{\rm max}$ = 21)

d Uncorrected for 0.06 in.³ central source cavity

TABLE IC4a HIGHLY ENRICHED U METAL, COMPLETE GRAPHITE REFLECTOR Graphite is grade CS-312 except as noted

		core			r	eflector				
ref	shape	dimensions (in.)	material	户(total U) (g/cm ³)	shape	thickness (in.)	ρ (g/cm ³)	(kg U ²³⁵)	W _{max}	
(20)	sphere	(nesting shells) ^a	U(93.9)	18.7	sphere	2.00	1.67	29.6 ± 0.3	58	
(20)	sphere	(nesting shells) ^a	U(93.9)	18.7	sphere	4.00	1.87	24.3 ± 0.2	150	
(20)	sphere	(nesting abells) ^a	U(93.9)	18.45	sphore	8.00	1.67	21.5 ± 0.2	150	
(20)	sphere	(nesting shells) ²	U(93.9)	18.75	sphere	8.00	1.67	19.5 ± 0.3	42	
(20)	sphere	(nesting shells) ²	U(93.9)	18.5	pseudosphere ^b	17 av	1.66	17.0	48	
(20)	cylinder	3.25 dia, h_/d - 2.95 ^C	U(93.7)	18.5	pseudosphere ^b	17 av	1.68	22.5	17	
(20)	pseudocylinder	c 3.82 av dia, h_/d = 1.85d	U(94)	18.7	pseudosphere ^b	17 av	1.66	20.1	40	
(20)	cylinder	c 3.98 dia, h_/d - 1.30 ^C	U(93.7)	18.5	pseudosphere ^b	17 av	1.85	16.3	109	
(20)	cylinder	$\frac{1.75 \text{ dia}}{1.75 \text{ dia}}$	U(93.7)	18.5	pseudosphere ^b	17 av	1.68	17.5	62	
(20)	cylinder	c 5.50 dia, $h_{\rm h}/d = 0.495^{\rm c}$	U(93.8)	18.5	pseudosphere ^b	17 av	1.85	18.5	78	
(20)	cylinder	6.375 dia, h_/d = 0.345 ^C	U(94.0)	18.5	pseudosphere ^b	17 av	1.68	20.0	107	
(20)	cylinder	c 7.50 dia, h /d - 0.235 ^c	U(94.0)	18.5	pseudosphere ^b	17 av	1.88	22.7	150	
(20)	pseudocylinder	h = 1.50, $h / d = 0.177^{d}$	U(94.0)	18.7	pseudosphere ^b	17 av	1.68	24.6	90	
(20)	pseudocylinder	h = 1.00, $h / d = 0.081^{d}$	U(94.0)	18.7	pseudosphere ^b	17 av	1.86	34.8	200	
(11)	cylinder	5.25 dia, b /d = 1.42	U(93.3)	18.75	cylinder	0.500	1.67	48.35 ± 0.2	51	
(11)	cylinder	5.25 dia, b /d = 1.18	U(93.3)	18.75	cylinder	1.000	1.87	37.71 ± 0.1	>500	
(12)	cylinder	3.24 dia, b /d = 8.79	U(93.2)	18.7	cylinder	4.85	1.80	51.7 ± 0.9	233	
(12)	cylinder	3.24 dia,	U(93.2)	18.7	cylinder	5.75	1.60	37.9 ± 0.7	1350	
(12)	cylinder	3.24 d1a,	U(93.2)	18.7	cylinder	8.25	1.60	33.6 ± 0.7	480	
(12)	cylinder	15.00 dia,	U(93.4)	17.7	cylinder	7.00	1.60	52.1 ± 1.0	20	
(21)	cylinder	10.50 dia.	U(93.4)	18.7	cylinder	2.00	1.68	50.0	18	
(14)	annulus	ⁿ c ^{/a} = 0.192 ^o 12.25 o.d. x 8.00 i.d. x 2.66	U(93.4)	18.7	(envelops core)	2.00	~1.87	73.3 ± 0.3	(m _{max} - 71.0)	

.-

۰.

.

- 7

:-

:

* Uncorrected for 0.05 in.³ central source cavity

^b Pile-grade graphite surrounds ~5" thick CS-312

^c Interlocking rings; uncorrected for 0.06 in.³ central source cavity

d Formed of 1/2" min blocks

Core of discs 1.20" to 0.075" thick; m corrected empirically for incidental reflection, disphragm supporting part of assembly, and 0.05 in.³ central cavity

f Core of 0.3 cm thick plates; empirical correction for diaphragm supporting part of assembly

^g Core of 0.315" thick plates; empirical correction for diaphragm supporting part of assembly

•

TABLE IC4b

HIGHLY ENRICHED U METAL, PARTIAL GRAPHITE REFLECTOR

Reflector same diameter as core where on ends only

Corrected empirically for diaphragm supporting part of assembly, for incidental reflection, and for small source cavity (no correction required for last item)

		cc	re		reflector				
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	surfaces reflected	thickness (in.)	م (g/cm ³)	^m c (kg v ²³⁵)	Mmax
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	1.00	1.79	135.5 ± 0.5	123
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	1.00	1.73	242.3 ± 0.7	60
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	2.00	1.79	125.4 ± 0.5	46
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	2.00	1.73	222.3 ± 0.6	140
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	6.00	1.70	114.9 ± 0.4	135
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	6.00	1.76	192.3 ± 0.6	98
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	both planes	6.00	1.7	75.4 ± 0.3	37
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	both planes	6.00	1.7	103.5 ± 0.3	46
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	7.00	1.71	113.9 ± 0.4	43
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	7.00	1.76	190.2 ± 0.6	95
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	both planes	7.00	1.7	73.0 ± 0.3	107
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	both planes	7.00	1.7	99.4 ± 0.3	48
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	8.00	1.72	113.2 ± 0.4	55
(5)	cylinder	21.00 dia	V(93.2)	18.2 ± 0.2	top plane	8.00	1.75	188.4 ± 0.6	101
(5)	cylinder	15.00 dia	U(93.3)	17.9 ± 0.2	top plane	12.00	1.70	113.4 ± 0.4	52
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	12.00	1.76	185.7 ± 0.6	67
(5)	cylinder	15.00 dia	V(93.3)	17.9 ± 0.2	top plane	14.00	1.71	113.3 ± 0.4	54
(5)	cylinder	21.00 dia	U(93.2)	18.2 ± 0.2	top plane	14.00	1.76	185.3 ± 0.6	76
(21)	cylinder	10.50 dia, h _c /d = 0.226	U(93.4)	18.7	both planes	2.00	1.68	58.7	20
(22)	annulus	21.00 o.d. x 15.00 i.d. x 3.44	U(93.16)	17.9	(across both planes)	6.00	1.7	164.6	330
(23)	annulus	6.14 o.d. x 3.85 i.d. x 6.36	U(93.15)	18.7	top, bottom, wall (none inside)	9.5 8.9	1.67	32.7 ± 0.3	28

TABLE IC5

HIGHLY ENRICHED U METAL, REFLECTOR OF D₂O (99.8%)⁽²⁴⁾

	core				<i>.</i>		
shape	dimensions (in.)	material	$\overline{\rho}$ (total U) (g/cm ³)	reflector thickness (in.)	container	$\frac{{}^{m}c}{(kg U^{235})}$	Mmax
sphere	(nesting shells)	U(93.9) ^a	18.5	3.28	0.04" ss	23.3	36
sphere	(nesting shells)	U(93.9) ^a	18.5	4.59	0.10" Al	20.5	22
sphere	(nesting shells)	U(93.9) ^a	18.5	5.50	0.04" ss	19.0	55
sphere	(nesting shells)	U(93.9) ^a	18.5	6.84	0.04" ss	17.1	40
sphere	(nesting shells)	U(93.7) ^a	18.5	15.3	0.2" ss	13.4	>400
sphere surrounded by 0.010" Cd	(nesting shells)	U(93.9) ^a	18.5	6.7	0.04" ss	20.9	m _{max} = 18.0
sphere surrounded by 0.010'' Cd	(nesting shells)	U(93.9) ^a	18.5	15.1	0.2" ss	20.2	m _{max} = 18.0
hollow sphere, filled with D ₂ O	3.60 i.d.	U(93.9)	18.5	14.9	0.2" ss	16.4	16
hollow sphere, filled with D ₂ 0	4.08 i.d.	U(93.7)	18.5	14.7	0.2" ss	1 7.2	32
hollow sphere, filled with D ₂ 0	4.97 i.d.	U(93.7)	18.5	14.4	0.2" ss	18.3	18

• .

•.•

^a Empirical correction for small central source cavity

22

• • •

••••

TABLE 1C68

÷

-

-

•

HIGHLY ENRICHED U METAL, COMPLETE REFLECTOR OF ${\rm H_2O}$ OR POLYETHYLENE See also first item of Table 11F3

	core				reflector					
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm²)</pre>	material	shape	thickness (in.)	0 (g/cm ³)	(kg U ²³⁵)	N MRX
(25)	sphore	(shells) 0.83 i.d.	U(93.9)	18.5	н ₂ 0	cylinder	>12	1,00	23.4	49
(25)	sphere surrounded by 0,010" Cd	(shells) 0.83 i.d.	U(93.9)	18.4	^H 2 ⁰	cylinder	>12	1.00	32.9	32
(20)	sphere	(nesting shells) ²	V(93.9)	18.5	н ₂ 0	cylinder	>12	1,00	23.2	154
(24)	sphere	(nesting shells) ^m	U(93.9)	18.5	^H 2 ⁰	sphere	3.25	1.00	23.5	35
(24)	hollow sphere, filled with H ₂ 0	3.60 1.d.	U(93.9)	18.5	^H 2 ⁰	sphere	14.6	1.00	25.1	40
(24)	hollow sphere. filled with H ₂ 0	4.08 i.d.	U(93.9)	18.5	^H 2 ⁰	sphere	14.4	1.00	26.3	80
(24)	hollow sphere, filled with H ₂ O	4.68 1.d.	U(93.8)	18.5	^я 20	sphere	14.3	1.00	27.7	19
(20)	cylinder	3.98 dia. h _c /d = 1.90 ^a	U(93.7)	18.5	^H 2 ⁰	cylinder	>12	1.00	26.7	200
(20)	cylinder	$\frac{1.75}{h_c/d} = 0.98^{h}$	U(93.8)	18.5	^н 2 ⁰	cylinder	>12	1,00	23.7	101
(20)	cylinder	5.50 dia, h _c /d = 0.86 ^a	U(93.8)	18.5	н ₂ 0	cylinder	>12	1.00	24.4	200
(20)	cylinder	$6.375 dis, h_c/d = 0.46^2$	U(94.0)	18.5	^H 2 ⁰	cylinder	>12	1.00	25.9	150
(20)	cylinder	7.00 dia, h _c /d = 0.365 ^a	U(94.0)	18.5	^H 2 ⁰	cylinder	>12	1,00	27.7	108
(20)	cylinder	7.50 dia, h _c /d = 0.300 ^a	U(94.0)	18.5	^н 2 ⁰	cylinder	>12	1.00	29.0	53
(21)	annulus	6.14 o.d. x 3.85 i.d. x 5.75 ^b	V(93.15)	18.75	^H 2 ⁰	cylindør	>12	1.00	29.6 ± 0.5	35
(26)	hemishell, segmented	12.0 o.d., 10.0 i.d.	U(93.5)	18.75	н ₂ 0	cylinder	>6	1.00	56	20
(12)	cylinder	3.24 dis, b _c /d = 12.2	U(93.2)	18.7	^H 2 ⁰	cylinder	>12	1.00	93.2 ± 5	43
(12)	cylinder	$h_c/d = 0.082^{C}$	U(93.4)	17.7	^H 2 ⁰	cylinder	>12	1.00	59.0 ± 0.5	170
(11)	cylinder	$5.25 dis, h_c/d = 1.34^d$	U(93.3)	18.75	polyethylene	cylindsr	0.500	0.921	43.7	140
(11)	cylinder	$5.25 dia, h_c/d = 1.00^d$	U(93.3)	18.75	polyethylene	cylinder	1.000	0,921	32.7	140
(12)	cylinder	$3.24 \text{ dia,} h_c/d = 8.0$	U(93.2)	18.7	polyethylene	cylinder	4.00	0.92	61.3 ± 0.9	161
(12)	cylinder	15.00 dia, h _c /d = 0.095 ^c	U(93.4)	17.7	polyethylene	cylinder	2.00	0.92	68.4 ± 0.9	79
(14)	gnoulus	12.25 o.d. x 6.00 i.d. x 2.20	U(93.4)	18.7	polyethylene	(envelops core)	3.00	0.92	56.8 ± 0.3	ⁿ ⊯ax >¤c

.

^a Uncorrocted for 0.05 in.³ central source cavity

^b Water fills annulus

 c Core of 0.3 cm plates; empirical correction for small source cavity and diaphragm supporting part of assembly (not used with $^{H}2^{0}$ reflector)

d Empirical corroction for small central cavity and support effects

^e Corrected for small gap in final configuration

.

TABLE IC6b

HIGHLY ENRICHED U METAL, COMPLETE REFLECTOR OF PARAFFIN Paraffin reflector cylindrical, >8" thick, $\overline{\rho} = 0.89 \text{ g/cm}^3$

		CO				
ref	shape	dimensions (in.)	material	ρ (total U) (g/cm ³)	$\frac{m_{c}}{(kg U^{235})}$	Mmax
(20)	sphere	(nesting shells) ^a	U(93.9)	18.5	22.2	62
(25)	sphere	(shells), 0.83 i.d.	U(93.9)	18.5	22.8	69
(20)	cylinder	3.25 dia, h _c /d = 4.4 ^b	U(93.7)	18.5	35	11
(20)	cylinder	3.98 dia, h _c /d = 1.80 ^b	U(93.7)	18.5	25.0	77
(20)	cylinder	4.75 dia, h _c /d = 0.915 ^b	U(93.8)	18.5	22.2	108
(20)	cylinder	5.50 dia, h _c /d = 0.605 ^b	U(93.8)	18.5	22.4	123
(20)	cylinder	6.375 dia, h _c /d = 0.45 ^b	U(94.0)	18.5	24.5	200
(20)	cylinder	7.50 dia, h _c /d = 0.280 ^b	U(94.0)	18.5	26.9	86

^a Uncorrected for 0.05 in.³ central source cavity

 $^{\rm b}$ Interlocking rings ~0.4" thick, uncorrected for 0.05 in. 3 central source cavity

3

:

TABLE IC6c

÷

:

:

HIGHLY ENRICHED U METAL, PARTIAL REFLECTOR OF H20, POLYETHYLENE, LUCITE, OR PARAFFIN (5)

Reflector same diameter as core

Core of 0.3 cm plates and rings; ${\tt m_c}$ corrected empirically for diaphragm supporting part of assembly, for incidental reflection, and for small central source cavity

	core			reflector				
cylinder dia (in.)	material		material	surfaces reflected	thickness (in.)	ρ (g/cm ³)	$\frac{^{m}c}{(kg U^{235})}$	Mmax
15.00	U(93.3)	17.9 ± 0.2	н ₂ о ^а	top plane	6.00	1.00	109.6 ± 0.4	250
21.00	U(93.2)	18.2 ± 0.2	H ₂ O ^a	top plane	6.00	1.00	188.5 ± 0.7	99
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	1.00	0.925	128.2 ± 0.5	167
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	1.00	0,925	228.4 ± 0.6	125
15.00	V(93.3)	17.9 ± 0.2	polyethylene	top plane	2.00	0,925	113.6 ± 0.4	57
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	2.00	0.925	198.5 ± 0.6	35
15.00	U(93.3)	17.9 ± 0.2	polyethylene	both planes	2.00	0.925	73.1 ± 0.3	73
21.00	U(93.2)	18.2 ± 0.2	polyethylene	both planes	2.00	0.925	117.4 ± 0.3	90
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	3.00	0.925	109.3 ± 0.4	77
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	3.00	0.925	190.3 ± 0.6	280
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	4.00	0.925	108.5 ± 0.4	75
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	4.00	0.925	188.5 ± 0.6	160
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	6.00	0.925	108.7 ± 0.4^{b}	99
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	6.00	0.925	187.9 ± 0.6 ^e	195
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	8.00	0.925	108.5 ± 0.4	110
21.00	U(93.2)	18.2 ± 0,2	polyethylene	top plane	8.00	0.925	187.8 ± 0.6	245
15.00	U(93.3)	17.9 ± 0.2	polyethylene	top plane	10.00	0.925	108.5 ± 0.4	120
21.00	U(93.2)	18.2 ± 0.2	polyethylene	top plane	10.00	0.925	187.6 ± 0.6	102
15.00	U(93.3)	17.9 ± 0.2	lucite	top plane	6.00	1.18	106.4 ± 0.4	52
21.00	U(93.2)	18.2 ± 0.2	lucite	top plane	6.00	1.18	182.1 ± 0.6	74
15.00	U(93.3)	17.9 ± 0.2	paraffin	top plane	6.00	0.87	109.2 ± 0.4	130
21.00	U(93.2)	18.2 ± 0.2	paraffin	top plane	6.00	0.87	188.5 ± 0.6	49

a Empirical correction for effect of 1/16" Al tank containing water, via influence of the tank containing lucite

^b Critical mass 129.0 \pm 0.5 (\mathbf{M}_{max} - 170) when 0.015" Cd between core and reflector

^c Critical mass 228.4 \pm 0.6 (M $_{max}$ - 38) when 0.015" Cd between core and reflector

TABLE IC7

HIGHLY ENRICHED U, MIXED REFLECTOR®

	core									
ref	shape	dimensions (in.)	material	<pre>p (total U) (g/cm³)</pre>	shape	thickness (in.)	material	٦ (g/cm ³)	^m c (kg U ²³⁵)	N _{max}
(27)	sphere	(nesting shells) ^D	V(93.9)	18.4	sphere	1.88	40 w/o Cu 32 w/o Ni 28 w/o Zn	8.55	26.7	89
(27)	sphere	(nesting shells) ^D	U(93.9)	18.75	sphere	2.02	40 w/o Cu 32 w/o Ni 28 w/o Zn	8.55	25.7	46
(28)	sphere	(shells) 0.83 i.d.	V(93.9)	18.45	inside: sphere outside: sphere	(9.00 o.d.) (18.5 o.d.)	U(N) Al	19.0 2.7	20.2	22
(29)	sphere	(shells) 0.83 i.d.	U(93.9)	18.5	inside: sphere outside: sphere	(9.00 o.d.) (13.7 o.d.)	U(N) Al	19.0 2.7	21.8	65
(29)	sphere	(shells) 0.83 i.d.	U(93.9)	18.5	inside: sphere outside: sphere	(9.00 o.d.) (13.7 o.d.)	U(N) Be	19.0 1.84	17.7	300
(30)	sphere	(thick shells)	V(93.2)	18.4	inside: sphere outside: sphere	0.50 1.30 ₅	U(N) Be	19.0 1.84	23.0	™ _{max} >¤_d
(11)	sphere	(nesting shells) ^b	V(93.5)	18.8	inside: sphere outside: sphere	2.00 2.00	W-alloy ^C Cast iron	17.39 7.16	21.0 ± 0.5	20
(11)	cylinder	5.25 dia, h _c /d = 0.99	V(93.3)	18.75	inside: cylinder outside: cylinder	0.500 0.500	Be Fe	1.84 7.78	32.4	102
(14)	annulus	12.25 o.d., 6.00 i.d., b_ = 1.98	U(93.4)	18.7	inside: (envelops outside: core)	1.00 2.00	U(N) polyethylene	19.0 0.92	50.9	^m max >mc ^d
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	2.0 (31 1b)	concrete	~2.3	127.9 ^f	96
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	4.0 (58 lb)	concrete	~2.3	119.5 ^f	10
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	6.0 (89 1b)	concrete	~2.3	117.5 ^f	20
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	8.0 (116 lb)	concrete	~2.3	116.4 ^f	29
(31)	cylinder	15.00 dia	U(93.3)	17.7	(cyl, top plane only)	12.0 (178 1b)	concrete	~2.3	116.1 ^f	35
(31)	cylinder	15.00 dia	V(93.3)	17 .7	(cyl, top plane only)	28.0 (406 lb)	concrete	~2.3	115.8 ^f	40

^a Note: Hansen, G. E., Wood, D. P., Geer, W. U., "Critical Masses of Enriched-Uranium Cylinders with Multiple Reflectors of Medium-Z Elements," Muclear Sci. and Eng. <u>8</u>, 588-594 (1960). Reported critical masses are not included in this tabulation.

. :

. . .

^b Uncorrected for 0.05 in.³ central source cavity

^C Composition 90 w/o W, 7 w/o Ni, 3 w/o Cu

d Corrected for small gap in final configuration

• Class A concrete: 1548 lb 3/4" rock, 1563 lb sand, 517 lb Portland cement, 40.3 gal water

^f Unreflected, m_C = 152.8 (M_{max} = 168); curves of 1/M vs mass paralleled for this series

TABLE IIA1

3. 1

U(93.3) METAL CYLINDERS DILUTED WITH Fe, Ni, Cu, OR Zn, 15" DIAMETER, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

Plate of diluent at base, portion of sandwich at top, unless noted otherwise

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

	vol %	repeated layers, thickness (cm)		7(11)	7(1)	he		^m c	max
diluent (A)	U(93.3)	U(93.3)	<u> </u>	(g/cm ³)	(g/cm^3)	(in.)	h _c /d	$(kg U^{235})$	(kg U ²³⁵)
Fe	72.8	2.4	0.95	13.28	2.08	4.33	0.289	155.3	151
Fe	62.3	1.5	0.95	11.36	2.88	5.21	0.347	159.9	157
Fe	49.0	0.9	0.95	8.97	3.91	7.02	0.468	170.0	169
Fe	49.0	0.9 ^a	0.95	8.97	3.91	7.00	0.467	169.6	163
Fe	39.1	0.6	0.95	7.18	4.68	9.84	0.656	190.8	187
Fe	38.4	0.6 ^a	0.95	7.01	4.70	9.96	0.664	188.7	182
Ni	72.4	2.4	0.95	13,15	2.35	4.33	0.288	153.7	151
Ni	61.8	1.5	0.95	11.33	3,29	5.14	0.343	157.5	157
Ni	48.1	0.9	0.95	8.82	4.47	6.82	0.455	162.6	157
Ni	39.1	0.6	0.95	7.28	5.26	9.20	0.614	178.8	175
Ni	38.3	0.6 ^a	0.95	7.07	5.34	9.28	0.619	177.3	169
Cu	79.4	3.6	0.95	13.96	1.775	3.85	0.256	150.2	145
Cu	72.3	2.4	0.95	12.56	2.40	4.26	0.284	151.8	145
Cu	66.4	1.8	0.95	12.13	2.92	4.68	0.312	153.4	151
Cu	61.2	1.5	0.95	11.21	3.37	5.06	0.338	153.5	151
Cu	57.4	1.2	0.95	10.50	3,70	5.54	0.369	157.1	151
Cu	50.9	0.9	0.95	9.33	4.28	6.39	0.426	161.1	157
Cu	39.2	0.6	0.95	7.22	5.33	8,33	0.555	162.5	157
Cu	31.8	0.9	1.90	5,93	6.03	10.92	0.728	175.0	169
Zn	38.5	0.6	0.95	7.09	4.32	9.43	0.629	180.7	175

TABLE IIA2

U(93.3) METAL CYLINDERS DILUTED WITH MO, Ta, OR W, 15" DIAMETER, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

U plate at base, portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

diluent (A)	vol % U(93.3)	repeated thickness U(93.3)	layers, s (cm) <u>A</u>	₽(U) (g/cm ³)	ρ(A) (g/cm ³)	hc (in.)	h _c /d	^m c (kg U ²³⁵)	^m max (kg U ²³⁵)
Жо	89.2	0.6	0.08	16.18	1,080	3.56	0.238	155.8	151
Mo	79.1	0.3	0.08	15.15	2.09	3,96	0.264	155.1	151
Та	74.5	0.3	0.1	13.43	4,08	4.43	0.295	160.7	151
Та	59.4	0.3	0.2	10.77	6.52	5.73	0.382	166.7	157
Та	49.2	0.3	0.3	8.94	8.16	7.31	0.487	176.5	169
W	73.1	0,3	0.1	13.21	4.92	4.33	0,288	154.4	151
W	57.4	0.3	0.2	10.40	7.83	5.55	0.370	155.8	151
W	47.3	0.3	0.3	8,63	9.72	6.74	0.480	157.2	151
W.	40.2	0.3	0.4	7,29	10.99	8.31	0,554	163.7	157
₩	35.0	0.3	0.5	6.46	12.15	9.85	0,656	171.9	169
W	30.9	0.3	0.6	5.64	12.80	12.23	0.815	186.5	181

· ...

· · · · · ·

. .

TABLE IIA3

U(93.3) METAL CYLINDERS DILUTED WITH A1, Zr, OR Hf. 15" DIAMETER, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

U plate at base, portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

Communicated by G. A. Jarvis

diluent (A)	vol % U(93.3)	repeated thicknes U(93.3)	layers, s (cm) <u>A</u>	ρ(U) (g/cm ³)	ρ(A) (g/cm ³)	h _c (in.)	h _c /d	$\frac{{}^{m}c}{(kg U^{235})}$	^m max (kg U ²³⁵)
Al	78.6	0.3	0.08	14.20	0.555	4.14	0.276	159.0	157
Al	64.8	0.3	0.16	11.68	0.912	5.22	0.348	164.9	163
Al	55.2	0.3	0.24	9,97	1.166	6.39	0.426	172.2	169
Al	48.0	0.3	0,32	8.70	1.358	7.67	0.512	180.4	175
Al	42.6	0.3	0.40	7.75	1.502	9.23	0.615	193.2	187
Zr	71.3	0.3	0.1	13,18	1.810	4.44	0.296	158.2	157
Zr	56.6	0.3	0.2	10.31	2.70	5.84	0.389	162.5	157
Zr	46.5	0.3	0.3	8.45	3.32	7.42	0,495	169.4	163
Zr	39.6	0.3	0.4	7.18	3.74	9.22	0.614	178.7	175
Hf	97.3	$\binom{3.6}{2}^{a}$	0.1	17.55	0.349	3.27	0.218	155.1	151
Hf	93.4	1.5	0.1	16.80	0.837	3.45	0.230	156.6	151
Hf	85.1	0.6	0.1	15.31	1.904	3.82	0.255	158.1	157
Hf	74.1	0.3	0.1	13.30	3.30	4.48	0.299	161.2	157

a The two thicknesses of U alternate in successive sandwiches

U(93.3) - GRAPHITE CYLINDERS, UNREFLECTED

Thickness of U(93.3) plates 0.3 cm

U plate at base, portion of sandwich at top

Average composition is that of final stack

Corrected for influence of supports of split stack

.

Communicated by G. A. Jarvis

vol %	repeated thickne	l layers, ess (cm)	(U)	(C)	^h c	h /d	^m c 	max
U(93.3)	0(93.3)	graphite	(g/cm ³)	(g/cm [°])	<u>(in.)</u>	<u>"c'"</u>	(kg U-00)	(kg U)
15" diame	ter cylinders	:						
86.0	2.4	0.40	15.56	0.222	3.67	0.245	154.5	145
82.2	1.8	0.40	14.78	0.282	3.88	0.258	155.0	145
79.2	1.5	0.40	14.28	0.330	4.00	0.267	154.7	150
75.5	1.2	0.40	13.97	0.399	4.14	0.276	156.3	150
69.7	0.9	0.40	12.70	0.485	4,54	0.303	156.0	145
60.7	0.6	0.40	11.06	0.631	5.23	0.349	156.5	150
53.6	0.9	0.80	9.97	0.758	5.86	0.390	157.7	153
43.5	0.3	0.40	8.07	0.921	7.48	0.499	163.1	157
33.8	0.6	1.20	6.22	1.075	10.24	0.683	172.3	169
28.0	0.3	0.80	5.26	1,188	13.61	0.908	193.6	187
21" diame	ter cylinders	3:						
47.7	0.3	0.32	8.94	0.830	5.46	0.260	267	259
31.8	0.3	0.64	5.97	1.123	7.81	0.372	260	247
23.7	0.3	0.95	4.44	1.248	10.48	0.499	258	247
19.00	0.3	1.27	3.56	1.345	13.08	0.623	258	247
15.79	0.3	1.59	2.96	1.392	16.49	0.785	263	259
13.53	0.3	1,90	2.54	1.434	20.1	0.958	274	270
11.89	0.3	2.22	2.23	1.467	23.9	1.138	292	282
10.47	0.3	2.54	1.965	1.540	28.3	1.345	303	294
9.44	0.3	2.86	1.770	1.551	36.4	1.734	350	341
32" squar	e cross secti	ion, U(93.2)	foil:					
2.93	0.021 av ^a	0.71	0.549	1.602	35.9	-	303	285

^a Combinations of spaced 0.005", 0.003", 0.002" foil; graphite at base; correction for nearby counters, top and bottom structure

•.. •;

, , *t* ···

TABLE IIB2a

GRAPHITE-MODERATED HIGHLY-ENRICHED U, REFLECTOR OF GRAPHITE

	core						1		_		
ref	dimensions (in.)	U spec	layer ti U (total)	graphite	ົ (ປ) (g/cm ³)	ρ (C) (g/cm ³)	surfaces reflected	thickness (in.)	$\frac{\overline{\rho}}{(g/cm^3)}$	^m c (kg U ²³⁵)	^R nax (kg U ²³⁵)
(22)	21.00 dia, h_/d = 0,112	U(93.3) (47.7 v/o)	0.30 cm	0.32 cm	8.94	0.83	both planes (21.0" dia)	6.00	1.7	112.1 ⁸	105.8
(22)	c 21.00 dia, h_/d = 0.185	U(93.3) (31.8 v∕o)	0.30 ст	0.64 cm	5.97	1.12	both planes (21.0" dia)	6.00	1.7	123.3 [*]	117.5
(22)	c 21.00 dia, h_/d = 0.373	U(93.3) (19.0 v∕o)	0.30 ст	1.27 Cm	3.56	1.34	both planes (21.0" dia)	6.00	1.7	148.4 ^ª	141.1
(22)	c 21.00 dia. h_/d = 0.64	U(93.3) (13.5 v/o)	0.30 cm	1.91 cm	2.54	1.43	both planes (21.0" dia)	6.00	1.7	182.7 ⁸	176.3
(22)	c 21.00 dia, h /d = 1.04	U(93.3) (10.47 v/o)	0.30 cm	2.54 cm	1.96	1.54	both planes (21.0" dia)	6.00	1.7	228.5 [*]	222.7
(22)	c 21.00 dia, h_/d = 1.39	U(93.3) (9.44 v/o)	0.30 ст	2.86 cm	1.77	1.55	both planes (21.0" dim)	6.00	1.7	276.0 ^a	258.6
(22)	c 21.00 dia, h_/d = 2.10	U(93.3) (8.76 v/o)	0.30 сл	3.18 Cm	1.62	1.57	both planes (21.0" dia)	6.00	1.7	377.6	364.4
(21)	c 10.50 dia, h_/d = 0.402	U(93.4)	0.63"	0.50"	10.43	0.72	complete	2.00	1.68	58.4 ^b	(M _{max} = 29)
(32)	с 48.0 x 48.0 x 48.0	U(93.2)	0.001"	(c/u ²³⁵ -	7135)	1.50	complete	12.00	1.55	7.44 ^C	critical
(32)	48.0 x 39.0 x 42.0	U(93.2)	0.001"	(c/u ²³⁵ -	5297)	1.50	complete	12.00	1.55	7.11 ^C	critical
(32)	40.0 x 36.0 x 36.0	U(93.2)	0.001"	(c/u ²³⁵ -	3369)	1.50	complete	12.00	1.55	7.38 ^c	Critical
(32)	40.0 x 33.0 x 33.0	U(93.2)	0.001"	(c/u ²³⁵ -	2538)	1.50	complete	12.00	1.55	8.24 [°]	critical
(32)	48.0 x 48.0 x 45.6 ^d	U(93.2)	0.001"	(c/v ²³⁵ -	4685)	1.34	complete	12.00	1.55	9.07 [°]	critical
(32)	42.0 x 39.0 x 40.0	U(93.2)	0.001"	(c/u ²³⁵ -	2972)	1.34	complete	12.00	1.55	9.52 ^C	critical

^a No correction for 0.020" thick ss diaphragm across median plane of assembly

^b Empirical correction for 0.063" ss diaphragm supporting part of assembly

^c Core and reflector contain 0.061 v/o A1 (1100F) as matrix of 3" square tubes

d Three extra 3" square tubes are averaged into this dimension of core

31

TABLE IIB2b

GRAPHITE-MODERATED HIGHLY-ENRICHED U, REFLECTOR OF Be (PLUS SOME GRAPHITE)

Core and reflector contain Al (1100) at $\overline{\rho} = 0.165 \text{ g/cm}^3$ as matrix of 3" square tubes; forms are pseudocylinders One-inch thick unloaded graphite across face 1 of core

Core uranium is U(93.2); $\overline{\rho}$ (Be) = 1.66 g/cm³

U foil in core 0.002" thick up to 16.3 kg U^{235} , beyond which 0.005" thick foil intermixed

All assemblies critical

	Cor	e		reflector					
ref	dimensions (in.)	$\frac{\overline{\rho} (C)}{C/U^{235}} \frac{(g/cm^3)}{(g/cm^3)}$	Be thicknes wall	ss (in.) face 1 face 2	graphite thickness against core face 2 (in.)	^m c (kg U ²³⁵)			
(33)	24,6 av dia x 30.6	125 1.42	4.88 av	4.00 8.00	0.40	53.6			
(33)	24.6 av dia x 30.6	125 1.42	5.39 av	4.00 4.00	0.40	53.6			
(33)	31.9 av dia x 31.0	395 1.42	5.10 av	4.50 3.20	0.00	28.7			
(33)	36.3 av dia x 31.0	395 1.29	5.51 av	3.00 3.00 (1.27" C outside faces of Be)	0.00 e both	33.5			
(33)	38.4 av dia x 31.0	398 1.30	5.04 av	3.35 3.35	0.00	37.6			
(33)	38.4 av dia x 30.0	1022 1.48	4.72 av	3.85 0.00 9.1 C	1.00	16.2			
(33)	38.4 av dia x 30.0	1022 1.48	4.72 av	3.85 3.85	1.00	16.2			
(34)	55.0 av dia x 52.0	1350 1.17	inside: C, 2.00 av outside: Be, 6.50 av	0.00 0.00 (no C on face)	0.00	32.0			

a a ta ta

TABLE IIC1

LUCITE MODERATED U(93.16), UNREFLECTED

Al matrix throughout core and as incidental reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³

Probable error in ${\rm m}_{\rm C}$ about \pm 1% for critical systems

Communicated by J. C. Hoogterp

thicknesses of alternating layers (in.)	₽ (U ²³⁵) _(g/cm ³)	av atom: H/U ²³⁵	1000000000000000000000000000000000000	dimensions (in.)	$\frac{m_c}{(kg \ U^{235})}$	M max
0.012 U, 1/16 lucite	2.12	5.99	3.74	23.5 x 12 x 10.87	106.5	critical
0.012 U, 1/16 lucite	2.31	5.99	3.74	23.5 x 12 x 9.26	98.8	critical
0.006 U, 1/16 lucite	1.317	12.12	7.57	15 x 11.4 x 12	44.2	critical
0.002 U, 1/16 lucite	0.491	35.4	22.1	15 x 12 x 11.46	16.61	critical
0.004 U, 1/8 lucite	0.476	35.6	22.3	15 x 12 x 12	16.83	128
0.008 U, 1/4 lucite	0.477	35.4	22.1	15 x 1 2 x 12	16.89	critical
0.012 U, 3/8 lucite	0.489	35.3	22.2	15 x 12 x 11.65	16.78	critical
0.016 U, 1/2 lucite	0.484	35.2	22.0	15 x 12 x 12.06	17.22	critical
0.022 V, 11/16 lucite	0.494	35.1	22.0	15 x 12 x 12	17.48	critical
0.030 U, 15/16 lucite	0.495	35.1	22.0	15 x 12 x 12.47	18.22	critical

TABLE IIC2a

LUCITE MODERATED U(93.16), ≥ 6" THICK LUCITE REFLECTOR

Al matrix throughout core and reflector, $\overline{\circ}$ (Al) = 0.165 g/cm³

Probable error in m_{c} about \pm 1% for critical systems

Communicated by J. C. Hoogterp

	core							
thicknesses of alternating layers (in.)	p̄ (U ²³⁵) (g/cm ³)	$\frac{av atom}{H/U^{235}}$	ic ratio C/U ²³⁵	critical size (L x H x W-in.)	<pre>p (lucite) (g/cm³)</pre>	thickness/face (L ² x H x W-in.)	$\frac{\mathbf{m}_{c}}{(\mathrm{kg} \ \mathrm{U}^{235})}$	M _{max}
0.006 U, 1/16 lucite	1.311	12.2	7.6	15 x 6 x 8.23	1.007	$8.25 \times \binom{6}{9} \times 9$	15.90	critical
0.006 U, 1/16 lucite	1.213	13.3	8.3	15 x 6 x 8	1.048	8,25 x 6 x 6	14.32	critical
0.006 U, 1/16 lucite	1.109	12.1	7.6	15 x 9 x 7.5	1.037	8.25 x 6 x 6	18.41	critical
0.006 U, 1/16 lucite	0.950	12.0	7.5	15 x 9 x 10.5	1.036	8.25 x 6 x 6	22.06	critical
0.002 U, 1/16 lucite	0.363	35.6	22.3	15 x 9 x 10.5	1.036	8.25 x 6 x 6	8.43	critical
0.002 U, 1/16 lucite	0.452	35.3	22.0	15 x 6 x 10.5	1,044	8.25 x 6 x 6	7.00	critical
0.002 U, 1/16 lucite	0.517	34.3	21.5	15 x 6 x 8	1.040	8.25 x 6 x 6	6.10	254
0.004 U, 1/8 lucite	0.518	34.3	21.5	15 x 6 x 8.03	1.040	8.25 x 6 x 6	6.14	725
0.008 U, 1/4 lucite	0.518	34.3	21.4	15 x 6 x 8.10	1.048	8.25 x 6 x 6	6.19	critical
0.012 U, 3/8 lucite	0.518	34.3	21.5	15 x 6 x 8.13	1.048	8.25 x 6 x 6.12	6.21	critical
0.016 U, 1/2 lucite	0.521	34.3	21.5	15 x 6 x 8.39	1.050	8.25 x 6 x 6.06	6.45	critical
0.024 U, 3/4 lucite	0.532	33.5	20.9	15 x 6 x 9.11	1.035	8.25 x 6 x 6.06	7.14	critical
0.030 U, 15/16 lucite	0.509	35.3	22.0	15 x 6 x 10.26	1.031	8.25 x 6 x 6.09	7.70	critical
0.030 U, 13/16 lucite	0.582	30.6	19.1	15 x 6 x 9.48	1.031	8.25 x 6 x 6.26	8.13	519
0.030 U, 11/16 lucite	0.685	26.0	16.2	15 x 6 x 8.04	1.030	8.25 x 6 x 6.98	8.12	893
0.030 U, 9/16 lucite	0.818	21,2	13.2	15 x 6 x 8.34	1.031	8.25 x 6 x 6.83	10.06	critical
0.030 U, 7/16 lucite	1.021	16.6	10.4	15 x 6 x 7.89	1.030	8.25 x 6 x 7.05	11.89	170
0.008 U, 15/16 lucite	0.138	133.3	83.2	15 x 6 x 17.09	1.001	8.25 x 6 x 6.04	3.47	critical
0.008 U, 11/16 lucite	0.186	97.8	61.1	15 x 6 x 12.35	1.000	8.25 x 6 x 8.33	3.38	critical
0.008 U, 9/16 lucite	0.229	79.4	49.6	15 x 6 x 10.79	1.000	8.25 x 6 x 9.11	3.65	28

•.. •

.

^a Reflector thickness on ends averaged to allow for 1/2" irregularity

TABLE IIC2b

LUCITE MODERATED U(93.16) SLABS, 6" THICK LUCITE REFLECTORS ON TWO LARGE SURFACES ONLY

.

• • • • •

1

Alternating layers of 0.002" U and 1/16" lucite in core

Al matrix throughout core and reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³

Probable error in m about \pm 1% for critical systems

Communicated by J. C. Hoogterp

		core		reflector		
$\overline{\rho} (U^{235})$ (g/cm ³)	av atom H/U ²³⁵	ic ratio C/U ²³⁵	dimensions (in.)	<pre>p (lucite) (g/cm³)</pre>	$\frac{m_{c}}{(kg U^{235})}$	M _{max}
0.488	35.3	22.1	15 ^a x 6 x 14.53	0.977	10.45	2320
0.422	36.0	22.5	32 x 6 x 13.06	1.007	17.34	critical
0.372	35.7	22.3	32 x 6 x 17.03	1.006	19.96	2320
0.478	36.0	22.5	32 x 5.24 x 12	1.022	15.79	102
0.491	35.9	22.4	32 x 5 x 12	1.022	15.44	18 2 1
0.479	37.3	23.3	32 x 3 x 23.03	1.041	17.37	critical
0.479	35.6	22.2	32 x 3 x 28.5	1.002	21.5	critical
0.431	35.7	22.3	32 x 3 x 54	1.041	36.6	critical
0.474	36.2	22.6	32 x 2.71 x 48	1.040	32.4	187
0.473	36.1	22.6	32 x 2.69 x 52.8	1.037	35.2	critical
0.498	36.2	22.6	32 x 2.50 x 58.9	1.041	38.5	38.6

^a Reflector overhangs fuel 1/2" on both sides

TABLE IID1

LUCITE-GRAPHITE MODERATED U(93.16), UNREFLECTED

Lucite thickness 1/16" per indicated thicknesses of U and graphite

Al matrix throughout core and as incidental reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³

Probable error in m_c about $\pm 1\%$ for critical systems

Communicated by J. C. Hoogterp

thicknesses of layers with 1/16" lucite (in.)	$\overline{\rho} (U^{235})$ (g/cm ³)	av atom: H/U ²³⁵	$\frac{10 \text{ ratio}}{C/U^{235}}$	dimensions (in.)	$\frac{m_c}{(kg U^{235})}$	Mmax
0.012 U, 0.120 graphite	0.916	6.02	24.1	23.5 x 18.14 x 18	115.2	critical
0.012 U, 0.280 graphite	0.518	6.04	48.7	23.5 x 28.02 x 24	134.2	317
0.006 U, 0.280 graphite	0.258	12.41	98.2	32 x 24.70 x 24.70	82.4	critical
0.006 U, 0.280 graphite	0.258	12.41	98.2	32 x 13.61 av radius ^a	78.6	critical
0.006 U, 0.280 graphite	0.258	12.27	98.7	23.5 x 28.5 x 28.79	81.4	critical
0.002 U, 0.120 graphite	0.337	35.2	51.8	15 x 15 x 15.69	19.51	critical
0.002 U, 0.120 graphite	0.337	35.2	48.2	15 x 15 x 16.69	20.7	critical
0.002 U, 0.280 graphite	0.224	35.0	101.5	15 x 21 x 21	24.2	critical

^a Pseudocylinder with 3" module

;

TABLE IID2a

LUCITE-GRAPHITE MODERATED U(93.16), LUCITE REFLECTED

U thickness 0.006" and lucite thickness 1/16" per indicated thickness of graphite in core

Al matrix throughout core and reflector, \overline{p} (Al) = 0.165 g/cm³

All systems critical, probable error in m_c about \pm 1%

Communicated by J. C. Hoogterp

······································	core						reflector		
graphite thickness (in.) per 0.006" U, 1/16" lucite	₽ (U ²³⁵) (g/cm ³)	av atomic H/U ²³⁵	ratio C/U ²³⁵	critical size (L x H x W-in.)	<pre>p (lucite) ends</pre>	(g/cm ³) sides	thickness/face (L ^a x H x W-in.)	(kg U ²³⁵)	
0.280	0.255	12.46	100.3	23.5 x 24 x 24	1.021	0.938	~6 x 1.50 x 1.50	43.2	
0.280	0.223	12.48	100.6	23.5 x 21 x 21	1.021	0.969	~6 x 4 x 4	37.8	
0.280	0.252	12,12	101.2	23.5 x 18 x 18	1.042	0.984	~6 x 3.75 x 3.75	31.5	
0.280	0.244	12.12	101.2	23.5 x 18 x 18	1.042	1.021	~6 x 7.50 x 7.50	30.5	
0.280	0.252	12.05	101.5	23.5 x 17.25 x 17.4	1.042	0.982	~6 x 6.38 x 6.32	29.0	
0.280	0.251	12.10	101.6	23.5 x 9.57 av radius ^b	1.042	0.980	~6 x 7.10 av ^b	27.8	
0.004 av ^C	0.934	12.05	8.89	15 x 9 x 10.5	1.036	1.036	8.25 x 6 x 6	21.7	

.

^a Low-density 1.5" extension of 6" thick reflector; 8.25" end reflector thickness is averaged over 1/2" irregularity

^b Pseudocylinder with 3" module

^C Average of nonuniformly-distributed 0.120"-thick graphite

TABLE IID2b

LUCITE-GRAPHITE MODERATED U(93.16) SLABS, 6" THICK LUCITE REFLECTORS ON TWO LARGE SURFACES ONLY

Core consists of the successive layers: 0.006" U, 1/16" lucite, 0.280" graphite Al matrix throughout core and reflector, $\overline{\rho}$ (Al) = 0.165 g/cm³ All systems critical, probable error in m_c about ± 1%

Communicated by J. C. Hoogterp

_ _ _ _ _

		core		reflector	
$\rho (U^{235})$ (g/cm ³)	av atom: H/U ²³⁵	ic ratio C/U ²³⁵	dimensions (in.)	$\overline{\rho}$ (lucite) (g/cm ³)	$\frac{^{m}c}{(kg U^{235})}$
0.239	13.0	106.2	32 x 13.5 x 29.8	1.001	50.4
0.239	13.2	105.4	32 x 12 x 35.4	1.032	53.3
0.239	13.2	106.9	32 x 9 x 110	1.029	124.0
0.254	12.4	99.1	64 x 9 x 39.1	1.042	93.8
0.254	12.5	99.2	64 x 8.25 x 52.6	1.033	115.9

۰.-

TABLE IIE1 DIFFUSE U(93.1) REFLECTED BY THICK D₂O OR Be (CAVITY ASSEMBLIES)

 v^{235} enrichment of all uranium is 93.15 w/o

		COLS	c y	lindric reflector		*.	
ref	cavity cylinder dimensions (in.)	fuel	material	thickness (in.)	interior liner	(kg U ²³⁵)	Max
(35)	40 dia x 40	0.003" U foil covering cavity surface, on av 0.05" Al support	D ₂ 0 (99.2 w/o)	20	1/8" Al, av	6.00 ⁸	critical
(35)	sawe except 4" di	a axial channel through bot	ttom reflector			8.05	critical
(35)	same except 6" di	a axial channel through both	ttom reflector			6.09	critical
(35)	same except 6" di	a axial channel through bo	ttom reflector			8,19	critical
(35)	same except 9" di	a axial channel through bo-	ttom reflector			8.26	critical
(35)	same except 10" d	is axial channel through b	ottom reflector			8.40	critical
(35)	same except 23.9	kg D ₂ 0 (12" x 12" cyl) at (cavity center (no chan	nel)		5.60 ^b	critical
(35)	40 dia x 40	six 40" discs of 0.035" av U foil 6" apart along cavity axis, on 1/16" Al plates	D ₂ 0 (99.2 w/o)	20	1/8" Al, av	7.97 [°]	critical
(36)	15-1/2 dia x 31	0.022" av U foil covering cavity sur- face, on 1/16" Al support	Be $(\bar{p} = 1.77 \text{ g/cm}^3)$	14 wall, 18 top, 15 bottom		11.0 ^d	58
(38)	15-1/2 die x 31	0.015" av U foil covering cavity sur- face, on 1/16" Al support	Be ($\overline{\rho} = 1.79 \text{ g/cm}^3$)	16.5 wall, 16 top, 15 bottom		7.7°	100
(36)	15-1/2 dia x 31	0.8 o.d., 0.25 i.d. graphite - 22 w/o U rods, distributed uniformly within cavity, parallel to axis	Be (p̂ - 1.79 g/cm ³)	16.5 wall, 18 top, 15 bottom	1/16" Al	7.6 ^{e, f}	130
(38)	15-1/2 dia x 16	0.8 o.d., 0.25 i.d. graphite - 22 w/o U rods, distributed uniformly within cavity, parallel to axis	Be (p̂ - 1.77 g/cm ³)	14 wall, 16 top, 30 bottom	1 /16" Al	9.9 [£]	136

After correction for Al cavity liner and fuel support, m_c = 5.33 kg; 6.93 kg of 0.003" foil covers the cavity completely

^b Corrected for effect of Al container for central D_2^{-0}

 $^{\rm C}$ After correction for Al cavity liner and fuel support, $\rm m_{c}$ ~7.0 kg

d Corrected (-0.04 kg) for Al fuel support

• Corrected (-0.03 kg) for Al cavity liner

·`.

:

f $m_c = 7.30$ kg when fuel concentrated toward outside of cavity, $m_c = 8.60$ kg when fuel concentrated along axis; with 14" reflector wall, $m_c = 8.99$ kg when fuel concentrated toward outside of cavity -

Corrected (-0.02 kg) for Al cavity liner

TABLE IIE2

 $U(93.65)O_2F_2-D_2O$ SOLUTIONS, BARE, D_2O OR GRAPHITE REFLECTED All systems critical

			CO	re						
ref	$\frac{(U^{235})}{(g/cm^3)}$	atomic ratio D/U ²³⁵	shape	solution dimensions (in.)	container	shape	dimensions (in.)	composition	^m c (kg U ²³⁵)	
(37)	0.1094 1" o.d. x 7	230 ² 7/8" i.d. ss "d	cylinder Iry" axial	24.9 dia x 28.1 glory hole	1/8" ss		none		24.5	
(37)	0.0610 1" o.d. x 7	419 ⁸ 7/8" i.d. ss "c	cylinder Iry" axial	24.9 dia x 31.0 glo ry hole	1/8" ss		none		15.04	
(37)	0.0301 1" o.d. x 7	856 ² 7/8" i.d. ss "c	cylinder Iry" axial	30.0 dia x 24.1 glory hole	1/8" ss		none		8.37	
(37)	0.0301 1-1/8" o.d.	856 ^a . x l" i.d. Al	cylinder "dr y" axia	30.0 dia x 24.0 l glory hole	1/8" ss		none		8.33	
(37)	0.0124 1-1/8" o.d.	2081 ^a . x l" i.d. Al	cylinder "dry" axia	30.0 dia x 33.4 l glory hole	1/8" ss		none		4.78	
(37)	0.679	34.2 ^b	sphere	~13.5 dia	0.04" ss (321)	sphere ^C	10.7 thick D ₂ 0	~99.5% D ₂ 0	14.19	
(37)	0.443	53.7 ^b	sphere	~14.5 dia	0.04" ss (321)	sphere ^C	10.2 thick D ₂ 0	~99.5% D ₂ 0	11.56	
(37)	0.302	81.2 ^b	sphere	~15.5 dia	0.04" ss (321)	sphere ^C	9.7 thick D ₂ 0	~99.5% D20	9.57	
(37)	0.185	135.3 ^b	sphere	~16.5 dia	0.04" ss (321)	sphere ^C	9.2 thick D ₂ O	~99.5% D ₂ 0	7.05	
(37)	0.104	243 ^b	sphere	~17.5 dia	0.04" ss (321)	sphere ^C	8.7 thick D ₂ 0	~99.5% D20	4.77	
(37)	0.0595	431 ^b	sphere	~18.5 dim	0.04" ss (321)	sphere ^C	8.2 thick D ₂ O	~99.5% D20	3.20	
(38)	1.051 0.9" thick	19.56 ^a space above so	cylinder olution	12.5 dia x 12.1	ss, 1/16" wall, 1/8" top, bottom	cylinder	32 dia x 31.75 9.67 wall, 10 base, 8.5 top	graphite (CS-312) p = 1.67 g/cm ³	25.51	
(38)	0.595 1.1" thick	39.4 ^a space above so	cylinder olution	14 dia x 13.4	ss, 1/16" wall, 1/8" top, bottom	cylinder	32 dia x 31.75 8.92 wall, 10 base, 7 top	graphite (CS-312) c = 1.67 g/cm ³	20.11	

•.•

_

^a No correction for ~1 mole percent ${\rm H_2O}$

^b No correction for ~ 0.3 mole percent $H_2 0$

^c Stainless steel container 35" i.d., ~0.1" thick

40

TABLE IIFla

U(14.67)02504-H20 SOLUTION, SPHERE

Solution volume 14.95 liters, container 12" dia, 1/32" thick, type 347 ss sphere

	crit	ical core			m	m		
reference	ρ (U ²³⁵) <u>(g/cm³)</u>	atomic ratio <u>H/U²³⁵</u>	material	ρ (g/cm ³)	shape	outside dimension (in.)	(kg U ²³⁵)	(kg_U ²³⁵)
(39)	0.0378	647	BeO supported on ~12"	2.7 thick grap	pseudosphere hite plate	~36 dia	0.565 ₅	critical
(39)	0.0383	638	BeO supported on ~12"	2.7 thick grap	pseudosphere hite plate	~36 di a	0.572 ± 2^{a}	critical
(39)	0.0383	638	BeO (inside) graphite	2.7 1.67	cube cube	24 18 thick	0.573 ± 2 ^a	critical
(39)	0.0492	497	graphite (inside) BeO	1.67 2.7	cube cube	18 12 thick	0.735 ± 10 ²	0.66
(39)	0.0508	481	graphite	1.67	cube	48	0.760 ± 10 ^a	0.66
(39),(40)	0.0803	~300	water	1.0	cylinder	60 dia x 60	1.20 ± 0.05^{a}	0.72 ^b

٠

^a Large detector displacing reflector near core, re-entrant tube in core

^b Although this measurement does not satisfy the criterion $m_{max}/m_{c} \ge 0.75$, multiplication curves with several detector types and locations lead to greater reliability than usual

TABLE IIF1b

U(93.5)-PHOSPHATE AQUEOUS SOLUTION, CYLINDERS, 3.0" THICK Fe REFLECTOR^a

Solutions of UO_3 dissolved in 4.26 molar H_3PO_4

Solution cylinder 12.4" dia; 1/8" ss (347) container included in thickness of mild steel reflector

reference	$P(U^{235})$ of solution (g/cm ³)	atomic ratio H/U ²³⁵	$\overline{\rho}$ (347 ss) in core (g/cm ³) ^b	solution h_(in.) 	core h _c /d	(kg U^{235})	^m max (kg U ²³⁵)
(41),(42)	0.112	212	0	6.5	0.52	1.43 ± 0.02	1.35
(42)	0.112	212	0.725	10.0	0.81	2.02 ± 0.02	1.93
(42)	0.112	212	1.140	17.1	1.38	3.26 ± 0.03	3.10
(41),(42)	0.101	235	0	6.8	0.55	1.36 ± 0.02	1.27
(42)	0.101	235	0.725	10.8	0.87	1.97 ± 0.02	1.85
(41),(42)	0.090	265	0	7.1	0.57	1.25 ± 0.02	1.23
(42)	0.090	265	0.725	12.1	0.97	1.95 ± 0.04	1.85
(41),(42)	0.075	321	0	7.7	0.62	1.14 ± 0.02	1.10
(42)	0.075	321	0.725	15.6	1.26	$2.10 \pm 0.12 \\ 0.03$	1.83

•••

• • • • •

^a Reflector nearly in contact with top of solution

^b Plates of 1/16" thick type 347 stainless steel distributed throughout the solution as vertical grids

· · · · ·

TABLE IIF2

ENRICHED-URANIUM HYDRIDE COMPOSITION

Cores are homogeneous except that of last entry

		CORE				reflector				
ref	effective composition	$\overline{\rho} (U^{235})$ (g/cm ³)	shape ^b	material	ρ (g/cm ³)	shape	thickness (in.)	^m c (kg U ²³⁵)	Mmax	
(43)	U(93.15)H _{2.97} C _{1.11} 0.25	6.36	pseudosphere	U(N)	19.0	pseudosphere	~8-1/2	12.61	critical	
(43)	U(93.15)H _{2.97} C _{1.11} 0.25	6,36	pseudosphere	Ni	8.8	pseudosphere	~8-1/2	12.63	critical	
(43)	U(93.15)H _{2.97} C1.11 ⁰ .25	6.36	pseudosphere	Ni (inside) U(N)	8.8 19.0	pseudosphere pseudosphere	~1/2 ~8	11.81	critical	
(43)	U(93.15)H _{2.97} C _{1.11} O.25	6,36	pseudosphere	Ni (inside) U(N)	8.8 19.0	pseudosphere pseudosphere	~1 ~7-1/2	11.64	critical	
(43)	U(93.15)H _{2.97} C _{1.11} 0.25	6.36	approx. cube	U(N)	19.0	pseudosphere	~8-1/2	12.98	critical	
(44)	U(73.8)H ₁₀ C ₄	2.09	pseudoellipsoid	U(N)	18.6	sphere	~6-1/2	6.95 ± 0.12	critical	
(44)	U(75.0)H ₁₀ C ₄	2.17	pseudosphere	WC	~14.7	cube	~4-1/2	7.00 ± 0.05	critical	
(44)	U(75.0)H ₁₀ C ₄	2.17	approx. cube	WC.	~14.7	cube	~4-1/2	7.53 ± 0.12	critical	
(44)	U(73.5)H ₁₀ C ₄	2.06	pseudoellipsoid	РЪ	11.2	sphere	~6-1/2	9.2 ± 0.2	14.5	
(44)	U(73.5)H ₁₀ C ₄	2.06	pseudoellipsoid	Fe	7.8	sphere	~6-1/2	8.29 ± 0.17	critical	
(44)	U(75.2)H ₁₀ C ₄	2.18	approx. cube	BeO	2.69	cube	~6	3.52 ± 0.05	critical	
(44)	U(75.2)H ₁₀ C ₄	2.18	approx. cube	BeO	2.69	cube	~12	2.80 ± 0.06	critical	
(44)	U(73.8)H ₁₀ C ₄	2.07	approx. cube		1	oone		16.5 ± 1.2	13.7	
(45)	av U(94.5)H ₃ 8C1.9 (heterogeneous)	5.32	pseudosphere	U(N)	19.0	pseudosphere	~8	11.35	critical	

• • • •

^a Heterogeneous mixtures of U(72)H₁₀C₄ and polyethylene extending to the average composition UH₈₀C₃₉ have not been tabulated because of imperfect reflector assemblies and deficient core densities

^b All cores built of 1/2" cubic units

^C Core composed of 1/2" cubes of U(94.5) metal and of polyethylene, intermaixed to average 30 v/o U

TABLE IIF3

LATTICES OF U(94) METAL UNITS, H_2O MODERATED, H_2O REFLECTFT Centered in water cylinder, 35-1/2" dia x 23" deep

Reference (46)

U ²³⁵ enrich-	dimensions of	latti	c 0	center-center	critical	С 	max	M
ment, w/o	metal unit (in.)	structure	form	Spacing (in.)	no. of units	(kg U)	(xg U)	<u>ax</u>
94.0	4.0 x 4.0 x 4.5	(sol	id core)	-	1	22.5	20.8	110
94.3	l cube	cubic	approx. cube	1.25	83.4	24.1	22.0	100
94.3	l cube	cubic	approx. cube	1.50	75.0	21.7	18.5	58
94.3	l cube	cubic	approx. cube	1.75	73.0	21.1	18.5	81
94.3	l cube	cubic	approx. cube	2.00	79.9	23.1	19.7	74
94.52	1/2 cube	cubic	approx. cube	0.75	469	17.0	12.4	22
94.52	1/2 cube	cubic	approx. cube	1.00	378	13.7	12.4	90
94.52	1/2 cube	cubic	approx. cube	1.17	372	13.5	12.4	124
94.52	1/2 cube	cubic	approx. cube	1.50	522	18.9	12.4	34
94.52	1/2 cube	body-center cubic	approx. cube	1.50 in any horiz, plane	368	13.3 ⁸	12.4	143
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.50	171	7.13	6.55	86
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.625	149	6.22 ^b	5.91	125
93.61	1/8 dia x 12 rod	square	pseudocylinder	0.750	152	6.33	6.01	170
93,61	1/8 dia x 12 rod	Square	pseudocylinder	0.875	173	7.21	6.55	139
93.61	1/8 dia x 12 rod	square	pseudocylinder	1.00	>203	>8.4	6.55	52

-

, f *•

^a With alternate horizontal planes of cubes translated 3/4" to vertical face-center positions, $m_c = 13.6$ kg

^b Non uniform arrays of 1/8" rods gave minimum observed m_C = 6.08 kg with spacing graded from 1/2" near axis to 1" near periphery

••

· · · · ·

TABLE IIIA1

PLUTONIUM-METAL SPHERES

Hemispheres of Pu(1.0w/o Ga) are coated with $\sim 0.005''$ thick Ni, unless Otherwise noted

	c	ore		reflecto				
ref	w/o Pu ²⁴⁰	p (total Pu) (g/cm ³)	material	shape	thickness (in.)	σ (g/cm ³)	mc (kg Pu)	Mmax
(47)	4.5	15.66		none			16.28 ± 0.05^{a}	critical
(47)	1.5	15.63	U(N)	pseudosphere	9-1/2 av	19.0	5.73 ± 0.02^{b}	critical
(7)	4.8	15.36	U(N)	sphere	7.72	19.0	5.91 ± 0.02 ^b	critical
(2)	1.35	15.58	U(N)	sphere	4.60	19.0	6.22	94
(48)	4.9	15.62	U(N)	sphere	1.625 ± 1%	18.92	8.39	m _{max} > m _c ^C
(49)	4.5	15.25	Th	cylinder (21" dia x 21")	8.4 min	11.9	9.24 ^a	critical
(48)	4.9	15.62	w ^d	sphere	$1.850 \pm 1\%$	17.21	8.39	m _{max} > m _a ^C
(50)	1.35	15.58	Cu	sphere	5.00	8.88	6.88 ^e	max C 25
(19)	4.9	15.74	Al (2014)	sphere	3.12 ± 0.03	2.82	11.04	m > m_ ^C
(48)	4.9	15.62	Be (98 ₩/o)	sphere	$1.452 \pm 1\%$	1.83	8.39	
(25)	1.35	15.58	water	cylinder	>12	1.00	7.9 ^f	15
(10)	1.0	15.6	inside: U(N) outside: Al	sphere sphere	(9.0 o.d.) (18.5 o.d.)	19.0 2.7	6.46 ^f	m _{max} - 6.15
(10)	1.35	15.58	inside: U(N) outside: WC	sphere parallelepiped (12.75" x 12.75" x 10.62")	0.45	19.0 ~14.7	6.13 ^f	critical

^a Three major parts; corrected empirically for effect of Ni, cavities, incidental reflection and asphericity

^b Corrected empirically for effect of Ni and cavities

^C Effect of a small compensating gap was extrapolated to zero

^d Composition 91.3 w/o W, 5.5 w/o Ni, 2.5 w/o Cu, 0.7 w/o Zr

e No correction for 0.41" central source cavity

^f No correction for 0.83" central source cavity

TABLE IIIA2

PLUTONIUM-METAL CYLINDERS

Cores of Pu(1w/o Ga) containing $\sim 5\%$ Pu²⁴⁰; no correction for Ni coating

Reference (12)

See also the last item of Table VB

core			cyli	ndric refl	ector		
cylinder dia (in.)	h _c /d	<pre>p (total Pu) (g/cm³)</pre>	material	$\frac{\overline{\rho}}{(g/cm^3)}$	thickness (in.)	^m c (kg Pu)	^m max (kg Pu)
2.25 ^a	8.75	15.44	U(~0.3) ^b	18.7	3.0	20.0 ± 0.1	19.2
2.25 ^a	7.13	15.44	$graphite^{b}$	1.60	7.0	16.3 ± 0.1	15.7
2.21 ^a	12.52	15.44	water	1.00	>12	27.1 ± 1.5	21.3
6.0 ^C	0.258	14.3	U(N)	18.7	3.0	10.14 ± 0.07	9.9
6.0 ^c	0.390	14.3	graphite	1.60	1.0	15.44 ± 0.07	15.4
6.0 ^C	0.273	14.3	graphite	1.60	7.0	10.8 ± 0.07	10.7
6.0 ^C	0.280	14.3	water ^d	1.00	>12	11.1 ± 0.2	9.9
11.0 ^{c,e}	0.095	13.1 ^e	water ^d	1.00	>12	21.4 ± 0.8	20.0
16.0 ^{c,e}	0.049	13.1 ^e	water ^d	1.00	>12	34.1 ± 1.2	26.5

^a Pu pieces 0.5" to 3.0" thick, each coated with 0.005" thick Ni

^b Reflector wall lined with 0.030" thick steel

^C Pu pieces 5.934" dia x 0.123" in thin Ni cans with outside dimensions 5.967" x 0.135"

^d Core sealed in lucite container before immersion in water

^e Average diameter and density of cylinders constructed of overlapping layers of closepacked plates

· .•

1. 1. . . 1

DILUTED Pu CYLINDERS, 6.0" DIAMETER, UNREFLECTED

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135", ρ (Pu) = 15.61 g/cm³.

Diluent plates 5.967" dia x 1/8" or 1/4"

Reference (51)

	vol %	repeated layers, nom thickness (in.)		<u>core-average \circ (g/cm³)^a</u>				. 9	m	m_
diluent (A)	Pu	Pu	<u>A</u>	ρ̄ (Pu)	<u>p</u> (A)	p (Ni)	h _c (in.)	$\frac{h_c/d^a}{d}$	c (kg Pu)	max (kg Pu)
none	91.4	1/8	-	14.27	-	0.65	3.23	0.54	21.4 ^b	20.2
U(0.28)	63.0	1/4	1/8	9.83	5.97	0.45	6.07	1.01	27.3	25.2
steel ^C	62.7	1/4	1/8	9.78	2.50	0.45	7.32	1.22	32.8	27.1
Th	62.7	1/4	1/8	9.78	3.62	0.45	7.85	1,31	35.2	27.1

• • • • • • •

^a Based on 6.00" diameter

^b Also reported in (51) are reflector saving values for 1/2" thick discs of polyethylene, Be, graphite, Mg, Al, Ti, Fe, Co, Ni, Cu, Mo, W, Th, U(N), and U(0.28), on the top of this Pu stack

^C Stainless steel, type 304

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 2.0" THICK U(~0.3) REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; $\overline{\rho}$ (U) = 19.0

Reference (51)

	vol %	repeated layers, nom thickness (in.)		core-average p (g/cm ³) ^a			1 — h (in)	,a	a ^m c	mmax
diluent (A)	Pu	Pu	<u>A</u>	ρ (Pu)	<u> (A)</u>	P (N1)	h_(in.)	$\frac{h_c/d^{a}}{d}$	(kg Pu)	(kg Pu)
none	90.8	1/8	-	14.18	-	0.65	1.72	0.29	11.15	10.7
U(0.28)	62.2	1/4	1/8	9.71	5.95	0.45	2.92	0.49	13.0	12.5
steel ^b	62.5	1/4	1/8	9.75	2.51	0.45	3.15	0.525	14.1	13.9
Th	62.4	1/4	1/8	9.74	3.63	0.45	3.29	0.55	14.7	14.4
Alc	62.3	1/4	1/8	9.72	0.84	0.45	3.23	0,54	14.4	14.15
space	64.0	1/4	1/8	9.97	-	0.45	3.29	0.55	15.05	14.4
U(0.28)	47.8	1/8	1/8	7.46	9.03	0.34	4.56	0.76	15.6	15.4
steel ^b	47.6	1/8	1/8	7.43	3.78	0.34	5,58	0.93	19.0	18.7
Th	48.0	1/8	1/8	7.49	5,55	0.34	6.02	1.00	20.6 ₅	19.8
Al ^c	48.0	1/8	1/8	7.49	1.28	0.34	5,78	0.96	19.9	19.6
space	48.7	1/8	1/8	7.60	-	0.35	6.43	1.07	22.4	21.7
U(0.28)	32.4	1/8	1/4	5.05	12.22	0.23	12.49	2.08	28.9	27.1

•

• • • • • • •

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

^C Aluminum, type 1100F

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 4.5" THICK U(~0.3) REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; \cap (Pu) = 15.61 g/cm³

· · · · · · ·

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; \overline{r} (U) = 19.0

Reference (51)

	vol %	repeated layers, nom thickness (in.)		core-average o (g/cm ³) ^a			$\frac{a}{b}$		• ^m c	m _{max}
diluent (A)	Pu	Pu	<u>_A</u>	ρ̄ (Pu)	P (A)	P (N1)	h _c (in.)	$\frac{h_c}{d}$	(kg Pu)	(kg Pu)
none	91,4	1/8	-	14.26	-	0.65	1.42	0.24	9.3	9.0
U(0.28)	61.8	1/4	1/8	9.65	5.88	0.44	2.40	0.40	10.6	9.0
steel ^b	60.6	1/4	1/8	9.46	2.48	0.44	2.59	0.43	11.2	10.6
Th	62.5	1/4	1/8	9.75	3.65	0.45	2.62	0.44	11.7	10,8
Al ^C	62.5	1/4	1/8	9.75	0,84	0.45	2.58	0.43	11.55	10.8
space	63.7	1/4	1/8	9.95	-	0.45	2.59	0.43	11.8	10.8
U(0.28)	47.5	1/8	1/8	7.42	9.08	0.34	3.72	0.62	12.65	12.55
steel ^b	47.5	1/8	1/8	7.42	3.81	0.34	4.26	0.71	14.5	14.35
Th	47.7	1/8	1/8	7.44	5.55	0.34	4.51	0.75	15.4	15.2
Al ^C	47.5	1/8	1/8	7.42	1.27	0.34	4.34	0.72	14.8	14.35
space	49.0	1/8	1/8	7.65	-	0.35	4.46	0.74	15.7	15.4
U(0.28)	32.4	1/8	1/4	5.06	12.28	0.23	7.99	1.33	18.55	18.0
steel ^b	32.3	1/8	1/4	5.04	5.14	0.23	10.97	1.83	25.3	24.3
Th	32.5	1/8	1/4	5.07	7.70	0.23	12.90	2,15	30.0	28.0
Al ^C	32.4	1/8	1/4	5.05	1.75	0.23	11.42	1.90	26.4	26.1
space	32.7	1/8	1/4	5.11	-	0.23	12.84	2.14	30.1	27.0

³ Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

^C Aluminum, type 1100F

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 7.5" THICK U(~0.3) REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve 0.030" thick, within reflector cylinder; $\overline{\rho}$ (U) = 19.0

Reference (51)

	vol %	repeated layers,		core-average p (g/cm ³) ^a				a	™ _c	max
diluent (A)	<u>Pu</u>	Pu Pu		9 (Pu)	<u>p (A)</u>	<u>p</u> (Ni)	h _c (in.)	h _c /d	(kg Pu)	(kg Pu)
none	91.2	1/8	-	14.23	-	0.65	1.37	0.23	8.9 ₅	8.0
U(0.28)	62.6	1/4	1/8	9.77	5.94	0.45	2.31	0.385	^{10.3} 5	10.3
steel ^b	62.5	1/4	1/8	9.76	2.51	0.45	2.43	0.405	10.9	10.8
Th	62.5	1/4	1/8	9.76	3.63	0.45	2.49	0.415	11.1	10.8
A1 ^C	62.5	1/4	1/8	9.76	0.84	0.45	2.47	0.41	11.0 ₅	10.8
space	63.5	1/4	1/8	9.92	-	0.45	2.47	0.41	11.2 ₅	10.8
U(0.28)	47.7	1/8	1/8	7.44	9.05	0.34	3.51	0.585	11.9 ₅	11.7
steel ^b	47.7	1/8	1/8	7.45	3.80	0.34	3.97	0.665	¹³ .5 ₅	13.3
Th	48.1	1/8	1/8	7.51	5.57	0.34	4.14	0.69	14.2 ₅	14.2
A1 ^C	48.0	1/8	1/8	7.50	1.28	0.34	3.98	0.665	13.7	13.5
space	48.8	1/8	1/8	7.62	-	0.35	4.18	0.70	14.6	14.4
U(0.28)	32.4	1/8	1/4	5.06	12.27	0.23	7.29	1.22	16.9	16.7
steel ^b	32.1	1/8	1/4	5.01	5.11	0.23	9.49	1.58	21.8	21.7
Th	32.5	1/8	1/4	5.07	7.49	0.23	10.83	1.80	25.1 ₅	25.0
Al ^C	32.4	1/8	1/4	5.05	1.75	0.23	9.65	1.61	22.3 ₅	22.3
space	32.8	1/8	1/4	5.12	-	0.23	10.58	1.76	24.8 ₅	24.4
U(0.28)	24.4	1/8	3/8	3.81	13.87	0.17	17.24	2.87	30.1	27.0

•••

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

C Aluminum, type 1100F

.

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 2.0" THICK TH REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³

. .

Diluent plates 5.97" dia x 1/8" or 1/4"

Steel guide sleeve, 0.030" thick, within reflector cylinder; $\overline{\rho}$ (Th) = 11.9 g/cm³

Reference (51)

	v01 %	repeate	d layers, ness (in.)	core-av	erage p	$(g/cm^3)^a$	· · · ·	. ,,a	^m c	mmax
diluent (A)	<u>Pu</u>	Pu	<u>A</u>	<u>p</u> (Pu)	<u>p (A)</u>	<u>p (Ni)</u>	$\frac{h_{c}(in.)}{2}$	h _c /d	(kg Pu)	(kg Pu)
none	91.3	1/8	-	14.25	-	0.65	2.25	0.375	14.7	14.5
U(0.28)	63.1	1/4	1/8	9.85	5.29	0.45	3.90	0.65	17.6	16.3
steel ^b	62.8	1/4	1/8	9.81	2.51	0.45	4.32	0.72	19.4	18.1
Th	62.8	1/4	1/8	9.81	3.63	0.45	4.44	0.74	20.0	18.1
Al ^C	62.8	1/4	1/8	9.81	0.84	0.45	4.46	0.74	^{20,0} 5	18.1
space	64.0	1/4	1/8	9.99	-	0.45	4.80	0.80	22.0	19.9
U(0.28)	47.5	1/8	1/8	7.41	9.01	0.34	6.55	1.09	22.2 ₅	21.65
steel ^b	50.4	1/8	1/8	7.87	4.01	0.36	8.50	1.42	30.6	26.1
Th	47.9	1/8	1/8	7.48	5.54	0.34	9.78	1.63	33.5	26.1
A1 ^C	48.1	1/8	1/8	7.51	1.29	0.34	10.15	1.69	34.9	26.1

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

^c Aluminum, type 1100F

2.8

. .

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 4.5" THICK TH REFLECTOR Pu(1w/o Ga), $\sim 5\% \text{ Pu}^{240}$, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³ Diluent plates 5.97" dia x 1/8" or 1/4" Steel guide sleeve, 0.030" thick, within reflector cylinder; $\overline{\rho}$ (Th) = 11.9 g/cm³

Reference (51)

	wol 9	repeated layers,		core-average p (g/cm ³) ^a					m	mmax
diluent (A)	pu	Pu	<u>A</u>	<mark>٥ (Pu)</mark>	P (A)	<u>p (Ni)</u>	h (in.)	$\frac{h_c/d^2}{d^2}$	(kg Pu)	(kg Pu)
none	91.8	1/8	-	14.33	-	0.66	2.02	0.34	¹³ .2 ₅	12.6
U(0.28)	62.5	1/4	1/8	9.75	5.94	0.45	3.42	0.57	15.3	14.4
steel ^b	63.1	1/4	1/8	9.85	2.52	0.45	3.74	0.625	16.9	16.2
Th	63.0	1/4	1/8	9.83	3.67	0.45	3.90	0.65	17.5 ₅	16.2
Alc	63.1	1/4	1/8	9.85	0.84	0.45	3.88	^{0.64} 5	17.5	16.2
space	63.9	1/4	1/8	9.97	-	0.45	3.99	0.665	18.2	16.2
U(0.28)	47.7	1/8	1/8	7.45	9.06	0.34	5.52	0.92	18.9	18.0
steel ^b	47.3	1/8	1/8	7.39	3.77	0.34	6.85	1.14	23.5	22.5
Th	47.9	1/8	1/8	7.47	5.52	0.34	7.35	1.225	25.2	24.4
Al ^c	47.8	1/8	1/8	7.46	1.28	0.34	7.35	¹ .22 ₅	25.1 ₅	24.4
space	48.8	1/8	1/8	7.62	-	0.35	8.36	1.39	29.2	27.9

•••

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

^c Aluminum, type 1100F

DILUTED Pu CYLINDERS, 6.0" DIAMETER, 7.5" THICK TH REFLECTOR

Pu(lw/o Ga), $\sim 5\%$ Pu²⁴⁰, as discs 5.934" dia x 0.123", in thin Ni cans of outside dimensions 5.967" dia x 0.135"; ρ (Pu) = 15.61 g/cm³ Diluent plates 5.97" dia x 1/8" or 1/4"

. . . .

· · · · · · · · ·

Steel guide sleeve, 0.030" thick, within reflector cylinder; $\overline{\rho}$ (Th) = 11.9 g/cm³

Reference (51)

	vol %	repeate nom thick	ed layers,	core-av	erage o	$(g/cm^3)^a$			m.	m
diluent (A)	Pu	Pu	<u>A</u>	ρ (Pu)	<u>⊳ (A)</u>	P (Ni)	h _c (in.)	$\frac{h_c}{d^a}$	c (kg Pu)	(kg Pu)
none	92.9	1/8	-	14.50	-	0.66	1.92	0.32	12.75	11.8
U(0.28)	63.5	1/4	1/8	9.91	5.99	0.45	3.23	0.54	14.65	12.6
steel ^b	62.5	1/4	1/8	9.76	2.50	0.45	3,58	0.60	16.0	14.4
Th	62.9	1/4	1/8	9.82	3.63	0.45	3.69	0.615	16.6	16.2
Alc	63.7	1/4	1/8	9.95	0.85	0.45	3.61	0.60	16.4 ₅	16.2
space	63.7	1/4	1/8	9.95	-	0.45	3.80	0.63	17.35	16.2
U(0.28)	47.5	1/8	1/8	7.42	9.04	0.34	5.16	0.86	17.5 ₅	17.1
steel ^b	47.6	1/8	1/8	7.43	3.80	0.34	6.33	1.06	21.5 ₅	20.7
Th	47.7	1/8	1/8	7.45	5.52	0.34	6.78	1.13	23.2	22.5
Al ^C	48.6	1/8	1/8	7.59	1.30	0.35	6.55	1.09	22.8	21.6
space	49.0	1/8	1/8	7.65	-	0.35	7.34	1.22	25.7 ₅	25.2
U(0.28)	32.4	1/8	1/4	5.06	12.27	0.23	13,26	2.21	30.8	27.0

^a Based on 6.00" diameter to include reflector clearance

^b Stainless steel, type 304

^C Aluminum, type 1100F

». '

في ا

TABLE IV

U-233 METAL SPHERES

Reflected cores consist of hemispheres coated with 0.005" thick Ni

		CO1	re		sph	eric refle	m_		
		composition	n	(ປ) ຈ		<u>,</u> , , , ,	thickness	$(1 \times 1)^{233}$	mar
ref	w/o U ²³³	w/o U ²³⁴	w/o U ²³⁸	(g/cm ³)	material	(g/cm ⁻)	(in.)		
(1)	98.2	1.2	0.6	18.45		none		16.09 ± 0.05^{a}	critical
(52)	98.7 ^b	0.5	0.8	18.42	U(N)	19.0	7.86	$5.63 \pm 0.03^{\circ}$	critical
(48)	98.2	1.1	0.7	18.64	U(N)	18.92	$2.09 \pm 1\%$	7.47 ^d (3.622" dia)	>m_c ^e
(48)	98.2	1.1	0.7	18.62	U(N)	18.92	0.906 ± 1%	9.84 ^d (3.972" dia)	>™c ^e
(48)	98.2	1.1	0.7	18.64	W-alloy ^f	17.21	$2.28 \pm 1\%$	7.47 ^d (3.622" dia)	>mc ^e
(48)	98.2	1.1	0.7	18.62	₩-alloy ^f	17.21	$0.960 \pm 1\%$	9.84 ^d (3.972" dia)	>™c ^e
(48)	98.2	1.1	0.7	18.64	Be (98%)	1.83	$1.652 \pm 1\%$	7.47 ^d (3.622" dia)	>m_c ^e
(48)	98.2	1.1	0.7	18,62	Be (98%)	1.83	$0.805 \pm 1\%$	9.84 ^d (3.972" dia)	>mc ^e

^a Corrected for effects of Ni coating, supports and small asphericity

^b Analysis available for one hemisphere only

^C Corrected for effects of Ni coating, oversize core and compensating gap between core and reflector

d Corrected for effects of Ni and clearances between assembly parts

^e Effect of small compensating gap was adjusted to zero; reflector thickness modified

f Composition 91.3 w/o W, 5.5 w/o Ni, 2.5 w/o Cu, 0.7 w/o Zr

TABLE VA

Pu OR U-233 METAL SPHERES WITHIN U(~93) METAL SPHERES

	cent	ral ball		11(-93) shall	1 - 18 - 3	U(N) reflector			
		P (Pu, U)	dia	enrichment		- sphere,	m	-	
ref	composition	(g/cm ³)	<u>(in.)</u>	w/o U ²³⁵	thickness (in.)	p = 19.0 g/cm ⁻ thickness (in.)	kg Pu or U ²³³	kg U ²³⁵	Mmax
(48)	Pu(1 w/o Ga), 4.9% Pu240	15.62	3.970	93.17	$0.652 \pm 1\%$	none	8.39	12.64 ^a	m _{max} > m _c ^b
(53)	Pu(l w/o Ga), 1.5% Pu240	15.56	3.510	93.18	1.006	none	5.72	18.8 ± 0.3 ^a	65
(53)	Pu(l w/o Ga), 4.7% Pu240	15.60	2.486	93.17	1.948	none	2.022	36.7 ± 0.1^{a}	130
(53)	Pu(l w/o Ga), l.5% Pu240	15.62	2.484	93.17	1.938	none	2.024	36.3 ₅ ± 0.1 ^a	118
(53)	Pu (100%). 4.7% Pu240	19.22	2.484	93.17	1.651	none	2.52 ₇	26.8 ± 0.1 ^c	233
(54)	Pu (100%), 2.34% Pu240	19.48	2.130	93.2	0.974	7.45	1.615	8.87 ^d	critical
(54)	Pu (100%), 4.73% Pu240	19.42	2.130	93.2	0.988	7.43	1.610	9.09 ^d	critical
(54)	Pu (100%) 16.1% Pu240	19.43	2.130	93.2	1.039	7.38	1.611	9.90 ^d	max -
(48)	U ²³³ (98.2 w/o) ^e	18.62	3.972	93.30	0.478 ± 1%	none	9.84	8.58 ⁸	$m_{max} > m_c^b$
(48)	U ²³³ (98.2 w/o) ^e	18.64	3.622	93.16	0.780 ± 1%	none	7.47	13.77 ^ª	m _{max} > m _c ^b
(53)	U ²³³ (98.9 w∕o) ^f	18.35	2.478	93.17	1.896	none	2.371	34.8 ± 0.1 ²	138

^a Corrected for effects of 0.005" thick Ni on Pu or U²³³ hemispheres and for clearances between assembly parts

^b Effect of small compensating gap was adjusted to zero; reflector thickness modified

^C Corrected for effects of 0.005" thick Cu about Pu sphere and for clearances between assembly parts

^d No correction for 0.012" thick gap containing 0.010" thick Ni between Pu and U(93.2)

e 1.1 w/o U²³⁴, 0.7 w/o U²³⁸

f 0.9 w/o U²³⁴, 0.2 w/o U²³⁸

TABLE VB

Pu METAL CYLINDER WITHIN U(93.2) METAL CYLINDER, THICK U(N) REFLECTOR The Pu(lw/o Ga) contains $\sim 6\%$ Pu²⁴⁰; Pu pieces coated with 0.005" thick Ni Dimensions of Pu and outside dimensions of U(93.2) are such that h/d values are the same Cores are approximately centered in a U(N) cylinder, 18.0" dia x 10", of density 19.0 g/cm³ Reference (53)

h _c /d	Dec. and the	ρ̄ (Pu)	₽ (U-93.2)	^m c	^m c ^a		
(Pu and U^{235})	dimensions (in.)	(g/cm^3)	(g/cm ³)	kg Pu	kg U ²³⁵	max	
0.20	4.315 dia x 0.875	14.98	18.66	3.14 (fixed)	13.0 ± 0.2	11.9 kg U 235	
0.30	4.315 dia x 1.290	15.29	18.30	4.73 (fixed)	5.3 ± 0.2	4.2 kg U^{235}	
1.00	2.235 dia x 2.231	14.83	18.58	2.13 (fixed)	9.7 ± 0.2	8.2 kg U^{235}	
0.44	4.315 dia cyl	15.34	none	6.91 ± 0.04	-	6.47 kg Pu	

· .

• • • • • •

^a No correction for effect of Ni or 0.06 in.³ central source cavity

REFERENCES

- (1) G. E. Hansen, Status of Computational and Experimental Correlations for Los Alamos Fast-Neutron Critical Assemblies, Physics of Fast and Intermediate Reactors, IAEA, Vienna (1962).
- (2) G. E. Hansen and D. P. Wood, <u>Precision Critical-Mass</u> Determinations for Oralloy and Plutonium in <u>Spherical</u> Tuballoy Tampers, LA-1356 Revised (to be issued).
- (3) J. D. Orndoff and H. C. Paxton, <u>Measurements on</u> <u>Untamped Oralloy Assembly</u>, LA-1209 (February 1951).
- (4) V. Josephson, R. W. Paine, Jr. and L. L. Woodward, Oralloy Shape Factor Measurements, LA-1155 (August 1950).
- (5) G. E. Hansen, D. P. Wood and B. Peña, <u>Reflector Savings</u> of Moderating Materials on Large Diameter U(93.2%) <u>Slabs</u>, LAMS-2744 (June 1962).
- (6) H. C. Paxton, <u>Bare Critical Assemblies of Oralloy at</u> <u>Intermediate Concentrations of U-235</u>, LA-1671 (May 1954).
- (7) Private communication, D. M. Barton (September 1958).
- (8) V. Josephson, <u>Critical Mass Measurements on Oy in Tu</u> and WC Tampers, LA-1114 deleted (May 1950).
- (9) J. D. Orndoff, H. C. Paxton and G. E. Hansen, <u>Critical</u> <u>Masses of Oralloy at Reduced Concentrations and</u> <u>Densities</u>, LA-1251 (May 1951).
- (10) Private communication, C. P. Baker (December 1947).
- (11) G. E. Hansen, H. C. Paxton and D. P. Wood, <u>Critical</u> <u>Masses of Oralloy in Thin Reflectors</u>, LA-2203 (July 1958).

.-

; -

۰.

×

- (12) G. E. Hansen, H. C. Paxton and D. P. Wood, <u>Critical</u> <u>Plutonium and Enriched-Uranium-Metal Cylinders of</u> <u>Extreme Shape</u>, Nuclear Sci. and Eng. <u>8</u>, 570-577 (1960).
- (13) J. J. Neuer, <u>Critical Assembly of Uranium Metal at an</u> <u>Average U235</u> <u>Concentration of 16-1/4%</u>, LA-2085 (January 1957).
- (14) Private communication, J. J. Neuer, G. A. Newby,
 H. C. Paxton and T. F. Wimett (March 1954).
- (15) Private communication, H. C. Paxton and C. B. Stewart (May 1953).
- (16) Private communication, D. P. Wood, L. C. Osborn and B. Peña (April 1960).
- (17) Private communication, V. Josephson and R. W. Paine, Jr. (March 1951).
- (18) Private communication, J. C. Hoogterp and D. P. Wood (September 1955).
- (19) D. P. Wood and B. Peña, <u>Critical Mass Measurements of</u> Oy and Pu Cores in <u>Spherical Aluminum Reflectors</u>, <u>LAMS-2579 (June 1961)</u>.
- (20) E. C. Mallary, Oralloy Cylindrical Shape Factor and Critical Mass Measurements in Graphite, Paraffin, and Water Tampers, LA-1305 (October 1951).
- (21) J. C. Hoogterp, <u>Critical Masses of Graphite-Tamped</u> Heterogeneous Oy-Graphite Systems, LA-1732 (May 1954).
- (22) Private communication, G. A. Jarvis (November 1961).
- (23) Private communication, D. P. Wood (October 1961).
- (24) Private communication, F. F. Hart and C. B. Stewart (December 1953).
- (25) Private communication, R. W. Paine, Jr., D. P. Wood and R. S. Dike (April 1951).

58

- (26) F. F. Hart, Safety Tests for Melting and Casting Oralloy, LA-1623 (December 1953).
- (27) Private communication, K. Gallup, G. E. Hansen (July 1951).
- (28) Private communication, R. E. Schreiber (September 1951).
- (29) Private communication, E. C. Mallary (March 1952).
- (30) Private communication, J. J. Neuer, H. C. Paxton, R. H. White and T. F. Wimett (March 1954).
- (31) Private communication, G. A. Jarvis (June 1963).
- (32) H. Iskenderian and C. C. Byers, <u>Physics Calculations</u> on Four Los Alamos Graphite Moderated Critical <u>Assemblies</u>, Trans. ANS 1, No. 1, p. 149 (June 1958); also private communication, C. C. Byers (September 1957).
- G. E. Hansen, J. C. Hoogterp, J. D. Orndoff and
 H. C. Paxton, Beryllium-Reflected, Graphite-Moderated
 Critical Assemblies, LA-2141 (October 1957).
- (34) Private communication, S. J. Balestrini (November 1963).
- (35) Private communication, C. C. Byers (March 1962).
- (36) Private communication, G. A. Jarvis and C. C. Byers (October 1961).
- (37) R. N. Olcott, Homogeneous Heavy Water Moderated Critical Assemblies, Part 1, Experimental, Nuclear Sci. and Eng. 1, 327-341 (1956).
- (38) G. E. Hansen and W. H. Roach, <u>Interpretation of</u> <u>Neutron Resonance Detector Activities in Critical</u> <u>Uranyl Fluoride - Heavy Water Solutions</u>, Proc. Brookhaven Conf. on Resonance Absorption of Neutrons in Nuclear Reactors, Upton, New York, BNL 433 (C-24), pp. 13-25 (September 1956); also private communication, C. C. Byers (January 1956).

¥,

•1

1

۶

- (39) Los Alamos Scientific Laboratory of the University of California, An Enriched Homogeneous Nuclear Reactor, RSI 22, 489-499 (July 1951); also L. D. P. King, Water Boilers, LA-1034 (December 1947).
- (40) R. E. Carter and J. C. Hinton, <u>Water Tamper Measure-</u> ments, LA-241 (March 1945).
- (41) J. C. Allred, P. J. Bendt and R. E. Peterson, <u>Critical</u> <u>Measurements on UO₃-H₃PO₄ Solutions</u>, Nuclear Sci. and Eng. 4, 498-500 (1958).
- (42) Private communication, J. C. Allred, P. J. Bendt, H. C. Paxton and R. E. Peterson (April 1953).
- (43) G. A. Linenberger, J. D. Orndoff and H. C. Paxton, Enriched-Uranium Hydride Critical Assemblies, Nuclear Sci. and Eng. 7, 44-57 (1960).
- (44) Private communication, M. G. Holloway and C. P. Baker (December 1947).
- (45) H. C. Paxton and G. A. Linenberger, Polythene-25 Critical Assembly and Neutron Distribution Studies, LA-749 (September 1949).
- (46) J. C. Hoogterp, <u>Critical Masses of Oralloy Lattices</u> Immersed in Water, <u>LA-2026</u> (November 1955).
- (47) G. A. Jarvis, G. A. Linenberger, J. D. Orndoff and H. C. Paxton, <u>Two Plutonium-Metal Critical Assemblies</u>, Nuclear Sci. and Eng. 8, 525-531 (1960).
- (48) E. A. Plassmann and D. P. Wood, <u>Critical Reflector</u> <u>Thicknesses for Spherical U233 and Pu239 Systems</u>, <u>Nuclear Sci. and Eng. 8, 615-620 (1960).</u>
- (49) Private communication, D. P. Wood and C. C. Byers (December 1960).
- (50) Private communication, H. C. Paxton (October 1951).
- (51) D. P. Wood, C. C. Byers and L. C. Osborn, <u>Critical</u> <u>Masses of Plutonium Diluted with Other Metals</u>, <u>Nuclear Sci. and Eng. 8</u>, 578-587 (1960).

- (52) Private communication, G. E. Hansen (October 1963).
- (53) Private communication, H. C. Paxton, G. E. Hansen, D. P. Wood and E. A. Plassmann (May 1960).
- (54) D. M. Barton, W. Bernard and G. E. Hansen, <u>Critical</u> <u>Masses of Composites of Oy and Pu-239-240 in Flattop</u> <u>Geometry</u>, LAMS-2489 (December 1960).

Ł

÷,