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THREE-DIMENSIONAL

R.

SHOCK-CHANGE RELATIONS FOR REACTIVE FLUIDS

by

L. Rabie and Jerry

ABSTRACT

The equations of motion

Wackerle

governing reactive
fluid flow, together with the Rankine-Hugoniot
jump conditions and thermodynamic considerations,
are used to develop one- and three-dimensional
shock-change relations for shock waves propagat-
ing in reactive fluids. The relations are de-
rived in Cartesian space coordinates, assuming
a uniform, motionless state ahead of the shock.
In three dimensions, parameterization of the
shock surface in terms of two independent curvi-
linear surface coordinates and the use of some
results from the theory of surfaces are required,
but the shock-change relation obtained depends
on the surface configuration only through the
mean curvature. One form of shock–change re-
lation, both in three dimensions and in its one-
dimensional specialization, is developed with-

i
G* ‘ out recourse to the jump conditions. These con-
~m ditions and thermodynamic considerations are—N~—
m-b—-1= then used to cast the relations in terms of dif-
ni— m
Sz ferent state variables and to show the relative
-E$~o , effects on the shock change of reaction in, and
-o e immediately behind, the shock front. Simplifi-~-~co
+ m cations are indicated for evaluating thermody-
=m
“=====a; namic derivatives and applying shock-change re-
0=
-1=

~m lations with common equation-of-state assumptions.&–-- 1-
1

1. INTRODUCTION

The shock-change relation in one or more dimensions provides a tool for ana-

lyzing a shock wave without having to examine the entire associated flow field.

This simplification has obvious merit. Most work in the area of shock change has

dealt with one-dimensional systems, and both inert and reactive

treated.l-’ Such one-dimensional shock-change relations have a

systems have been

large area of
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application but become inadequate when the shock surface is no longer planar,

cylindrical, or spherical. For problems involving arbitrary shock-surface con-

figurations in reactive fluids, one requires three-dimensional shock-change rela-

tions that include the geometry of the shock surface. Such relations have been
10-13

obtained by other workers, but much of their work is in coordinate systems

and notation unfamiliar to many shock-wave researchers and does not provide full

descriptions of the derivations. Here, we employ thermodynamics and notation

that we consider more standard in the field, and obtain relations that are more

readily comprehendedby inspection.

In Sec. II we present a brief development of a one-dimensional shock-change

relation to motivate the three-dimensional derivation that follows in Sec. III.

The derivations in these two sections are done without recourse to the Hugoniot

relations, and the equivalents of one- and three-dimensional relations are not

reduced to expressions of the shock change in a single state variable. That is

done in Sec. IV, where we present thermodynamic considerations that allow shock-

change relations to be recast in terms of different thermodynamic variables and

forms indicating the relative effects of reaction within and immediately behind

the front. In Sec. V we describe the application of shock-change relations with

simplifying assumptions and a commonly used equation-of-state representation.

II. ONE-DIMENSIONAL SHOCK-CHANGE RELATION FOR A REACTIVE FLUID

A familiarity with one-dimensional,reactive-flow, shock-change relations

helps in two ways in the development of a three-dimensional relation: (1) the

general course of the derivation is similar in both cases and (2) the resulting

expressions have a term-by-term correspondence. Therefore, as an introduction to

shock-change relations, we give a brief derivation of the one–dimensional case.

The goal of a shock-change analysis is to find a set of relations giving the evo-

lution of the shock state in terms of a minimum amount of information about the

flow that immediately follows the shock and about the geometrical properties of

the shock surface.

In a mixed form, the equations of conservation of mass and momentum for in-

viscid, nonconducting, reactive flow are

.
v= v(*) +mv~

x (1)

and
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(2)

In the above equations v is the specific volume (the reciprocal of the density

P), u is the particle velocity, p is the pressure, and m is the coordinate system

parameter, that is, m = O, 1, 2 as the geometry is planar, cylindrical, or spheri-

cal. The coordinates are mixed in that the superposed dot represents the mate-

rial or convective derivative, that is,

(3)

while the derivative Z1/axis an Eulerian derivative. The conservation of energy

for an adiabatic system takes the form

.
e=- p; ,

and the reaction rate is

(4)

i= r(p,v,A) , (5)

where e is the specific internal ener~ and A is the reaction progress variable.

In addition,

properly defining

e= :(S,V,A)

and

P= ;(S,V,A)

a complete

the energy

.

Further, the second relation

equation of state must be obtained for the materi~,

and pressure

must be invertible to give the specific entropy, s,

so that the energy may be written

e = ;[s(~,v,~), v,A] = e(p,v,A) . (6)

It is the second form of

with the more complete ~

consistency.

Eq.

and

(6) that will be most useful throughout this report,

~ specification needed only to insure thermodynamic

Denoting p~tial derivatives by subscripts, e.g., ae/av = ev, one obtains.
from Eqs. (4) and (6)
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[ev + PI . ‘A
;+ v=- (T)kli .

‘P P
(7)

The factor (ev + p)/e can be evaluated from the above equation-of-state assump-
P

tions by observing that

A

e= ;
v v - ‘p%

and that, from thermodynamics,

so that

[ev + p]
=- $V = P2 $ = P2C2

‘P

where c is the frozen (A = constant)

parameter q in Eq. (7) is related to

n= pc%

Y

Eulerian sound speed. We

the standard “thermicity”

also note that

coefficient 0,

(8)

the

by

(9)

so that an alternative statement of Eq. (7) is

(71)

relation.14 It

Note that it

.

;/PC2 + +/v = (YA .

Equation (7) is often termed the master equation or Wood-KirkWood

or its equivalent is derived in several of the cited references.

applies without ch~~ in three dimensions.

The relations above hold throughout the flow, but we now wish to focus at-

tention on the shock itself. We use no subscript for the state behind the shock

and subscript O for the state ahead. The unshocked state is taken to be uniform

and motionless. Thw UO = O andwe have, for example,



a(p - p.) apo
.% _— .% .

ax ax

ated

With these conditions, the time rate

along the shock locus is given by

The quantity ~ is the shock velocity U
s

of change of any flow variable f evalu-

(10)

so that Eq. (10) is just

(11)

Using Eq. (3) one gets an alternate form for Eq. (11),

(sf
—=i+ (u-u)(g) . (12)
&t

The shock-change equation is readily derived by applying the kinematic rela-

tion, Eq. (12), to the pressure and particle velocity, and using mass and momen~

conservation and the master equation to select and reduce the number of quantities

that must be evaluated behind the shock. Defining the quanti~

u= (u- u)

one can write

and

6U
—= L+U(&) .
at

Eliminating ; from Eq. (14) and using Eq. (2) gi-v-

Qy=_
&t

V(*) + U(*) “

(13)

(14)



The term (~) is eliminated from

.
au _
6t -

@) + (J[:. :] ,

the above by using Eq. (1) to get

In the last expression, (~) is removed by using Eq. (13), and results in

~ 6U
.

K=-
V[$ -

xl “
;3 + (J2[$_ J!x

The master equation is now invoked to remove ; and, after minor

this manipulation gives

~+pu~= (1 - n); + ll?li- Puw$$

where

lJ2

IJ
=—

C2

is the square

Equation

~, and a term

terms in both

rearrangement,

(15)

of the frozen (A = constant) Mach number.

(15) is the essential one-dimensionalresult, cast in terms of $,

in the curvature of the shock surface, and includes shock-change

the pressure and particle velocity. Reductions to

the shock change of a single variable will be deferred until the

al equation corresponding to Eq. (15) is derived.

relations for

three-dimension-

111. A THREE-DIMENSIONAL SHOCK-CHANGE RELATION FOR A REACTIVE FLUID

As previously mentioned, the derivation of a three-dimensional shock-change

relation produces some complications. The difficulties occur because in three

dimensions the shock is a surface rather than a point as it is in a single dimen-

sion. In three dimensions, we specify the location of the surface in the usual

manner” ‘1’ by the relations

6

i = 1,2,3 , (16)



where the xi are the rectangular Cartesian coordinates of the surface and the ~a,

a= 1,2 are curvilinear coordinates along the surface. If ni are the components

of the unit vector ; normal t~xs, the shock surface, pointing into the unshocked
.

material and-the derivatives—ac:
are tangent to the surface, the condition

ax.
n.
1$=0

a
(17)

holds onS. (In Eq. (17) and for all further results a repeated index is summed

over the range of the index according to Einstein’s summation convention.) The

components of the first
15,16

respectively, as

and

Then the mean curvature

1 a(3
fl=–zg ba$ ‘

and second fundamental forms of the surface are defined

a, 6 = 1,2

a, 6 = 1,2 .

of the surface is

(18)

(19)

(20)

afl
where the g are the contravariant components constructed from the covariant

components using the identity gav g~v =
6:”

It is possible to write Q as a func-

tion of the principal radii of curvature of the surface as well, and this results

in

where Rl and R2 are the principal

tion. In addition, one must make

radii of curvature of S at the point in ques-
17

use of the Gauss-Weingarten relation

7



(21)

The shock velocity, or propagation velocity of the surface, is defined as

normal to the shock surface, so that

+ ++

IIU= Un=UX (22)

where U = lfilisthe normal component. As a result of the lack of motion and the

homogeneity in the unshocked state, the particle velocity is normal to the shock I
surface (the tangential component of the particle velocity is conserved across

the shock surface). Thus it follows that

+U=l:l;=;
●

With the shock-surface parameters

ities defined, one can generalize some

sional case so that they will apply to

fi =(:-:)=

the continuity and

+= V(v”:)

and

●

+ +
u= -v Vp ,

(u-u): ’u: ,

(23)

set forth and the shock and particle veloc-

of the definitions used in the one-dimen-

the three-dimensional case. If

(24)

momentum relations become, respectively,

(25)

(26)

where the definition of the material time derivative is now

(27)

The three-dimensional analog of the one-dimensionalkinetic relation, Eq. (12),

is

8



~=;+;ev;
6t

.

This form follows from Eqs. (24) and (27) and the condition that the surface
17

‘propagates normal to itself; thus the components of the shock velocity are

dx.
Ui=+ i= 1,2,3 ,

and the change of a scaler function f on the propagating surface is just the

directional derivative

(28)

A similar result is found in Ref. 15, and termed the “kinematic compatibility

condition.“

After these preliminaries,

change relation follows in much

case, except that the

nents of the particle

the vector equation

kinematic

velocity.

s

the derivation of a three-dimensional shock-

the same manner as that of the one-dimensional

relation, Eq. (28), now operates on three compo-

The resulting three equations can be written as

(29)

+ a a
where (u-V) is the operator U Substitution from the momentum—“~(.fnj~.

j axj
.

equation, Eq. (26), eliminates 3

@= +

6t
-Vv; +(;”v) u ●

Taking the dot product of this equation with ~ and using p for f in Eq. (28)

fallows the elimination of p, producing

(30)

(31)

9



The last term in Eq. (31) is to be eliminated from the mass conservation relation,

but that equation involves the V=: rather than the operation shown (a distinction

that doesn’t arise in the one-dimensional case). Relating ~*(fioV)~ to U2VD;

gives rise to a term proportional to the mean curvature of the surface. To see

this, we form the function

J J

where the replacement of ui with uni is allowed because ~ is perpendicular to S.

Further expansion gives

au
an.

au
an. an.

F= Ugl= (J2[ninj u&-(.J2[nj~ 1 j ax;+n.n u—- —-
‘j ax.

u+]. (32)

1 3 j j j

However, by Eq. (21)

so that by Eq. (17)

Also byEqs. (20) and (21)

It follows from Eq. (33) that

i“(t”v); = u%”;+ 2 U%l .

(33)

From Eq. (25) it follows that

i“(i”v): = (J2p++ 2 U2U!2 ●

10



In this last result the master equation is used to remove ~ in terms of ~ and ~,

giving

. .
++
U“(u”v): = u%[~l + 2 U%il .

(pc)2
(34)

When this is substituted into Eq. (31) and some terms are rearranged, the three-

dimensional shock-change relation emerges as

$+PL+= (1- l-l);+ Wli+ 2pu%?

or

g+pu;: — = (1 - l-l);+ PU2(20U + Cri) . (35)

+

In the above equation, the term including ~“~ has been replaced with one involv-

ing velocity magnitudes according to

Equation (35) is identical to the one-dimensional result, Eq. (15), except

for the curvature term. Realizing that in one dimension u and U are the “normal

components” identified by the same symbols above and that m/x is just twice the

mean curvature of planar, cylindrical, or spherical surfaces, we recognize that

Eq. (15) is the one-dimensional specialization of Eq. (35).

Iv. THERMODYNAMIC CONSIDERATIONS IN FORMING SHOCK-CHANGE RELATIONS

To effect convenient applications of Eq. (35), one must know or assume the

e(p,v,A) equation of state, invoke the shock-ju~ conditions or Hugoniot rela-

tions (not yet used in the development), and specify explicitly or implicit-

ly the amount of reaction (change in A) occurring in the shock process. With

these requirements met, thermodynamic considerations allow the casting of shock-

ch%ge relations in a variety of forms, as are appropriate for different physical

problems, measurements, and equation-of-state assumptions.

11



For a uniform, motionless state ahead of the shock, the Hugoniot relations

are

POU=pU=J

P - PO = POUU = Ju

and

.12
;(P+PO)(VO -V) ~u +Po(vo -e-e=—

0

Here the subscript zero denotes the state ahead of

(36)

(37)

v) . (38)

the shock, J is the negative

(39)

of the mass flux, and the velocities are scalar quantities in both the one- and

three-dimensional cases, representing normal components in the latter instance.

In addition, we note that for any two state variables, F and f,

where the subscript ffdenotes evaluation along the shock Hugoniot.

A common practice is to define the shock Hugoniot by a shock velocity-

particle velocity relation, that is:

u = UH(U) . (40)

With such a specification and the Hugoniot relations [Eqs. (36)-(38)], the pres-

sure, volume, ener~, and velocities immediately behind the shock may be expressed

in terms of a single variable. For example, if the specific volume is chosen for

this parameterization, Eqs. (36)-(38) and (40) yieldp = p~(v), e = eH(v),

u= UH(V), and U = UH(V). Specification of AH(v) must, however, be done either

by a separate additional assumption or by the additional use of a complete

e(p,v,~) equation of state.

In recasting Eq. (35), it is convenient to use the particle velocity as the

independent variable, denoting differentiationby this variable with a prime, and

to define the dimensionless variable

12



(41)~=*H=f ●

With this definition and Eqs. (36), (37), and (39), a pressure form ofEq. (35)

may be written:

(1- P);+ u[2(p - po)$2+ Joi]g=
(1 + Ij))

. (42)

Alternatively,we may eliminate the pressure from Eq. (35). First using Eqs.

(28) and (26), we obtain

(43)

Here the second form follows from

au. au.
1=6U .

+ ni(fi”V+ui)=ni~i
1

‘i = ~= ‘i”i
+ U non. —

~ 1 ax.
3

++ h..
= n.u. + U*VU - Uun.n. J ;

11 1 ~ ax.
1

the last term above was shown to vanish (see preceding section) so that by Eq.

(20), nifii= ;. Equations (37), (39), and (41)-(43) can then be used to give

(sU (1- u):+ u(211n+ CA)
%7= (1+ p/*) “

(44)

To develop a shock-change relation in the specific volume, we introduce a

parameter defined in analogy to the square of the Mach number U, specifically

U2 J2
v=-

J2vt_—
#dp/dv ~ = - dp/dvlH = p’ “

(45)

I

v’ can be related to p ‘ by differentiating the Hugoniot relations, Eqs. (36) and

(37), and eliminating U’, yielding



I - 2J~! =
J2 =+(1/0-2) ●

Thus

l+V
+=~,

(46)

(47)

and an alternative form of the shock-change relation in pressure, Eq. (42), is

~ (1 - u); + u[2(p - pO)~ + Jai]

6t = (3/2 + v/2)
. (48)

Using this relation, together with the master equation to replace ~ with ~, and

Eqs. (36), (37), and (39), we find the change in specific volume to be

. .

U= ‘1’~- l)V- 2(V0 - ‘)U*- ‘v’~)oA
6t (3/2v + 1/2)

. (49)

A more complicated,but more useful, form is obtained by using Eq. (28) to replace

~ with the normal component of the

[

2 pv 1[%=(2V - 3P - 3pv (1/~ -

specific volume gradient

l)uhi + 2(V0 1-V)(.KIi-(v/v)i . (50)

None of the above shock-change relations have

jump in progress variable, A, in the shock front.

tion in the front does not affect the shock change

A

any explicit reference to the

This does not mean that reac-

but means rather that the ef-

fect of shock-front reaction is implicitly contained in the Hugoniot specifica-

tions, essentially in the parameters $ or v. These parameters can be specified

by Hugoniots constructed from data or assumption, and these Hugoniots can be

either reactive or unreactive, that is, they may or may not involve reaction

across the shock front. Although the Hugoniot specification and shock-front re-

action have some quantitative effect on the shock-change relations through the

evaluation of v and a from the equation of state, the stronger effect is in the

influence on ~ or V. It is instructive to examine these effects.

Considering first a Hugoniot specified in terms of particle velocity, the

energy jump condition, Eq. (38), and the equation of state canbe differentiated

14



by u to give

u- pOv’ = epp’ + evv’ + eAA’ .

Noting that

= l/pr ,
‘P

(51)

(52)

where I’is the Grheisen ratio, the addition of p to both sides of Eq. (51) and

use of Eqs. (7), (8), (37), (41), and (46) yields

Defining*

K
pru

=l-T=l-pr(Vo -V)

and rearranging gives

where**

and

(53)

(54)

(55)

(56)

*~is ~uual expression of the Grkeisen ratio and compression has in common with
our other dimensionless variables the feature of being equal to unity as the shock
strength vanishes and of decreasing with increasing shock strength.

~~*Notethat a and f3both have values of 2 in the vanishing shock-strength limit
and that both decrease with increasing shock strength.

15



.
Similarly, differentiating the energy relations by v gives

e J2
* [: (V. - v) + (p + pO)] = +- ev - eA(~A/~v)H

which, with some manipulation, gives

1-=
v

2- ~+~K- 2vu(dl/dv)H B - 2va(dA/dv)H
=

U(I + K) (2CL - B)

reaction, if any, in the shock front might

(57)

● (58)

be expected to increase withThe

increasing shock strength; that is, A’> O and (dA/dv)H < 0. In the usual case,

K or UK should be >-1 so that the effect of exothermic (0 > O) reaction in the

shock front is to reduce $ or V. The result is a “stiffening” of the shock

Hugoniot by reaction, with a corresponding effect of the

ferent state variables. Inspection of Eqs. (42) or (48)

in $ or v tend to increase the change in shock pressure.

ofEqs. (44) and (49) shows the shock change in particle

volume to be reduced by reaction in the front.

Another expression of the effect of shock-front reaction can be obtained by

using Eq. (39) to relate A’ or (dA/dv)H to the change in reaction in the shock

front, 8A/&te For example, operating on Eq. (54) gives:

which when used with Eq. (44) gives

—1 (1-lo i+u[2d2+di-:~)1 s% = L +’% { }

shock change on the dif-

shows that the reductions

Similarly, examination

velocity and specific

If this relation is used with Eqs. (37), (39), (41), (43), and (59), there

results

42=[_

6t ~ : ~1 {(1 - P); + U[2(P - PO)Q + Jo(~ + j$$)l} .

(59)

(60)

(61)

16



Similarly, applying Eqs. (39) and (58) to the shock-change relations in specific

volume, Eqs. (49) and (50), yields

?iV 21x-(3

‘] {-~ - 2(V0 - ‘)UQ - ; ‘[i -W=EU+B }(1%$] ‘
(62)

+
and in terms of Vv

&v
FE=

With

[ 6-2a
3rx - (1 + K)] {

~(l-u)++

lJ
n=Vv + 2(v - v)UQ +

o
@ - (1 : ~) ~1} ●

(63)

the same conditions of K or UK >-1, Eqs. (60)-(63) show the same effects

of shock–front reaction (6A/6t > O) as described earlier. More important, these

equations explicitly express how the shock changes are effected by reaction both

in the front and immediately behind the front. Experimental determinations may

be made of the changes in shock strength, material time derivatives or gradients

of state variables, and curvatures; ordinarily direct measurements of the reaction

rate or the ener~ release rate are not possible. When the curvature is provided

by experiment (or, more commonly, when planar waves, Q = O, are available) and

when the shock change and time derivative or gradient behind the front is pro-

vided in only a single state variable, relations like Eqs. (60)-(63) and a full

equation of state yield only the net reaction rate or energy release in the front

and immediately behind it. If, however, such measurements are obtained for two

state variables, ~ can be eliminated from the two appropriate shock-change rela-

tions, and dA/6t can be evaluated. Seen another way, such measurements of, for

example, pressure and particle velocity, can yield 6A/&t through the combination

ofEqs. (39), (41), (43), and (54) without consideration of ~. Again, a known

equation of state must be assumed.

Some of the results formulated and points emphasized above are stated in a
13

paper by Chen and Kennedy, who used an order of thermodynamic considerations

different from ours. They first used only the flow relations, Hugoniot relations,

and equation-of-state characterizationsto develop shock-change relations similar

to our Eqs. (60) and (63). That was followed by a Hugoniot specification, a

determination equivalent to our expression of V in Eq. (58), and the formulation

of a shock-change relation with the shock-front reaction contained in a term in-

volving (dA/dv)H. Reference 13 deals only with shock-change relations in

17



specific volume and particle velocity, and with some labor it can be shown that

Eqs. (3.1)-(3.3) of that paper are identical to ourEq. (64) and that their Eqs. “

(3.5)-(3.7) are the same as ourEq. (60), except in one respect: Ref. 13 states

that relative contributions of (in our notation) ~ and 6A/8t are related by a

factor 3/(1 + K) for both the relations in specific volume and particle velocity,

whereas we found that the factor was v/(1 + pK) in the particle-velocity equation.

In re-examining his formulation, Chen18 found and corrected an error, thereby

eliminating the disparity between the two results. For example, in Ref. 13 where

the effect of different (unreactiveand reactive) Hugoniots for PBX-9404 is dis- .

cussed, Chen’s correction reduces by about a factor of 4 the spread between the

upper and lower curves of Fig. 4, Ref. 13, but in no way invalidates Chen’s and

Kennedyts point regarding the influence of assumed shock-front reaction on deter-
.

minations of A.

v. SIMPLIFYING ASSUMPTIONS IN THE APPLICATION OF SHOCK-CHANGE RELATIONS

Our interest in shock-change relations is in their application to practical

shock-propagation problems in condensed materialsY p-titularly in predicting

complicated shock-initiation and detonation-wave configurations in solid explo-

sives. For such applications,high-speed streak- and framing-camera observations

can define shock surfaces, and enbedded- (Lagrangian-) gauge measurements of

pressure or particle velocity can give the necessary data for use, respectively,

in Eqs. (42) or (61) andin Eq. (43) or (60). Flash x-ray observations might be

used with the relations in specific volume, such as Eqs. (50) or (63).

Although treating real solids as ideal fluids is a common practice in shock-

wave physics, we note that at shock strengths low enough for elastic-plastic ef-

fects to be important, or in crystals or other elastically anisotropic materials,

the formulations become considerably more complicated; the scalar pressures and

specific volumes must be replaced by stress and strain tensors, and the great

simplification resulting from having the particle velocity normal to the shock

front may no longer be used. For porous materials, even the assumption of a shock

discontinuity is questionable. In addition, the equations of state of most mate-

rials of interest--especially as related to the reaction coordinate in explo-

sives--are far from being as well defined as is assumed in the development. The

approximations suggested below are typical of the extent of information commonly

available.
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Clearly, the application of shock-change relations is simplified by the as-

sumption that no reaction occurs in the shock front, that is 6A/6t = A’ = dA/dv)ti

= o. This assumption, usual in the Zeltdovich-von Neumann-Doering theory of det-”

onation, can be argued on the basis that any reaction requires a finite activa-

tion time, whereas the shock is an instantaneous process. Further, in the initi-

ation and detonation studies of condensed explosives--ourprincipal area of in-

terest for shock-change analysis--there is no firm experimental evidence that the

assumption is incorrect.

With the shock front assumed unreactive, one need consider only the equation

of state of the unreacted material,for the evaluation of all of the thermodynamic

derivatives used above except for q and a, but these derivatives with respect to

A still require some assumption of a complete (involving A) equation of state.

If only a determination

plete equation of state

i?=e~i=-$i=

of energy release rate ~ is desired, the need for a com-

can be

-C2(JA
r

The Mie-Grkeisen form, I’

pr = poro

avoided by using

. (64)

= r(v), with

(65)

and the Hugoniot reference locus specified by

u= C+su , (66)

where C and S are constants, is a good approximation for the equations of state

of many unreacted solids. With these relations, one finds

rou
K=l -ro(l-V/Vo)=l-~=Ko . (67)

Use of the Hugoniot relations, appropriate definitions, and Eq. (66) gives

+’~U+su
and

(68)
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c
‘= U+SU “

(69)

Solving Eqs. (54)-(56)with Eq. (68) and assuming that A’ = O gives

c
lJ=

U + SUKO

U(l + Ko)

a=
U + SUKO

and

(u+ SU) (l+KO)

B =
U + SUKO

(70)

(71)

(72)

Inspection of Eqs. (67) through (72) evidences the weak shock limits and reduc-

tions cited in the previous section for the dimensionless parameters. Note that
r.

in the strong shock limit, K ~ 1 - ~, so that ro/S p 2 would be required for the

anomalous condition of K S -1 discussed earlier. The normal case is ro/S ? 1;

ro/s ? 2 is rare.

Use of the above equations and the Hugoniot relations allows one to write

any of the shock-change equations of the previous section in terms of ~, any one

state variable (u, p, v) or the shock velocity, and four constants, POS I’osC>

and S. Because the resulting expressions look complicated and provide no further

illumination of the shock-change behavior, such formulations are not recorded

here.

b

c

c

e

f,F

g

J
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NOMENCLATURE

a tensor, the second fundamental form of a surface

frozen Eulerian sound speed

constant in the linear shock-particle velocity relation

specific internal energy

arbitrary functions

a tensor, the first

mass flux normal to

defined in the flow

fundamental form of

the shock surface

a surface



coordinate coefficient in one-dimensional flow equations

hydrostatic pressure

radius of curvature

principal radius

specific entropy

coefficient of u

shock surface

time

of curvature

in the linear shock-particle velocity relation
8

particle velocity

shock velocity

specific volume

Cartesian coordinate

Gr&eisen’s parameter

dimensionless variable, 1 - pr(v - Vo)

reaction progress variable

square of the Mach number

curvilinear shock-surface coordinate

density = $

n=

the

the

pc%

“thermicity” coefficient,L (*)
pcz e,v

mean curvature of a surface

dimensionless variable, V = J2/(dp/dv)H

~= J/(dp/du)H

Sub- and Superscripts

H subscript denoting the Hugoniot curve

i,j,k subscripts denoting any one of the three Cartesian coordinates

o subscript denoting value of the function in the fiducial state

CX,6,Ysubscripts denoting one of the two curvilinear shock-surface coordinates

Other Sytiols.
+

unit normal vector on the shock surface

i difference in shock and particle velocity = (~ - ~)

v differential vector operator del = ~i &

k
i

material derivative of function f

$$
derivative of function f along shock locus
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