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INTEGRATED GRADIENTS: A DERIVATION OF SOME DIFFERENCE FORMS FOR THE
EQUATION OF MOTION FOR COMPRESSIBLE FLOW IN TWO-~DIMENSIONAL LAGRANGIAN
HYDRODYNAMICS, USING INTEGRATION OF PRESSURES OVER SURFACES

by

Philip L. Browne

ABSTRACT

This paper describes a method of deriving gradients
(that is, accelerations) for difference calculations of the
equations of motion (momentum conservation) in two-
dimensional Lagrangian meshes in an r-z coordinate system.
The method basically considers various ways of defining the
masses associated with each vertex and methods of integrat-
ing pressures over the surfaces of those masses, and then
combining them in various ways to conserve momentum transfer
between vertices. These gradients are derived analytically
for planes, cylinders, and spheres to test for uniform
motion. All results described have been tested with actual
numerical calculations.

I. INTRODUCTION

Most difference equations are derived by approximating differential
equations. However, the differential equations themselves are derived by
taking a small discrete element, applying the physics, and then allowing the

proper quantities to shrink to zero.



By integrated gradients we mean taking a small element and applying the

physics to it to get the difference equation directly.* This seems like a

good approach because we leave out the step of shrinking quantities to zero
(which often drops out terms that are important as the difference equations
are applied over and over again in time-dependent problems). This is the
fundamental approach used in this report.

This work could result in a number of "models" of a fluid in a two-
dimensional Lagrangian mesh and the corresponding difference equations derived
therefrom. We have worked mostly with three models, which are named:

(1) according to the way the pressure integral over a surface is obtained,

denoted by
IGT = integrated gradient total,
IGA = integrated gradient average, and
FGI = force gradient I (a name given by S. R. Orr), and

(2) according to the way that the mass associated with a vertex is chosen,

denoted by q = one quarter of the zone mass and MAC-0 = the mass of subzones
formed by joining the midpoints of the sides at the start of the problen.
Averaging the four corners gives the same result.

From a combination of the conceptual and analytic arguments in this

. . *¥%1=3 13
report plus investigations of rezoning,

viscosity, and performance in a
number of relatively simple problems, we prefer the MAC-0 method for choosing
the masses and we lean toward the IGA method for taking pressure integrals.
This model gives complete, exact conservation of the mass, momentum, and
energy of the model as they are transferred between adjacent points on zones
of the mesh, with no overlapping of the masses associated with adjacent points

of the mesh. Thus, one knows exactly what mass is associated with each point

in the mesh. This model made possible the derivation of a rezoning scheme1m3

with conservation of mass, momentum, and energy. It also made the derivation

*This concept gradually evolved during discussions between the author and G.
N. White in October 1961.

*¥%*Conducted by the author and Karl B. Wallick, Group X-6, in 1964-1965.

tStudies by the author and Karl B. Wallick, Group X-6, in 1964-1965 and by
the author and Patrick J. Blewett, X-5, in 1966-1967.



of the accelerations for boundary points and other special situations rela-
tively straightforward. Finally, numerical calculations with this method
indicate that it tends to delay distortions and oscillations, especially at
free surfaces.

The IGT method will not give spherical motion in a spherical problem with
equal angular spacing. It is interesting to note that a mass weighted average
of the force terms (F/M) in IGA gives IGT.

The FGI-q method has been used for many years by S. R. Orr and comworkers
with good success, but the rezone in that code had to give up conservation of

some of the quantities.

-

The IGA-MACO method of doing an automatic r'ezone1 2 has been successfully

used by Karl Wallick and the current author in a large code which uses the

Schulzu gradients for the hydrodynamics.

II. THE INTEGRAL METHOD
In a continuous medium the differential equation of motion for a compres-

sible flow without viscosity is given by

p; = -VP , (1)
where
p = density
P = pressure
>
; = acceleration = dv = time derivative of the velocity, 3, of a particle

dt
as one moves along with the particle.
If we integrate equation (1) over any volume, V, enclosed by a surface,

S, we get

J (VP)AV = - J pdd (2)

>
J padvV = -

v v S

where d§ is a vector representing a surface element and has the direction of

the outward drawn nor'mal.5 A common method of deriving difference equations



for numerical work is to start with the differential equation, (1), or varia-
tions of it, and to approximate the derivatives by differences. As an
alternative, one might begin with an integral form, such as (2), and try to
work directly toward the difference equations. This we have done. The
methods for deriving integrated gradients proposed in this report are general
and can be applied to many types of Lagrangian meshes. However, for a number
of reasons, this work deals exclusively with quadrilateral meshes, that is,
meshes in which each zone has four sides and four corners or vertices. Also,
except for special boundary cases, each vertex is a corner for each of the
four zones surrounding it. This type of zoning seems to have many advantages:
it is easier to fit the requirements of the zoning to the logic of a computer;
it is generally easier to adapt such a mesh to the types of configurations one
wishes to work with; and, finally, we have had more experience with this type

of mesh.6’7

We have done some experimentation with triangular meshes and
found them generally unsatisfactory from both a computational and physical

standpoint.

IITI. BASIC DEFINITIONS

Let us assume that we have a Lagrangian mesh6’7

imbedded in a fluid (Fig.
1), and that we are looking at a point 0(r,z) where L zones have a common

vertex.

z

Fig. 1. A typical vertex with the adjacent zones and vertices.



Recall that this picture represents a figure of revolution about the 2z
axis, which means that each zone represents an element of volume and that all

scalar functions, such as p, P, etc., are independent of @. The vectors such

as ; and d§ vary direction with 0, but their magnitudes remain constant. We
cannot take a revolution of 2r about the z axis, for then the r component of
the surface integral fPdS would vanish. Hence, we consider a revolution of
small angle, ¢, about the z axis, which produces a kind of wedge-shaped volume
as viewed from along the z axis. The forces on the sides of this wedge must
be considered.

We will identify quantities along the boundary between zones by a sub-
script £ and quantities in the zone by subscript 2+1/2. The next vertex out
along side £ will be identified by %'. We assume that in each zone there is a

uniform pressure P2+1/2 and density p2+1/2. These quantities may therefore be

discontinuous across the boundaries between zones,

Now, to find an acceleration at 0, let us draw any closed surface, S,
about 0 (dashed lines in Fig. 1) and consider how to apply the integral method
of (2) to the material enclosed by S. The most logical method would seem to

be one in which S would be chosen in such a way that 0 would be at the center

of mass of the material enclosed by S.8 This method appears very interesting,
but formidable. We have attempted to devise such a scheme in one-dimensional
problems, with inconclusive results mainly because of its complexity.

As will be shown later (Theorem 8), when the pressure in a zone is con-

sidered to be uniform, the total surface integral, IPES, over that zone is

independent of the path chosen between &, &+1. This means that once having

selected the 4's, for different S having center of mass at 0,
>
J padvV = C .
v
Using a mean value type argument, if we assume that there exists an ; such

0

M we can then say that

> > >
that J padV = a J pdV = a
v 0 v 0

g
(]
X



In other words, since M changes with S, while C does not, it is apparent

that aO is not unique even though an S is chosen to give the center of mass

at 0. This implies that other additional criteria might be needed to select

an S which gives a useful value for ;0.

The simpler methods we have selected (for dealing primarily with a quad-
rilateral mesh) we shall call:

IGT - Integrated Gradient, Total
IGA - Integrated Gradient, Average
FG - Force Gradient.

The use of the word gradient in these names is a misnomer for we are
deriving accelerations rather than gradients. However, we continue to use the
names above because a great deal of analytic work and computation has been
done using this nomenclature. These gradients are herewith described.

There are several common procedures which we must carry out in all the

methods. For each zone or group of zones about a vertex, ; in equation (2) is

taken out of the integral so that

> > >
q+1/2 = ("Jspds)/( vadv)z+1/2 = Foerr2Mysrs2 - (3)

As mentioned before, this is equivalent to making a mean value type
argument. Points % (the intersections of S with the common boundaries between

zones) and %' must be defined. As mentioned earlier, the choice of S inside

the zone will be shown to have no effect on § - J Pdg, but it will
S

L+(1/72) *
obviously affect the value of M2+1/2 = vadv . ()
The pressures, P§+1/2 and P§—1/2, along side & used in calculating
? = J Pd§ for zones 2+1/2 and 2-1/2 need to be defined. (5)
S must be defined between point &, (2+1) in order to define M (6)

L+1/2°
We now briefly describe the three general types of gradients.



(IGT) Integrated Gradient, Total. This method derives an acceleration for

point 0 from a total force on all zones around a point and the total mass

involved, that is,

>

L
F /Y M
;w2 o

[V 23
[
o~

. g+1/2 * (7)

(IGA) Integrated Gradient, Average. This method evaluates an acceleration,

>

a2+1/2, from each zone around a point and then averages these to get the point

acceleration, that is,

L
1 >
petz2 =T L (FoiqoMpeqsa) - (8)

>

It is interesting that since a is really the acceleration of the center

g+1/2

of mass of M one could argue for a mass weighted average of the

L+1/72°
ry —’ .
individual al+1/2, that is,
R L N L L R L
2= 221 My 172 2ger/2) L (Myaq/2) = L (Fgar/2)/ L (Mgoq/2) +(82)

which gives the acceleration at the center of mass of the material enclosed by
S. This is none other than IGT. Since a mass weighted average seems
preferable to an arithmetic average, we tend to lean toward IGT as being more
intuitively appealing. But IGT has its numerical disadvantages.

(FG) Force Gradient. This method obtains an acceleration for each pair of

zones and then averages these accelerations, that is,

> >

> 1 ks L Fo gt P

a =g )) ag =t ) m o . (9)
g=1 g=1 Mg-1/2 g+1/2



Under certain assumptions about &', one can obtain a gradient called FGI which
was derived by other (nonintegral) methods and was used by S. R, Orr in a
large code.

There are many other, more complicated ways in which one could combine
forces and masses to get other acceleration formulae, but we have confined our

efforts to the three methods described above.

IV. CONVENTIONS AND BASIC THEOREMS

When using cylindrical coordinates (r, 0, z) to deal with a system which
has cylindrical symmetry, note that although scaler functions and magnitudes
of vectors are independent of 6, the directions of the vectors may vary with
©. If one wishes to perform integrations involving vector quantities (such as
de§), these variations in direction should be taken into account. One way to
do this is to write the vectors in terms of a set of unit vectors (F , 51, 21)

1
in the cylindrical system (Fig. 2).

z

Fig. 2. Unit vectors in the cylindrical and Cartesian systems,

The moving unit vectors (;1, 61, ;1) can then be expressed in terms of

the fixed unit vectors (I, 3, E) in a Cartesian system by



? 2
cos 6 + J sin 6

3y
"
[

> >
(- sin @) + J cos @

(02
[{}
[

z. =k . (10)

Since (f, 3, ﬁ) have constant magnitude and direction in space, they can be
removed from the integrals.

As mentioned earlier, the volumes which we consider will be wedge-shaped
slices produced by rotating the mesh through a small angle, ¢, about the z-

axis. If ¢ is considered to extend from -GO to GO (Fig. 2), it will be useful

to recall the relations

%
J cos 0 de 2 s8in eo = 200 = ¢
0

%
J sin 0 de 0
0

%
J de = 20, = ¢ . (11)
0

Theorem 1. If a function, P(r, z), and any curve, (%, %2+1), are defined in

the r, 2z (f, ﬁ) plane (Fig. 3), then the surface integral of P over the sur-

face formed by rotating curve (&, %+1) through an angle ¢ (—GO, GO) about the

- z-axis is given by the line integrals
- +1 2+1
> > >
J PdS = 1 ¢ J Prdz + k¢ J Prdr . (12)
'3 '3 0+ 1



1+

T - >4
Fig. 3. Any curve (&, 2+1) which is rotated through angle ¢ to give a surface

Proof: At any point on the surface formed

> > >
ds = r, (rdedz) + z, (rdodr) ,
S0
1

2+1 N 0 L+ N 0 .

J PdS = J J r1 (Prdodz) + J J z, (Prdodr) .
[} _ [} _

OO OO L+1

> 2

Substituting from (10) and removing I, J, k, from the integrals,

L+1 0, &+1 0 2+1

> > 0 > 0
J PdS = i J J Pr cose dodz + j J J Pr sin 0 dedz
'3 _ '3 - '3
90 00
s @0 '3
+ k J I Prdodr .
_ L+1
e0

Now, since P, r, dz, dr, are independent of ©, we can remove them from the 0

integrals, giving

10



MU, B % , e %
PdS = i J (pr J cos0 de) dz + J J (pr J sin 0 do) dz
)

'3 z _ z _
) A 0,
- ) %o
+ Kk J (pr J de) dr .
r
g 2+1 9%

Now, using (11) we get (12).
From now on, as mentioned in connection with Fig. 1, we will assume that

P is constant in any zone, so we may remove P from the integrals and get from

Theorem 1
2+1 2+1
> > >
Theorem 2: J ds = 1i¢ J rdz + k¢ J rdr
) ) 0+1
2+1 2 2
2 > Ty T P
= 1¢ rdz + k¢ —_— - (13)
)

This says that the K (or z) integral is independent of the path the curve

follows from % to %+1, but the same is not true for the I (or r) integral,

Theorem 3. If the path from & to 2+1 is a straight line, then (13) becomes

2+1
r +r r +r
? _ 2+1 % > _ 2+1 %
J a3 = 1o (2, ~2,) 2t oo (rp - r),) 2% ()
L+1
. The proof is straightforward if one takes r = az + b and evaluates rdz.
'3

Consider any triangle in the r, z (1, k) plane, with the vertices denoted 0,

%, 2+1 as one goes around the triangle in a clockwise direction (Fig. 4).

1l



A+1

(ra2)

— z
k

Fig. 4. A triangular zone.

Theorem 4. The area of the triangle is given by

! - -
A =AJ drdz = > [(rzl - rlz) + (r-lz‘zm+1 r2+1zl) + (rl+1z rz2+1)]

- % [(zl+1 - z) (rl -r)- (zl - z) (r2+1 -r)] . (15)

The clockwise convention must be followed for the formulae in (15) to give a
positive value for A. [A counter-clockwise convention would give negative
areas with (15).] The proof is omitted,

Now consider the triangle of Fig. 4 to be rotated through an angle (from
-00 to OO) about the z-axis to form a wedge-shaped volume centered about the I

(or r) axis (Fig. 5).

12



ds(-8,)

Fig. 5. End view of a wedge.

Theorem 5. The volume of this wedge is given by

V=r A , (16)

where
r = centroid of triangle = % (r, +r

0Tyt Tae) -

Proof omitted.

Theorem 6. The sum of the surface integrals over both sides of the wedge

formed by the rotated triangle (for small eo ) is given by

- [ (o) [ adle)--Tne . an

where A, the area of the triangle, is given by (15).

13



Proof. From Fig. 5 it is obvious that the 3 components of the integrals

cancel and that the I components add to give

Now, under the assumption of constant P in any zone, it is apparent that
the surface integrals over the side faces of the wedge and the surface in-
tegral over the surface formed by rotating the line %, 2+1 will have the same
pressure, so it is possible to add these integrals. An interesting fact can

be proved about this sum, namely that it is independent of the path from & to

L+1.

L+1
First let us derive the formula for this sum, which we denote by d§
'3
(which is not the same as £ d§).
¢
Theorem 7.
2+1 L+1
—>= > —>=—>9-_ _ _ _
dS J ds + 4 dS = { % [ Z,r r-(z2 zl+1) z(rl+1 rz)
[} ) ¢
> 9 (2 _ 2
* g Tpal tkE (o) (18)
Proof. From (14) and (15) substituted in (17).
+1 2+1
> > > >
ds = J ds + 4 dS = 1 3 [(z2+1 zl) (r2+1+ rl)]
[} L ¢
-)2 _ _-)2 _
+ k3 [(rl r2+1) (r2+1+ rl)] i3 [(rz rlz)
L T Y R R R TS (19)

14



Collecting terms and simplifying, we get (18).

L+1 L+1

Theorem 8. d§ = d§ + 4 d§ is independent of the path from £ to £+1.
'3 L ¢

Proof. Considering the triangle (0, %, %+1), let us join the points % to 2+1
by a series of line segments (j, j+1) where j = 0, 1, 2, ..., J. (Fig. 6.)
Now join each j to 0, to form a series of triangles (0, j, j+1).

r .4,0

V2]
L 2

3

QA

241

2z
Fig. 6. Approximation of any curve %, %+1 by a series of line segments

between j =0, 1, 2, ..., J.

Applying Theorem 7 to each of these triangles and summing, we have

L+1 J J+1 J

§ ad= ¥ 4 ad = 1 % Yy [z, r, -r(z, -z +1)

0 i ; 550 AR S
S v %8 T (2-e2)

z rj+1 rj 2441 Pj+1 3 jZO rj rj+1 .

Because of cancellation of quantities from adjacent triangles, we have

L+1

15



_ _ s (2 2
2 (rpg =) vzl ek (e ) .

L+1

From this expression, we see that £ d§ depends only on coordinates of points
'3 .

0, &, &+1. Hence, if we let J + » we can approximate any curve between &, 241 -
and therefore conclude that the value of the integral is independent of the -
path. )

One can illustrate this theorem geometrically. The f term is given by
the difference of two integrals, (13) and (15).

+1
f rdz - J drdz = (Area under curve %, %+1)
') A

- (Area enclosed by 0, %, £+1) .

From Fig. 7, we see that this difference remains constant as the path between

(2, 2+1) changes, for as the path is changed both areas are being changed by

the same amount. For the E term, independence of path has already been shown
in (13).

Fig. 7, Illustration of Theorem 8.

16



Now consider the total force on a typical zone of Fig. 1 (see Fig. 8).

r

} )
| pins2

18

Fig. 8. The forces on a typical zone.

Theorem 9, Given points &, 2+1 along the boundaries, and any path S in the

L+1/2 P2,+1/2
') P+

acting along these boundaries, and P2+1/2 acting within the zone, then the

total force acting on the material enclosed by S and the boundaries is given

by

zone joining these points, and assuming constant pressures P

+ 4 ad |} . (20)
This can be written out in detail, using (14) and (18), to give
- > P g (pht1r2 2+1/2

Fortz2a =1 3 1P (2 = 2))(r +r)) + Py (2, = 2)ryy + 1)

* Pyyya (7 my rlzy - Zg0q) * 2lrg g - rg) - Zg41 Teql]

17



>0 10+1/2 _ L+1/2 _
+ ko3 [Pl (rl r)(r + rz) t P (r rl+1)(r + rl+1)]
* Pperse (Cguq mrdlrg e n)) (20a)

By algebraic manipulation this can be rewritten

<

F - | pds
+1/2 v

) L+1/2 _ _
-1 3 [py Poersad(z =2 )(r + rp)
g+1/2 _ _
(P Por1s2) (Zg44 z)(rg g+ r)]

> o 172 _ _
<k 3 Lry Prarsallrg = rllry +r)
2+1/2
+ (P2+1 - P2+1/2)(r‘ - rz.‘,‘])(r‘ + Pz.‘,‘])] . (20b)

This is the fundamental expression used to derive all gradients.

It might be well to add a word about conservation of momentum. Since

de§ is a momentum flux term, to conserve the momentum flow between two ad-

Jacent zones, say %+1/2 and 2-1/2, then it is necessary to require that

Since the pressures are assumed constant along (0, %), this gives

L+1/2 L=1/2
Pl = Pl = Pl . (21)

We will use this principle to assure conservation of momentum and simplify
notation.

18



We shall now determine how the general formulae (20a, 20b) simplify for

the various gradients.

L
IGT: Using (20b) and (21) in the expression of § F
=1

ge1/2 in (7), we get

L L
2 ) - -
L Foapp=tz 2 [(Py = Pyy/o)lz = 2 )lr v )

=1 =1

*(Pyy = Praqsa)(Zeg = 2)rg g+ r)]

+
¥
n e

L
3 [(p, =~ Pyuryp)ley = r)lr, + )

L=1

t Py = Praqyallr =g e e ey T

in which we get cancellation of terms involving Pl so that

o _ _
Fovi/271 3 [(Py_i/a = Ppeqsad(z = 2 )(r + 1 )]

1 )

[Marln
v
Lo 2
e~

1

[(Py_1/2 = Pgarja)lrg ~rllry +r)] o 22)

IGA: There is no simplification possible here. See (8).

FGI: Referring to (9) and using (20b) and (21), we get with simplification,
> > > ? ¢ _ _ ‘
Py = Foqsa® Fpaqp= i3 [y = ppy/0)(z -2 )(r+r )
+ (Pryrsa = Ppoyyalzy = 2)(rg + r)

* (Poyy = Praqgyal(zgey = 2)rg  + r)]

19
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* (Pyy/o = Preqsallng = r)(ry +r)

t (Pyaq = Ppqsplle = e e, )] (23)

The formulae for FGI can be obtained from (23) by setting the first and last

term in each component equal to zero. This is equivalent to the assumption
(PQ‘_‘]’ 22_1] = (l", Z) and (r2+1’ zl+1) = (l", Z) ’ (23a)

which gives for FGI

> 2 0 _ -
Fp= 15 (Praqya ™ Paoqsa)(zg = 2)ry +r)
>
* RS (Pyyn 7 Pragsley m )y + ) (23b)

The assumption (23b) is quite interesting. It means, for example, that to get

§2—1/2 used in ?l, one uses a path 0 to & completely in 2-1/2.

Correspondingly, to get ?2_1/2 used in §£_1, one uses a path &-1 to 0 com-
pletely in ¢2-1/2. Since those paths have different end points, momentum is

not conserved between these two IPES (Theorem 8).

If we take a longer view and consider the de§ for all four vertices O,
-1, ", & of a zone, we see that momentum can be conserved in total if all
four paths pass through a common point 0' inside the zone, %-1/2, and extend
from vertex to vertex.

The momentum flux within the zone for each of the four corners is

0! '3 o! 0
> > > >
0: P J ds + J ds + P J dsS + J ds

0 0! -1 o'

20



o' R 2,71 R 0! R 0 R
2-1: P J ds + ] ds + P J ds + J ds

" o' 21 o'

Ol N 2" R Ol N 2—1 A
L": P J ds + J ds + P J ds + J ds

2‘ 0' 2‘" 0'

0' 2 0' 2"
ES
2: P J as + J dS) + P J ds + J a3

0 o' L o'

The net momentum flux, or total of all four expressions, is zero, so momentum
is conserved among all four vertices for that zone. However, momentum is
transferred diagonally as well as nondiagonally. This is not necessarily good
or bad, but it makes visualization more difficult. The common point 0' does
not appear in the formula (23a) for the forces, so it, along with the paths,

is of use only in defining the masses used.

V. ANALYTICAL METHODS FOR MORE SPECIFIC DEFINITION OF INTEGRATED GRADIENTS

Since the ultimate objective in deriving the various types of integrated
gradients defined in Sec. II is their use in numerical calculations of physi-
cal situations, it is true that comparison of numerical results with
experimental observations is probably the best test of their validity. 1Indeed
this is the method which led to adoption of FGI for the S. R. Orr code.
However, there are certain idealized situations (planes, cylinders, spheres)
in which one would like difference methods to give reasonably correct results.
In the next few sections, we deal analytically with such motions. It has
turned out that to achieve the desired behavior in some of these simple
problems, certain consistent definitions of M, S, %, etc., must be made. All
of the following discussion will pertain to quadrilateral meshes. Some simple
problems are:

A Plane Problem. This is a problem in which the material is divided into

plane layers that are parallel to the r-axis, with uniform pressure, density,
etc., in each layer. 1In other words, these quantities have no r dependence.

The natural mesh to select is rectangular (Fig. 9). For such a problem, one
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would hope that the accelerations in the f(r) direction vanish and that ac-

celerations in the E(z) direction be independent of r.

A Cylindrical Problem., This is a problem in which there are cylindrical

layers of material about the z-axis for which P, p, etc., are constant in each
layer (that is, independent of z). The natural mesh for this type of problem

is also rectangular (Fig. 10). For this situation one would expect that the
accelerations in the ﬁ(z) direction vanish and that the accelerations in the

I(r) direction be independent of z.

PI’Q' P’ Q
1
4 O 2 Pe Pe
o
U] 4 2
P.Q P, Q P: Q‘ p:d
3 3
T T
— v 4 R z
k *
Fig. 9. A plane problem, Fig. 10. A cylindrical problem.

A Spherical Problem. In this problem, the material is divided into spherical

shells centered about the origin, with P, p, etc., constant for each shell

(that is, independent of a). A natural mesh for this type of problem is
quadrilateral (Fig. 11).
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N

Fig. 11. A spherical problem.

For this problem, one would expect that the tangential (o) accelerations
vanish, while the radial (R) accelerations be independent of a.

Limit Test. Another test to appiy to the integrated gradients in difference
form is to approximate the various quantities (P, p, etc.) in the difference
equations by a Taylor Series expansion about the point 0, neglect higher order
terms and see if the gradient approaches the proper differential form for that

type of system. In other words, for:

1 9P
plane problem ar + 0, az > ; "z
cylindrical problem a -+ - 18P a +90
r p or’ "z
spherical problem a » -1 I a >0 . (24)
R p 3R’ "a

VI. THE PLANE PROBLEM - g-MASS METHOD
As mentioned in (4) through (6), choices of & and S (which define M) must

be made. From the standpoint of computation, it is very advantageous to

define M2+1/2 as a constant fraction, q, of the mass, m2+1/2, of the whole
zone rotated through angle ¢, that is,
Mowr72 = WMgr 9/ - (25)
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This means that M need be calculated only once, at the start of the
problem, for each zone. We have named this general approach "the q method."
Based on this general assumption, the plane problem can be used to indicate a
logical choice for ¢. For the plane problem (Fig. 12), we can use Theorem 5

(or other methods) to get the masses M2+1/2. (Here, as in much of the follow-

ing work, detailed algebraic steps will be omitted to conserve space.)

= 3 2
Miviso = W0y 4/ = a5 0 Ary Az, (2r + Ar,)

= =q _
2¢1/2 = WM, 4/ = A5 P AP3 Az, (er Ar3)

$

Mai1/2 = Wms, 1o = A5 0" Arg Az (er - Ar3)

= =qd
Mypr/2 = 90M, /5 = Q5 p' Ar, Az, (2r + Ar1)

y
= 2 -—
£Z1 Moecis2) = 93 fAr1 (or + Ar1) + Arg (or Ar3)] (p'Azu + pAZZ) .
(26)
r
Po’ 1 P
: L o r+ar,
4 2
|3 r-ar,
2-AZ 4 =4z,

Fig. 12. The g-method in a plane problem.
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To determine &, the intersection of S with the common boundary between zones
L-1/2, 4+1/2 (Fig. 1), assume & to be located at some fraction, f, of the

total distance from 0O out to the next vertex. For example, for & =1,

P_'T_l::f or'r'1=r'+fAr'1

2, =2+ fAz1 . 27)

There is one more logical assumption we can make for the plane problem. Since

=P and P P', it seems imperative that here we

Pis172 = Porys2 34172 = Puer/2 =

define Pl so that

P2 = P, PH = p', P1 = P3 . (28)

This will simplify many of the formulae.
We now consider the various gradients:

IGT-q: Applying (22) to Fig. 12, in conjunction with (27).

+E%[(w - P)(rar )(2r + £ar) + 0+ (P - P)(far ) (2r - far) + 0]
= 1(0) + k % (pr - P)elar (2r + £ar,) + arg(or - rae)] . (29)
Substituting (29), (26) in (7) ,
g ? 9 v + -
s y Fovi/2 ) i(0) +k 3 (p P)f[Ar1(2r + fAr1) Ar3(2r fAr3)]
)) Moe1/2 q % (p'Azu + pAzZ)[Ar1(2r + Ar1) +Arg (or - Ar3)]

From this we see that ar 0, as it should in a plane problem and that az will

be independent of r and Ar if = 1, In this case
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(pr - P}

%271 (o*dz, + pbz,] ° (30)

Applying the 1limit test (24), and dropping out second order terms

- 8P T4y _ @ 2
X . (Po-525) -+ 57 =5
Z Az Az
3 y 3 2
9 llog = 577 vy v (og + 55 —57) az,]
aP 1
A .3z 2 (az, + az,)
z q P, [Azu + Az2J !
or
a » -1 3 _108P.. _1
z 2qpO 9z p 02 =3 -

The conclusion is that for IGT-q to work properly in a plane problem, it is

necessary to take: q = 1/2, £ = 1.

IGA-g: Using (27), (28) in (20b) for Fig. 12,

§1+1/2 = 10) + k % [(P1 - P)(fAr1)(2r + fAr1) + 0]

Fopi = 10) + K % [0« (py - P)(rarj)(2r - £ar )]

§3+1/2 = 1(0) + k % [(py = pr)(-rar;)(2r - £ar ) + 0]

Floyp= 1@ + k2o« (P, = p*)(~tar )(or + £ar )] . (31)

Substitute these and (26) in (8) using (28),
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EY
- | .
.1y Foer/2 toy + 7 4L P, - P . pr - P \[f(er « far)
1
y M1/ 4q pAZ, p'AZ, (2r + Ar1J
ﬁZr—fMé)
) {2r - Ar :

From this expression, we see that ar = 0 and az is independent of r and Ar if

f = 1. In this case,

1 P1 - P pt - P1
a = a5~ + 1 ’ (32)
z 2q pAz2 p Azu

with P1 as yet undefined. We have arbitrarily chosen the simplest way to

define Pl which agrees with (28), namely

o a2 P Peerze o Bt ep
2 2 1

5 . (33)

This gives for (32)

a =[PP 1 .
z 4q pAz, p'Azu !

for which the limit test gives (for equal Az)

P' - P 2 _13P . -
az=( Iq )(pAz>+ 5 3z if q w2 .

The conclusion is that for IGA-q to give proper motion in a plane problem it
is best touse q = 1/2, £ = 1.

FGI-q.

Substituting (27), (28) in (23b) for Fig. 12

?1 = 1(0) + k % [(pr - P)(fAr1)(2r + fAr1)]
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(0)

1y
"
[
~~
o
-
+
x4
ke

Ty
i
Jte,
~~
[
-
+
v
role-

[(p - p)(-rar ;) (or - £ar))]

3

Y
"

=

~~
o

-
+

Fg s
e

(0) . (34)

Now using (34) with (26) in (9), .

> (pr - P)(far, )(2r + far.) (pr - P)(far_)(2r - £ar.)
2.1« K 1 L 3 3
Bl ar (2r + ar J{p"az, + pbz,] Ar3[2r - Ar-3)(E"AzLl + pAzZ)
2 (»' - p) f(ar + fAr1) . f(ar - fAr3)
uq[p'Azu + pAzZI r + Ar, r - Ar3 :

From this expression, we see that ar = 0 and az will be independent of r, Ar

if £ = 1, in which case

a = Pt - P
z Zq[p'Azu + pAzZJ

. (35)

Applying the limit test,

1 aP 1 9P .
a, > ey 3z = > 3z if q 1/4 .
Our conclusion is that for FGI~q to work properly in the plane problem it is
best touse £ = 1, q = 1/4,

Summary and Discussion. In the plane problem, all three methods (IGT, IGA,

and FGI) give ar = 0 as desired, It is possible to achieve a, independent of
r and Ar if we take f = 1 for all three gradients., Then the value q required

to give a proper limit, namely - 18P

5 37 for the gradients is:
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IGT-q q=1/2
I1GA-q q=1/2
FG1-q q=1/4

These values of f and q lead to a physical model for each gradient. By
this we mean a physical visualization of the mass M associated with each
vertex and a surface S which encloses it. With this model it is possible to
consider how momentum is transferred from one point to another by the gradient
in question.

In IGT-q where f = 1, q = 1/2, we have a model (Fig. 13a) in which ¢ is
taken out to the next vertex along the side (because f = 1) and S is drawn in

any way between the proper end points so as to enclose half the mass of the

zone (since q = 1/2). [Recall that de§ is independent of the shape of S in
the zone (Theorem 8), so any curve between the proper end points on sides ¢,
2+1 that encloses the proper mass will serve as a representation.] Similarly,
for IGA-q (Fig. 13b) we show surfaces S, which extend from the end points of
the sides (f = 1) and enclose half the mass of the zones (q = 1/2). FGI-q is

less obvious (Fig. 13c¢). This method, according to (9), adds

.
N

=1

q=1/2 q=1/2 q=1/4
(a) IGT-q (b) I1GA-q (¢) FGl-q

Fig. 13. Models for the various q-gradients.
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surface integrals from two adjacent zones, and then by (23a) brings in the end
points at %-1 and %+1 to point 0, thereby giving what may be represented by a
diamond-shaped mass straddling each of the four sides. This diamond-~shaped
mass extends out to the end of the side (f = 1) and encloses one-fourth of the
mass of each zone (q = 1/4).

It is interesting and instructive to consider how these models (and hence

the corresponding equations) handle the conservation of momentum. Since de§

represents a rate of transfer of momentum, we can analyze momentum conserva-

tion in a mesh by considering the relationships of the de§ of adjacent
vertices. For the q method, in general, momentum is conserved between ver-
tices of points which diagonally oppose each other across a zone. For
2
example, in IGT-q (Fig. 13a) when working on point 0, one uses J Pd§ for zone
1

1

1+1/2. Similarly, when working on point 5, one uses J Pd§ for zone 1+1/2.
2

Since the endpoints of two integrals are the same because f = 1, the two
integrals will be equal in magnitude but opposite in sign, which means that
one point gains the momentum that the other loses, and hence momentum is
conserved in the problem as a whole. For IGA-q and FGI-~q, similar arguments
hold. In addition, by similar arguments there is momentum conservation be-

tween the adjacent M2+1/2

used within these gradients.

One objection to all the q methods is that the masses over which one
integrates for adjacent points overlap each other. This objection does not
seem vital for the gradients, but it leads to almost insurmountable dif-
ficulties when one tries to use the models for accomplishing rezoning or

1’2’3

viscosity. In the next section, we propose a method for defining masses

which does not have this overlapping of masses.

VII. THE PLANE PROBLEM, MAC-0 MASS METHOD (Midpoint, Average Centroid Method)
Consider zone 1+1/2 of Fig. 12, and draw any set of curves joining the
midpoints of adjacent sides (Fig. 14a). These curves define surfaces such

that there will be complete conservation of momentum among the four vertices

of this zone because of de§. This is because de§ is independent of the path
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(Theorem 8), and hence the integral about the closed path vanishes. Next, one
may vary these curves to define almost any masses desired without affecting
the momentum conservation. However, we wish to use the total mass of the zone

and at the same time avoid the overlapping of the masses associated with the

vertices. One simple way to

1 -1+ A4r

(a) (b)

Fig. 14. The MAC-0 method.

accomplish this is to select some point 8 (r1+1/2, z1+1/2) within the zone and

make all the curves pass through this point. For our discussion we will
assume that the curves joining the midpoints to point 8 are straight lines

(Fig. 14b). If we define point 8 with the two parameters g, h, by

Tieq7g =T + BAr, 214972 = 2 * haz,

then the part of the mass in zone 1+1/2 which is associated with point 0 is

given by Theorem 5 as

i Ar1 Ar1 1 1 A22 Ar1
Miviz2 = P o{{ AT \D8z, Jifr + —= 5*8)*5 5/ \8Ary *‘*TS>

Ar_ Az Ar
1772 1/h 2
=p ¢ _).|_— r(h + g) + T(E + hg + g ) .
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In defining the model in Fig. 14b, we have used the midpoints of the

sides, which means f = 1/2. Looking at the expressions for F in (29),

1+1/2
(31), (34), we see that they all have factors like [2r + (Ar1)/2] = 2[r
+ (Ar1)/4], etc. To achieve independence of r, we also want similar factors

in M1+1/2. The obvious way to get terms like this is to take

g =h-=1/2 (36)

For this simple rectangular zone there are a number of possible interpreta-

tions of (36). For example, we could define point 8 as

(a) The intersection of the diagonals of the zone

(b) The average centroid of the zone, that is,

1 1
Piyqsz =5 (P trytrg+r)) Zia2 T T (242 % 25+ 2] (3T)

(c) The real centroid of the zone, that is, dividing the zone into two

triangles denoted by A, B, and calculating (proof omitted)

-A A -B B
. _Mse Mee P Treze Moy
14172 R B

AMs172 * a2

-A A -B B
Ziv172 Mers2 T Ze12 M2

214172 = A s 2B , (38)
1+1/2 1+1/2

where AA means the area of triangle A and AB means the area of triangle B.
Note that the centroids are not the same quantities as the centers of
mass for the wedge-shaped volume formed by the rotation through angle 4.
There may be other interpretations of (36). In later sections, when dis-
cussing other types of problems, it will be shown that the average centroid

method, (37), seems preferable to use in general.

32



If we calculate M2+1/2 for Fig. 14 under assumptions (36), (37),

M2 =0 % APLAZ (2r « f;l)

Moviso = P % APEAZZ (or - fgé)

My1sn =0 3 ArEAzu (r - fgé)

Mypq p = 0’ % ArlAz (2r + ﬁ;l) . (39)

We now apply (39) to the various gradients.
IGT. Using f = 1/2 in (29), and (39),

7 ? e - 1 _1 -3
s y Foe1/2 i 1(0) + k3 (Pr = P) 3 [Ar1(2r + = ) o+ Ar3(2r 5 )]
- 61 Ar . Ar :
L Myqy2 35 (pbzy + ptaz)) [ar (or + —7) ary (2r - —7)]
whence
a.=0 a =—F "F > - 13 (40)
3 (p'Azu + pAZZ) P
which is independent of r and Ar.
IGA. Using f = 1/2 in (31), and (39),
7 pleld - -
> 1 LEm k533 |(Pyp-P)+(py-7p)
as=g — = 1(0) +
ZM L) pA22
L+1/2 y 2
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(pr - 93) + (P - P,)

p'Az y

Thus a, = 0 and using (28), that is, P1 = P3,

a = + ! (41)

and (33)

I AN Y (O _13P
z 2 pAz, p'Azu p 02 )

FGI. In this instance, we must use (1/2) M2+1/2 from (39) to achieve the

proper limit. At first this seems strange, but if we visualize the masses
that are needed for the %th term in FGI (Fig. 15), we see that to avoid over-
lapping of the masses used, it is necessary to use (1/2) M2—1/2 and (1/2)

M2+1/2. Now, we use f = 1/2 in (34) and (1/2)M from (39). This gives
1 1 1
NN o {Mﬂ[{ﬂ‘g
§§>;..4£ EE;E =
4 2 4 — 2
| THEE
P I
3 3 3
(a) IGT-MAC-0 (b) IGA-MAC-0 (c) FGI-MAC-0

Fig. 15. Representation of MAC-0 masses in all three gradients.
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> >

> 1 Fo-172 * Faer/0
a=gl g M
2-1/72 7 Te+1/2
rled
- 7(0) + K333 (p' - P) . (p' - p) ]
387 Lotz v 0thzy bz, ¢ etz
So ar = 0 and
N I NN R (42)
1
pAz2 +p Azu p 02

Summary. Here again, ar = 0 regardless of the assumptions. If we define the
masses, M2+1/2, as those enclosed by joining the midpoints of the sides (f =
1/2) to the centroid of the zone, all three methods give an a, independent of

d

a°]

r, Ar. This az approaches the proper limit, - ,» as the spacing becomes

o |-
Q

z
small. (By the nature of the definition of FGI, for it we must use half the
masses of the subzones.)

All methods conserve momentum between adjacent points rather than merely
diagonally as in the q-method for defining masses. This seems more physically
realistic. In addition, this method also uses the more appealing concept of
having no overlapping of the masses between points or within points in setting

up the definitions.
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VIII. THE CYLINDRICAL PROBLEM -~ q—-MASS METHOD
For a typical vertex in the cylindrical problem (Fig. 16),

r

2 r+éry ]
P,Q -
1 0 3
P/o’
z-Az, 4 z+az, -4
z
Fig. 16. The gq-method in a cylindrical problem.
use of theorem 5 gives the masses of the zones as
M .1/ = Qb0 (1/2)(Az1Ar2) (or + Arz)
My,1/0 = Qb0 (1/2)(Az3Ar2) (or + Arz)
Marqyp = 00" (1/2)(Az3Aru) (or - Aru)
Myeqyo = Q0" (1/2)(Az1Aru) (2r - Aru) . (43)
Now apply these to the various gradients with f [see (27)] unknown,
IGT-q: From (22) using (27):
4 > 20 . .
251 Fovyp= 1% [(pr - P)(fAz1)(2r') +0+ (P- P')(—fAz3) (2r) + 0] ;
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l
|

=1E((e - Plarf(az, + az,) + k(0) (44)
Hence from (43), (7),
s yF ] t % (P - P)2rt(az, + Az,) |
IM gq % (az, + azy)[pary(2r + ar,) + prary(2r - ar))]
SO
a, =0 a, = rp - P) (45)

2 . ,..2
pAr'2 p Aru

al (par, + p'ar,) + =

Thus, we find that az = 0 and a, is independent of z and Az regardless of the

choice of f. 1In the limit

f 1 9P
a * - = = =
r 2q p or
. 1 9P ,
This approaches the proper value - E 7 if

= 1/2, f = 1 would be suitable choice.

The conclusion is that for IGT-q to
problem, it is sufficient to use f/q = 2.
IGA-q: Using (43) and (28) in (20b),

§1+1/2 -1 % [(p, = P)(£az,)(2r) + 0] +
§2+1/2 =1 % [0—+ (P3 - P)(fAz3)(2r)] + Kk
§3+1/2 =1 % [(p, - Pt)(-raz;)(2r) + o]

g = 2. As in the plane problem q

work properly in a cylindrical

+ k(0)
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>

Frpp=1%0s (P, = Pr)(-raz,)(2r)] + k(o) . (46)

Using (46), (43), and (28) in (8),

> P, - P pr - p
> F s f 1 1 >
a=32(ﬁ> =133 Ar. |+ k() .
x1/2 ar, (1 + =2) e, (1 - =—2)
PAT 2r y 2r
u7)

Thus, a =0 and a, is independent of z and Az. If we define P1 by (33) and

apply the limit test,

f 1 9P
% 7729 7 awr
1 0oP f .
which gives the proper value - 3 T if I = 2, as in the plane problem. Here

again we conclude that for IGA-q to work properly in the cylindrical problem,
it is sufficient touse f =1, q = 1/2.
FGI-q. Applying (23b) to Fig. 17,

?1 = f% (pr - P)(£az,)(2r) + k(0)

?2 = 1(0) + k(o)

§3 = f% (pr - P)(raz;)(ar) « k(0)

ﬁu = {(0) + k(o) . (48)

Using (48) and (43) in (9),
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F
L) <
Yoo\ M1/ * M0

[V 23
]

-1 L (pr - p) + k(0) . (49)

2q pAr'2 - p'Ar
(par, + p'ar,) + 2 .
2 y 2r

Hence az = 0 and ar is independent of z and Az. In the limit

[l 2

which gives the proper limit if f/q = 4. So we conclude that for FGI-q to
work properly in the cylindrical problem, it is sufficient that f/q = 4.

Summary. For the q method in the cylindrical problem all gradients give az =
0 and ar is independent of z and Az, regardless of the assumptions concerning

q and f. To achieve the proper limit, it is sufficient to take f/q = 2, 2, §
in IGT, IGA, FGI, respectively. The values of f and q required by the plane
problem in Sec. VI satisfy these conditions (that is, f =1, q = 1/2, 1/2,
1/4). The comments concerning momentum conservation between points and over-
lapping of masses in discussing the q method for the plane problem apply here
also (Sec. VI). Our general conclusion is that while study of the cylindrical
problem has added no new information, it has reinforced the conclusions drawn

from the plane problem,

IX. THE CYLINDRICAL PROBLEM, MAC-0 MASS METHOD

If g = h = 1/2 as determined in Sec. VII is used, the MAC-0 masses ob-

tained from Fig. 16 are

AZ, Ar Ar

- o % 1 2 _2

Miviz2 =03 — (2r + =)
Az, Ar Ar

e, 8 3 2 _2

Mov1/2 =P 3 3 (2r + %)
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Az Ar Ar
3 Ary _Ary
Mavi2 70" 3 — (¢ - —)
Az, Ar Ar
= ¢ _1 4 __ 4
Mysr/2 20" 3 m (er - =) .

IGT-MACO. Using f = 1/2 in (44), and (50), in (7)

> > g . >
sk Foer1/2 ) i2 (p P)r (Az1 + Az3) + k(o)
4 Ar2 Aru
- 1 - -
E Mois2 B (Az1 + Az3)[pAr2(2r +—=) + o' ar, (or 5 )]
2(p' - P)
3, =08a.= 2 2
pAr_ - p'Ar
(pAr + p'Ar ) + 2 4
2 ] ip
Hence the az = 0 and ar is independent of z, Az. In the limit
a »-18
r p or
IGA-MACO. Using f = 1/2 in (46), (50), (28) in (8)
P, - P pP' - P
a = 1 )) P =1 ! + ! + E(O) .
g M Ar Ar
+1/2 2 . y
par, (1 + 3=5)  erar, (1 - =)
Again, a_ = 0 and a_ is independent of z, Az. In the limit a_ » - 1 EE.
2 r r p or

FGI-MACO. Using f = 1/2 in (48), (1/2) M from (50), in (9),

L+1/2

+ (1/72)M

[LR2
[}

I F/[(1/2)m ve1/2)

L) —

L-1/2
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-y

2(p' - p)

Ar, ar ),
OAY‘ZU + F) + O'AY‘L,U - F)

+ k(0) (53)

- Here again, az = 0 and ar is independent of z, Az. In the limit

1 9P
a * - - .
r p ar

Summary. With the MAC-0 method for defining masses for a cylindrical problem,

all three gradients give az = 0, ar independent of z, Az, and approach the

proper limit - % g; as Ar » 0. All gradients conserve momentum exchange

between adjacent points of the mesh, and there is no overlapping of masses.

X. THE SPHERICAL PROBLEM - q-MASS METHOD

Let us consider a section of a spherical mesh (Fig. 11) in Fig. 17.

Fig. 17. A section of a spherical mesh.
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Let us first calculate the masses of the zones. Each zone is divided
into two triangles, A and B, as shown. Since the area formula (15) involves

terms of the form

r'izJ - rjzi
and since in the spherical problem all coordinates may be expressed in the

form

ri = Ri sin ay 3 Rj sin aJ

3
[

N
"
=)
Q
(o]
4]
[
N
[}

R, cos aj ’

r'izJ - rJzi = RiRj (sin a; cos aj - 81in aj cos ai)

or

r.z, - r.,z. = R.R, sin (ai - a,) . (54)

Now using the area formula, (15), and (54), we can write the areas of all the

triangles, all positive since Aa3 <0,
A‘1‘+1/2 = 12 R (R2 - R) sin Bo,
A?H/Z = % R, (R2 - R) sin Ac,
A, s 2R (R -R,) sin Mg
A2+1/2 %RZ (R - RZ) sin Aa,
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Agﬂ/z = % R (Ru - R) sin Aoy
Agﬂ/z = 15 R, (Ru - R) sin Mo
Myip =3 R (R - R,) sin Ac,
A?H_VZ = 15 Ry (R - Ru) sin Ao,

The centroids

;A
1+1/2

;B
1+1/2

;A
2+1/2

of the triangles are

1 Aa1 Aa
3 [ZR sin (a + —E_) cos —— + R2
1 Aa1 Ao
3 [ZR2 sin (a + —E_) cos —— + R
Ao Ao
% [ZR sin (a + 23) cos —Eé + R2
Ao Aa
% [ZR2 sin (a + —Eé) cos —Eé + R
Ao Aa
% [2R sin (o + —Eé) cos —Eé + R,
Ao Aa
% [ZRM sin (o + —Eé) cos —Eé + R
1 ) Aa1 Aa1
§~[2R sin (a + —E_) cos > + RM
1 Aa1 Aa
3 [ZRM sin (a + —E_) cos —— + R

sin

sin

sin

sin

sin

sin

o]

(55)

(56)
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By Theorem 5 and (55), (56)

A -A B -B
a1z = P8y 072 Tharsn * As12 Tie1/2)

2 1 Aa Aa1 2 5
=303 (R, - R) sin Aoy cos —— sin (a + —=) (R + RR, + R3)
Ao Aa
2 1 (r- 3 3y (o2 2
M1/ =3 P 3 (R RZ) sin Aag cos —= sin (o + —E_)(R + RR, + RZ)
Ao Aa
2 , 1 - . 3 .. 3) (o2 2
Mavis2 =3 P 3 (R, - R) sin May cos —= sin (@ + 53) (R + RR, + R))
Ao Ao
2 1 - 1y(02 2
Myeis2 =3P 3 (R Ru) sin Aa, cos —— sin (¢ + —E_)(R + RR, + Ru)
(57)
We then use M2+1/2 = qq>m£+1/2 as in (25) and (28), that is, assume
= = 1 =
P, =P, P, =P'and P P3 . (58)

IGT-q. From (22), using f = 1 and (58),

>

: Fos172

[/ e I =

. =1 % [(pr - P)(z - z1)(r + r1) +0+ (P - P)(z3 - z)(r3 +r) + 0]

+ K % [(p - P)(r1 -r)(r+r ) +o0+ (P -pP)(r- r3)(r + r3) + 0]

1

(59)
From Fig. 17

Aa1 Aa
z -z, = R[cos o - cos (a + Aa1)] = 2R sin (o + —2—) sin —p
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- == - —3) sin —3
z3 z = 2R sin (a 3 ) sin —
Aa1 Aa
r1 - r = 2R cos (a + —E_) sin >
Aa Aa
—p = - 3 _3
r-rg == 2R cos (a + 5 ) sin 5
Aa Aa1
r +r, = 2R sin (o + ——) cos —
Aa3 Aa2
r+ry= 2R sin (a + —E_) cos —= . (60)

Substituting (60) in (59), IGT-q gives

> 2 9- _
> g Fgere WIS -P) f, A ba, 5 Aa,
a = = i [51n —— €08 —— sin (a + ———)
I M1z IMyi1/2 : : :
'3 '3
Aa Ao Aa
- sin —53 cos —Eé sin® (o + —Eé)]
N Aa1 Ao Aa1 Aa1
+ kK [sin - cos - sin (a + _5—) cos (a + —E—)
Aa Aa Aa Ao
- sin —Eé cos —Eé sin (a + —Eé) cos (a + —52)] . (61)

In a spherical problem, one would expect the tangential acceleration to
be zero and the radial acceleration to be constant and independent of a. Is
this true of (61)?
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To break (61) up into tangential and radial components, consider Fig. 18.

r

Fig. 18. Components of acceleration.

From this, we know that

a =a cos o - a_ s8in a
V) r z

ap = a, sina +a, cosa . (62)

Applying (62) to (61)

2 ¢ -
RS £ (pr - P) 5 ba, Da, Aa,
a = [sin cos sin (a0 + —)
L+1/2
'3
Ao Ao Aa
- sin2 —5= cos —Eé sin (o + —Eé)]
uaz% (P - P) da, A, Aa,
a_ = [sin —— cos sin (a¢ + —)
R z M 2 2 2
Y L+1/2
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Aa Ao Ao
s 3 2 3 3
sin —= cos® —= sin (a + —E_)] . (62a)
From the first relation, we see that a = 0 if
Aa Ao Ao Aa Aa Ao
2 . 1y _ 2 3 3 . 3
sin® —— cos —— sin (o + 5 ) = sin —> cos —= sin (o + —E_) . (63)

As yet, we have found no good physical interpretation of this condition.

It is well to note that it implies unequal angular spacing to achieve aa = 0,

Substituting for M from (57), (58) in the expression for a

24""1/2 R’
Ao Aa Ao
a, = {HRZ(P' - P) [sin — cos? —El sin (a + —El)
Aa Aa Ao
R Y-S B Aoy
sin —= cos” —= sin (o + 3 )1V
Aa Aa
{g q [p (Rg - R3) +p! (R3 - Ri)] [sin Ao, cos —— sin (o + —El)
. AG3 Aa3
- sin Aa3 cos —= sin (¢ + —E_)]}
Aa1 Ao
Using the trigonometric relations sin Aa, = 2 sin —— cos ——, etc., we

get cancellation of all terms involving angles, so aR becomes

3R2[P' - P)

R G (p(R2 - 73) + o (R

R

: (64)
3_53
R;,) ]

In the limit
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2'— 1T -
, 3R(p P) P P

a =
a2pAR(3R2) 2q(pAR)

This approaches - % gg if q = 1/2. 1In conclusion, we can say that for a

spherical problem, IGT-q using f = 1 gives a_ independent of o, Ao and ap-

R
proaches the proper 1limit for q = 1/2, but aa = 0 only if the spacing in a is

defined according to (63).
IGA-q. From (20b) applied to Fig. 17, using f = 1 and (58).

§1+1/2 =1 % [(P1 - p)(z - z1)(r + r1) + 0]
+k$[(py - P)r, = r)(r, +r) + 0]
§2+1/2 =1 % [0 + (P3 - P)(z3 - z)(r3 +r)]

cE2 00+ by - R)(r - r)(r v ry)]

v
v

Farya = 1 % [(py - P)(z - z)(r + r;) + 0]

« kg [(py = P)(ry = r)(ry +r) + 0]

v

Lol 2

Fuaja = 1500+ (P, = P)(z, - 2)(r +r )]

+
¥

$lo+ by - P)lr = v )r +r)] . (65)

Using (57), (60), and P3 = P1,
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-— 1T -
a = 1 )) E =1 3R2 P1 ’ + ’ P1
Yo\ M )12 i p(Rg -R3) (&3 - Ri)
. Aa1 Aa3
sin (a + T) sin (a + T)
. X +
. Aa1 Aa3
) COST cos T
Aa1 Aa3
- | B — —
e 3R2 P, = P . P P, cos (o + 5 ) . cos (a + 5 )
bq 3._.3 3_ .3 Ac Ac
p(RZ R ) p'(R Ru) cos 1 cos 3
2 2
Now, calculating a,s ap, by (62a)
2 »p, -0»p Pt - p A A
- - a a
aa 32 ; 3 + 3 ; (}an > + tan —Eé
p(Ry = R7) o' (R - Ry)
B
2 [ P, -pP P' - P
3R 1 1
a_ = + (1 +1) . (66)
R y
T leR] =R pr (83 - R3)
b

From (66), it is seen that a_, is independent of o, Aa, and aa = 0 if the

R

spacing in q is uniform, that is, Aa3 = - Aa1 In the limit

_ 3Re[ pr-p 1
R 20 | [AR(3R?) p

In conclusion, we say that for a spherical problem, IGA~q using f = 1

gives a

R independent of a, Ac. ap approaches the proper limit if q = 1/2, aa

vanishes if the angular spacing is uniform.

FGI-q. If (23b) is applied to Fig. 17, using f = 1,
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v

1
v
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P
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1
"3
| —
P
"3

—

+
"3
| —
[ S—)

P o778 (pr - - $ (pr - -
By =TI (- P)lzy = 2)lry + m)] + R (1 - )(r - )l + vy
ﬁu =1 (0) + k (0) (67)
Now, using (60), (57), and (67) in (9) ,
F 2
$.1 g L o (e - ¢)
g Mo * Mg M [p(Rg -R3) + o' (83 - Ri)]
Aa1 Aa3 Aa1 Aa3
sin (a + T) sin (o + T) L lcos (a+ —2—) cos (a + T)
x{1i + + K
Ac, Aa3 J Ao, Aa3 J
cos—— cos —= cos—— cos —=
Using (62a) to get the tangential and radial accelerations
2 . Aa Aa
aa = 32 3 gp P) 3 3 tan —El + tan —Eé
[p(R3 - R%) + p'(R® - R})]
2 | B
4q[p(R3 - R®) + o' (R® - R})]
Here again, aR is independent of o, Aa, and aa = 0 if Ae3 = - Ae1. In

the limit,
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N 3r% (P' - P)
2q[ 2R (38%) ]

1 9P 1
B-s— for q = m .

a > -

In conclusion, we can say that for a spherical problem, FGI~-q using f = 1

give a_ independent of o, Aa. a, approaches the proper limit for q = 1/4. aa

R R

vanishes if the angular spacing is uniform.

Summary. For the q-Mass method in the spherical problem, and taking f = 1 (as
required by the plane problem), IGA-q and FGI-q will give perfectly spherical

motion, that is, aa = 0 and aR independent of o, Aa, if the spacing in a is

uniform (Aa3 = - Aa1). In agreement with the plane and cylindrical cases,

these accelerations approach the proper limit for a_, as the spacing gets

R
small, provided q = 1/2, 1/4 respectively. It is possible with much tedious
algebra to show the reverse, that is, if the spacing in a is uniform, then it
is necessary to choose f = 1 to achieve true spherical motion. This work is
not shown here.

IGT-q has some differences. To achieve perfectly spherical motion with f
= 1, the spacing in a must satisfy the rather complicated expression (63), for
which no obvious physical interpretation has been found. It is suspected that

it may be a center of mass-type condition. However, the value of aR is

uniform regardless of the spacing. The condition (63) is needed to make a, =

0. Here again, as in the plane problem, q = 1/2 gives the proper limit.

In practice, we have found the nonspherical motion in IGT-q to be small
for the types of uniform angular spacing commonly used (Aa $ 6°). The conser-
vation of momentum discussions in the summary of Sec. VI, apply here also. As
in the plane problem, the q method does not give complete conservation of
momentum between adjacent vertices, and there is an overlapping of the masses
used to derive the accelerations for adjacent points. The MAC-0 mass method

discussed in the following section does not suffer from these disadvantages.
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XI.

Fig. 19.

THE SPHERICAL PROBLEM - MAC-0 MASS METHOD

Consider the four adjacent zones of a spherical mesh, as shown in

We will assume f = 1/2, as was done for the plane and cylinder.

Fig. 19

. The MAC-0 method in a spherical problem.

This means the midpoints of the sides will be used to partially define the

surfaces and masses associated with the vertices, and hence prevent overlap-

plng of masses while conserving momentum transfer. The coordinates of these

midpoints are given by
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01

02

03

04

01

ol

|-

| =

(v +r,)
(R « R,)
sin (a +

(R + R,)

cos (a +

Aa1 Aa1
= R sin (a + —E_) cos >
sin o
Ao Aa

3 3
> ) cos 5
sin o
Aa Aa1
2/ 0% 5~



:
Zop = % (R + RZ) cos a
Aa Aa
3 _3
Zyq = R cos (a0 + —E_) cos —
1
2oy =5 (R + Ru) cos o . (69)

The plane problem did not completely determine how the points 8 in zones
should be defined. We will look at some of the possibilities here.

Average Centroids. Using the definition (37) on Fig. 19, we have

= 1 .
Lotz = ¥ {(r + RZ)[sin a + sin (a + Aa1)]

1 Aa1 Aa1
=3 (R + RZ) sin (a + —E_) cos —— ’
and so on, giving
_ Aa1 Aa1
= R¥ i —_— —
r1+1/2 R 5 sin (a + 5 ) cos —
Aa Aa
oy 3 3
= * —_— —_—
royqyo = R¥, sin (a + 5 ) cos 5
Ao Ao
= . 3 3
= R¥ —= -2
Fauq/p = R¥, sin (o + 5 ) cos 5
Aa Aa
r = R*, sin (o + —) cos 1
4+1/2 ] 2 2
_ Aa1 Aa1
= R¥* — —_
Zi41/2 R 5 COS (a 3 ) cos —
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_ Aa3 Aa3
= R¥ —
Z,,1/2 = R¥, cOS (0 + = ) cos —
Ao Ao
s 3 3
= R¥ — -3
z3+1/2 R y cos (a 3 ) cos —
_ Aa1 Aa1
= R*¥ —_— -
Zye1/2 R y cos (a * 3 ) cos — s
1 1
* = * —
where R¥, = 3 (R + RZ) R¥, = 3 (R + Ru) . (70)

Real Centroids. Applying (38) to Fig. 19 and omitting many steps of algebra,
we get the same formulae, (70), but with

—_—— . (71)

Intersection of Diagonals. Going through the analysis for this on Fig. 19, we

get the same formulae, (70), but with

R*2 = R+w, Ry "R+r, - (T12)

Thus we see that all the various methods for defining points 8 in the zone

lead to the same formula (70) for the coordinates with different definitions

of R*Z’ R

*4’

The next step is to calculate the MAC-0 masses, that is, the masses
enclosed by joining the midpoints of the sides (69) to the points 8 (70). We
do this by dividing each subzone into two triangles and using Theorems 4 and

5. Omitting many tedious steps, we finally arrive at

Ao Ao R+ R, 2

1 . 5
Myo1s2 = 62 cos = (sin —){sin o [R¥,(—5=) - R3]
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+ sin (a + ——) cos —— [R*g (
Mye1/o = %$ cos ﬁ;ﬁ (- sin ﬁgé){sin a [R*
+ sin (o + ﬁ;é) cos ﬁ;ﬁ [R*g (R
Mai1/2 ™ Eéi cos ﬁ;ﬁ (- sin ﬁgé){sin a [R
+ sin (o + ﬁ;é) cos ﬁ;ﬁ [R3 - R¥
Myo1/2 = R%$ cos E;l (sin ﬁ;l){sin o« [R3
+ sin (a + ﬁ;l) cos ﬁ;l [R3 - m*

IGT-MAC-0. Apply (22) to Fig. 19, using midpoints (f = 1/2)

y
DELAPEES LIGRE R (R

+ (pr - P)(z03 - z)(r + r03)
+ k % [(pr - P)(ro1 -r)(r + r01) +0+ (Pt -P)(r-r

From (69), then

03)!

(72)

+0] .
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Iz [} 2
F (p* - P) R Ao Aa
§=uﬂ/_2=f<2 >{[cosa—cos (@ + —1) cos —+]
)
'3

2 2
) M2+1/2

Aa1 Aa1
x [sin o + sin (o + —E_) cos —E_]
Aa3 Aa3 Aa3 Aa3
+ [cos (o + —E—) cos —= - cos a][sin a + sin (a + 5 ) cos 5 ]
2
N % (pr - P) R . Aa, Aa, .
+ K {[sin (a + 5 ) cos 5 - sin o)
z M2+1/2
Aa1 Aa1
x [sin o + sin (a + 5 ) cos 2‘]
Aa3 Aa3 Aa3 Ac3
+ [sin @ - sin (a + —E_) cos —E—][sin a + sin (a + 5 ) cos 5 11
Now using (62)
® (or _ 2
: (p* - P) R . . Ao, Ae, 5> Aa,
a = {[sin a + sin (o + ——=) cos ——] (sin® —=)
a ZM 2 2 2
L+1/2
Ao Ao Ao
- [sin @ + sin (a + —Eé) cos —Eé] (sin2 —Eé)} (73)
Thus the condition for aa = 0 is that the spacing in o satisfy
2 Ao Aa1 Aa1
sin® — [sin o + sin (a + —Ee) cos —Ee]
Aa Aa3 Aa3

.= sin® —= [sin o + sin (a + —E_) cos —E_] . (74)
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This looks similar to (63) and here again I see no obvious physical

interpretation. Again using (62),

. 2
$(pr - PR

R
ZM1L+1/2
Aa1 Aa1 Aa1 Aa1
x {[sin a + sin (a + —E_) cos —E_] (sin —— cos —E_)
Ao Aa Ao Aa
- i 3 3 —3 gin —3
[sin o + sin (o + 5 ) cos 5 ] (cos 5= sin — ) -
Now evaluate ) M2+1/2 from (72). It is obvious from the last equation that we
)
Ao Aa1
need to get terms like [sin a + sin (a + —E_) cos —E_]’ etc. A look at R¥* in

(70), (71), (71a) shows that only the average centroid, (70), will give terms
like this in M Hence, using (70) in (72),

L+1/2°

R + R2 3

E Moe1/2 = % ol (=)

- R

Ao Aa Aa Aa

x {cos —— sin — [sin a + sin (¢ + ——) cos ——]

Ao Ao Ao Ao

= €08 —= sin = [sin a + sin (a + ———) cos ———]} .

From this, we get

R R+R,3 R + R ’ (75)
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[~

which is independent of a, Aa, and in the limit a_ » - 4 2P

R d

we can say that using the masses enclosed by joining the midpoints of the

. In conclusion,

o|—
=l

sides (f = 1/2) to the average centroid for the spherical problem, IGT-MAC-O,
gives an ap which is independent of a, Ao and approaches the proper limit as

the spacing becomes smaller. However, aa = 0 only if the o spacing obeys

(74).

IGA-MAC-0. Applying (20b) to Fig. 19, along with (58) and using the midpoints
(f = 1/2),

Frase = D41, = )z = 2g,)(r + rg,) + 0]
+ kg ((p, - P)ry, = r)(r +rg ) + 0]

Fruryz = T4 (0+ (P - P)lzgg = 2)(r + ry)]
kg0 (py- P - roi)r + ry)]

v

el 3
e

Farzz = 15 [(py =)z = 2z )(r + ry) + 0]

+ K % (P3 - P')(r03 -r)(r + r03) + 0]
gu+1/2 -1 % lo+ (py = P*)(zg = 2)(r +rg))]
+ k%o~ (P, = P )(r = rod(r +rg )] . (76)

Using (69), (72) and average centroids to define the masses for the same

reasons as in IGT,
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2 2 _ 2(5, _
2.1y fge1/2 21 3R°(P, - P) . 3R°(Pr - P,)
5L oW m R+ R, 3 R+R, 3
'3 L+1/2 2 _ 03 3 _ y
p [ =) - R ] p' [ R - (—5—) ]
Aa1 Aa1 Aa3 Aa3
cos a - cos (a + —E_) cOS ——  c0s a - cos (a0 + —E_) cos —=
X Aa1 Aa1 * Aa3 Aa3
cos T‘ S1ln T cos T Sln T
1 3R2(P1 - P) 3R2(P' - 91)
vkg R+ R. 3 * R+R._3
2)7 _ 53 | oR3- 4
P 2 P 2
Aa1 Aa1 Aa3 Aa3
sin (a + —5—) cos — -sina  sin (o + —E_) cos —= - sin q
X[ Aa1 Aa1 * Aa3 Aa3 - (77)
cos > Sin > cos o sin -
Now evaluate the tangential and normal accelerations by (62)
3R2(P1 - P) 3R2(P' - 91) Aa, Aoy
aa= R+R23 3 + ; R+Ru3 (’canTi-tanT
4| (—=—=) -=r o' | RZ = (——) ]
3R°(p, - P) R%(pr - p.)
ag = N o B R, 3 (1+«1) . (18)
4 | (——=) -R ' | R% = (——)

From these relations, we note that aR is independent of o, Aa, and in the

limit

NI
R

o(3R%) AR

-~ 129
5 3R

but a, = 0 only if the spacing in o is uniform.
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In conclusion, we can say that using the masses enclosed by joining the
midpoints of the sides (f = 1/2) to the average centroid for the spherical

problem, IGA-MACO, gives an a_ which is independent of o, Aa and approaches

R

the proper limit for small spacing. However, aa = 0 only if the spacing in a

is uniform.
FGI-MAC-0. From (23b) applied to Fig. 19, using the midpoints (f = 1/2)

iy
i

L0 - Pz = 25)(r + vy )]+ K E [(pr = P)ry, = P)lrg, + P)]

nte-
-~
P
8
1
8
| —
P
o]
1
"3

f = f % [(P' - P)(z03 - z)(r + r03)] + ;

F =0 . (79)

Here again we use (69) and (72) with the average centroids and % M£+1/2 as

required for FGI (Fig. 15), giving

F 3 g2 ' -
S Fy i SR (P P)
Ty 1 - R+ R, 3 R+R,3
Lo Myt M) [(_2__2.) - R3] + p* [R3 - (_2__11
Ao Ao Ao Ao
_ - 3 3
cos a - cos (a + —E_) cos —5— cos o - cos (a + _E—) cos —=
x\1 +
Ao Aa1 Aa Aa3
cos > sin > cos > sin >
Aa1 Aa1 Aa3 Aa3
sin (a + —E_) cos - - sin a sin (a + _5—) cos - - sin o
+ K + . (80)
Aa1 Aa1 Aa3 Aa3
cos T sin —2— cos —2— sin —2—

Except for the coefficient, this is the same as (77), so

60



Aa1 Aa3
R°(P* - P) (tan —— + tan —E_)
a = =

a + R + 3
(o[ -%] o[- 0]

2(

= 2 . (81)
R R + 3 R+ R, 3
{p[(—z——%) R34 pr R3-(—2——”-)]}

4 e

and aa = 0 if the spacing in a is uniform.

In conclusion, we can say that use of half the MAC-0 masses in the

spherical problem for FGI-MAC-0 gives an a_ which is independent of o, Aa and

R

approaches the proper limit for small spacing. However, aa = 0 only if the

angular spacing is equal.

Summary. In the spherical problem, it appears best to define the MAC-0 masses
as those masses enclosed by straight lines joining the midpoints (f = 1/2) of
the sides to the average centroid defined by (37). (In fact the abbreviation
MAC-0 has been derived as an abbreviated description of Midpoint, Average
Centroid.) Under this definition, all these integrated gradients, IGT, IGA,

FGI, give a radial acceleration, a for the spherical problem which is inde-

R’
pendent of angle o and angular spacing Aa, and all approach the proper 1limit

- % gg. To get aa = 0, it is necessary to use constant a spacing in IGA and

FGI, and the condition (74) for IGT. 1In practice, we have found that uniform

angular spacing in IGT (for Aa S 6°) gives very small nonspherical motions.
The conservation of momentum discussions for the plane problem apply here

again. The appeal of the MAC-0 method of defining masses is again evident in

that it conserves momentum transfer exactly between each vertex and its eight
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neighbors, and does not allow any overlapping of the masses associated with

adjacent vertices.

XII. THE BOUNDARY CASES

In any numerical calculation there are boundaries, and it is necessary to
treat these boundaries properly, for any perturbation in these points fre-
quently propagates throughout the mesh, often with magnification of the error.
Contrary to what one might expect, setting up proper calculations at a bound-
ary is not necessarily simpler than the general case and is often more
difficult, as many people with computing experience will testify. In fact, it
was inability to understand the boundary cases which prompted this whole study
of gradients for two-dimensional Lagrangian hydrodynamics.

In general, by a boundary we will mean any point for which the general
gradients are not applicable unless special assumptions are made. Examples
could be a free surface, points constrained to move along a particular line or
surface, etc. 1In this section, we will confine ourselves to the latter,
leaving the free surface case to be discussed in the following section.

Suppose we consider a point 0 which is constrained to move along a line
(representing a surface in the cylindrical system) in the r, z plane (Fig,.
20). The most common examples of this are motion along a line, r = constant
(including the z axis), and motion along a line, z = constant (including the r
axis). There are a number of ways this point could be treated, of which three

will be mentioned.

Fig. 20. A boundary point.
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B1 The point 0 can be moved along the line (2+1) -~ 0 - (2-1) with the same
velocity that point & has in that direction. We will say no more about
this method, except to remark that since it prevents the mesh at the
boundary from becoming badly distorted, it can be used as a last resort
if other methods fail.

B2 The zones & + 1/2, & - 1/2 can be reflected across the line (dashed lines

in Fig. 20) to give fictitious ¢ + %, L - %, which have the same pressures

and masses as their real counterparts. However, care must be taken to use

(r + rl+2) = (r + rl) in calculating the forces on the surface 0 - (2+2)

in fictitious zones so that the area over which the pressures act will be
the same as the area of surface 0 ~ &. Care must also be taken with the
masses. This can be a bit confusing. This method has the advantage that
it makes the acceleration normal to the line vanish, as desired.

B3 The gradients can be calculated using only the zones involved. If we use

zones & + 1/2, & +1/2, taking P in (20b), and

-1 = Po—1720 Paur = Priqsa
summing and averaging over only the two zones involved, we get an ac-
celeration which is not necessarily in the desired direction. However, we
can keep only the component which is tangential to the line (2+1) - 0 -
(2-1) and set the normal component equal to zero. This method is exactly
equivalent to B2, because for
IGT, B2 gives twice the force divided by twice the mass; for
IGA, FGI, B2 gives twice the force divided by 4 rather than 2.
We will use B3 because it involves fewer terms and avoids the dif-

ficulties of meddling with the (r + r of the reflected zones. The

2+2)
following sections will contain discussions of some of the boundary cases in
the plane, cylinder, and sphere. We will show that similar assumptions for f,
q, etec., are required to give the same accelerations for boundary points as
for the general points. This reinforces the arguments advanced in the dis-
cussion of the general points and leads to a consistent model, except for FGI,

where some of the assumptions to be made are not clearly evident.
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XIIA. MOVEMENT CONSTRAINED TO A LINE r = CONSTANT
Consider the case (Fig. 21) where point 0 is to slide along the line r =
constant.

r = constant

H
o
N

Fig. 21. Sliding boundary.

P

To use B3 we assume ar = 0 and P, = Then from (20b)

y = Pysrs2r Po = Priq/ae

Fuers2 * Fras2
Myvr72 * Miiqs2

IGT. a=a =

2 =% (Puryo = Praqsallrg - r)(ey + Pl (Mypqyn * Mige) - (82)

IGA. ; =a = (5) (g)

ye172° Me1/2

N
nl—

TR STPP G D [ CNR V7. MU (83)

> 1
FGI. a=a = =
— z 2 My * M0
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1 _
2, 725 (Pugy = Pragsd oy = edleg wm )10, oM ). (80)

The use of 1/L = 1/2 is not obvious for FGI, but it is necessary to
achieve the correct answer in later steps.

We now apply these formulae to the plane problem for the q-mass method,

using masses from (26) and notations of Fig. 12.

IGT-q: (82) becomes

% (pr - P)(£ar,)(2r + £ar.)

q Ar

nle

(or + Ar1)(p'Azu + pAz

: 2)

This agrees with the general case (30) if f

1, as required also in (30).

IGA-q: (83) becomes

L1 (91 - P')(—fAr1)(2r + fAr1) . (91 - P) (fAr1)(2r + fAr1)

1
z 22 o ¢
Q35 p'ar Azu(Zr + Ar1) Q3 pAr1Az2(

: 2r + Ar1)

which agrees with the general case (32) if f = 1, as required also in (32).

FGI-q: (84) becomes

(pr - P)(fAr1)(2r + fAr1)

a =

19
Z 2 2

q % Ar1(2r + Ar1)(p'Azu + pAZZ)

which agrees with (35) for f = 1, as required there also.

Applying (82), (83, (84) to the plane problem for the MAC-0 mass method,
using masses from (39),
IGT-MAC-0. (82) becomes

2 (pr - P) (far

z )(a~+fm1)

1
Ar !

a =
Ar
1 14 1
% (—57) (2r « —5-) > (O'Azu + OAZZ)

Z

which agrees with (40) for f 1/2.
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IGA-MAC-0. (83) becomes

N (pr - P1) (fAr1) (2r + fAr1) . (P1 - P) (fAr1) (2r + fAr1)
2 4 (fAr1) (p Azu pAz

5 5 ) (2r + fAr1) % (fAr1) ( 5

a1
z 2

2

) (er + fAr1)

which agrees with (41) for £ = 1/2.

FGI-MAC-0. (84) becomes, using half of M's from (39) (see Fig. 15¢),

(pr - P) (far, ) (or + fAr1)

1

] (£ar.) (2r + £ar.) % (o' Az, + p Az

a_ = T
22

1
Z 2

3
5)
which agrees with (42) for f = 1/2.

The general conclusion for the plane problem is that boundary cases
derived by B3 for motion along a line r = constant give exact agreement of
accelerations with the general case under the same assumptions for f, q, etec.,
for both the q method and the MAC-0 method.

Let us now apply (82), (83), (84) to the spherical problem for motion of
the boundary points along the z axis. We will use notation of Fig. 17 with

a = 0 and zones 2+1/2, 3+1/2 omitted. Using the B3 boundary method, PM x=

Pye1720 P> =Py 4/, and a = 0. Equations (82), (83), (8Y4) are still ap-

plicable except now r = 0,

For the g-mass method, with f = 1, we get from (60) and (57)

Aa1 Aa1
r1 - r=r+ r1 = 2R cos - sin 5
Aa Ao
2 1 3_.3 .2 1
M2 =3P 3 (R2 R®) 2 sin —~ cos® —-
Ao Aa
=2 1 (g3 .33 2% 2%
My1/2 =3 P 3 (R Ru) 2 sin® —— cos® — .

Using these, we get

66



4

IGT-q: From (82)

Aa Aa
% (pr - P) HRZ cos2 —El sin2 —El
a = a =
R z Aa Ao !
2 271 2 M
q % 3 2 sin® —= cos® — [o (3 - Ri) + p(Rg - r3)]

which is identical to ap for the spherical case given by (64).

IGA-q. From (83)

Aa Aa
19 (pr - 2 4in2 1 2 _1
. ., .33 (p P1) RS sin® —= cos” —
R z Ao Ao
82 (53 r3) 5 a1n2 oM 1
Q353 p' (R Ru) 2 sin® —= cos” —
Aa Aa
16 (o _ 2 . 2 A
. 2% (P1 P) 4R® sin —— cos® —-
Aa Aa, ’
$ 2 3_,3 .21 21
Q3 3 p (R2 R ) 2 sin > cos >
which is identical to (66).
FGI-q. From (84)
Aa Aa
14 (o0 - 2 . 25y 1
.. > (p P) 4R° sin 5 cos” —
R ~ "z Ao Ao !
%2 2_1 — 1 1,1(r3 - g3 3_43
q 3 3 2sin” —= cos® — [p'(R Ru) + p(R2 R>) ]

which agrees with (68).

For the MAC-0 method, for the spherical problem along the z axis, we get
from (69) and (72), taking f = 1/2,

Aa1 Aa1
r'01 - r = r'01 + r =R sin T coS8 T
Ao Aa R+ R
_ C28% 3 %2 4
Myprsp = #' g 008" — sin® = [R” - R} (—5—]]
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Aa Ao R + R
- ) 2 1 2 1 *2
M1+1/2 p 3 cos - sin > [R (

* *
Using these with R,, Ru defined as required for the general cases,

IGT-MAC-0. (82) gives

$ (P' - P) R2 sin2 21 cos2 21
a = a =
R 4 Aa Aa R +R R + R !
2 1 1 2
¢ sin? -1 cos® o' [R3 - (—5—)3] « o[ (——2)° - RP]]

which agrees with the general case (75).
IGA-MAC-0. (83) gives

Aa Aa
19 (pr - 2 .21 2 "1
L. .. 2% (p P1)R sin® —= cos® —

R z Aa Ao R +R
2 2 1 3
r 9 - (—2
P' € sin 5 COS > [R (

Aa Aa
10 (o _ oy o2 o2 5% oAb
L33 (P1 P) R® sin 5 cos” —

Ao Aa R +R !

2 2 2
o % sin —El cos 21 [( 5 )3 - R3]

which agrees with (78)
FGI-MAC-0. (84) gives [remembering to use (1/2)M]

Aa Aa
e e - % % (P' - P) R2 sin —El cos2 —El
R 2 Ao Aa R +R R +R !
1 2 1 2 1 2
3% sin® L cos® o' (R - (—5—)3] + o[ (——2)° - R3]}

which agrees with (81).

The general conclusion of the spherical problem is that boundary cases

derived by B3 for motion along the z axis (r = constant) give exact agreement

of accelerations with the general case under the same assumptions for f, q,
etc., for both the q and the MAC-0 mass methods.
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For motion along a line z = constant (for example, the r axis), methods
very similar to those above can be used to show that boundary method B3 gives
accelerations which agree exactly with the general case in the cylindrical and

spherical problems for the same values of f, q, etc.

XIII. FREE SURFACES
By a free surface, we mean any point 0 which lies along a boundary (£-1)
- 0 - (2+1) beyond which there is no material (Fig. 22). Here again, for

deriving the formulae, we could use the reflection type method,

1+

vacuum

0

Fig. 22. Free surface.

B2, in which the fictitious reflected zones are assumed to have zero pressures
and zero masses, or we can use a B3 method, where we use only the zones that
actually exist. The latter gives correct formulae for IGT and IGA but re-
quires the inclusion of an extra factor of 1/2 for FGI. The B2 method gives
correct results provided one uses the definition that the indeterminate 0/0
= 0. We will use method B3.

In a Lagrangian mesh, where mass is confined to initially chosen zones,

there will be no mass flow and hence no momentum flow across a free surface.

Since de§ represents a flow of momentum, the logical assumption would appear

to be that on a free surface P = 0. Thus in Fig., 22, at the free surface we

assume

Ppe1 = 0 Poog =0 . (85)
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Using the general formula (20B) on Fig. 22, taking (85) into account, we get
the formulae for a free surface:

IGT.
F + F
R VB LAV
a = =1 0-P, ., )(z=-2,_ ) +r, .)
M1/ " Yyar s 2 8-1/2 2-1 %=1

* (Poyso = Pyoq o)z - 2)(ry + )

(0 - 2)(ry,, + 1)

+

" Ppars2d (7
S RICRE YR CRNERS [CHRESEY
* (Ppagya = Pyoq dr - r e+ my)

(0= Pp g, dlr=rg e ee) D0 e 0) . (86)

+

2+1/2]

© (0= Pyyy)zgey = 2y )]
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FGI. We

(LR 4
"

Ppats2) (0 = r )l ey )]

(87)

insert an extra factor of 1/2, and use (20b) with assumption (23a)

o] —

ey

Mov1/2) [(Pz+1/2 - P10z - 2)(r, +r)]

- 2)lrgyy + )]

# B + F 7
p-1/2 , “a-1/2 " Tavts2 | Favise
M-/ Mom172 " Movrs2 Mpiqso
$
2
wi— o= p,_.  Jz-2,_)(r+r,_ )]
W g-1/2 -1 -1
¢
2
LGN
$
m—— [(0-P )(z
4M2+1/2 L+1/27 V0 +1
$
ES
k [(0- P,_.,.)(r,_
™,_. - g-1/2/Tg
Iy
2
[(p
BMy_1/0 * Myiy/0) *1/2

- P2—1/2)(r -

r)(r + 1))
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¢
2

+ —=——[(o-rP Jir =r.  J(r+r )]y . (88)
4M£+1/2 L+1/2 L+1 L+1
Application to the Plane Problem, ©
gq-Mass Method. (Refer to Sec. VI.) We use the notation of Fig 12, taking -

zones 3+1/2, 4+1/2 as the real zones and using masses from (26).
IGT-q. Using (86) with 2-1 = 3, & = 4, 2+1 = 1 i

(pr - o)[ar_(2r - far_) + Ar1(2r + fAr1)]

J )

f
% p' Azu[Ar3(2r - Ar3) + Ar1(2r + Ar1)]

We see that, as in the general case, (30), az is independent of r, Ar if

f = 1, in which case

if q = 1/2. This approaches the proper limit for a free surface as compared
to (30) for a general point.

IGA-q. Using (87) with PN = P!

2 (pr - 0) rar_(2r - £ar.)
a = f(o) + K 2 3 3° .

2q % p! AP3AZH(2P - AP3) 2q % p' Ar1Azu(2r + Ar1)

% (pr - 0) fAr1(2r + fAr1)

Thus a, is independent of r, Ar if f = 1, in which case, for q = 1/2

2 - (pr - o)1 +1) _(p-0)
z ZQp'Azu

AZ
p' 4
2

approaches the proper limit for a free surface.

FGI-q. Using (88) if f = 1, q = 1/4 as in the general case
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$(pr - 0) rar(2r - £ar.) 2 (P - 0) far,(2r + far,)
> ? > 2 3 3 2 1 1
a=1i(0) + k 3 + 3 .
1 - 1
49 3 p Ar3Azu(2r Ar3) 4q 3 o Ar1Azu(2r + Ar1)
whence az is independent of r, Ar if £ = 1 so0 that
> > > (pr = 0)(1 + 1)
a=1(0) + k [ T p'AZu ] .
1 P' - 0 . -
If q = 3 8, = iz gives the proper limit for a free surface.
p' —
2

MAC-0 MASS METHOD. (Refer to Sec. VII.) Again using Fig. 12, but masses from

(39), omitting the details, we get agreement with the general case. For

example, to have az independent of r, Ar, it is necessary to take f = 1/2.

The results are

IGT-MAC-0. (86), with f = 1/2, becomes

1T -
; = az = E__KEQ’ which approaches the proper limit.
y

e
P2

IGA-MAC-0. (87), with f = 1/2, becomes

(P' - 0)(1 + 1) _ (P - 0)
Azu Azu

pl__ !

N
n|—

FGI-MAC-0. (88), with f = 1/2, and as customary using (1/2)M from (39)

> 1 (P =0)J(1+1) (P - o)

a = a -_— .
z y Azu Azu
Pt N

Cylindrical Problem, Similar derivations can be carried through for the

cylindrical problem, using Fig. 16 and masses from (43) and (50). Taking
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£ = 4 in Fig. 16 and applying (86), (87), and (88), one gets a, = 0 and an
expression for ar in terms of f for all gradients. As in the general case, it

is found that for the q-mass method, it is necessary to take f = 1 and q =

172, 1/2, 1/4 for the three gradients to get the proper limiting case. For .
the MAC-0 mass method, it is necessary to take f = 1/2 in all gradients and

again to use (1/2)M in FGI.

Spherical Problem. Referring to Secs. X and XI, Figs. 17 and 19, we use only -

points & = 3, 4, 1 and assume the two outer zones are not present. Again we

use P = P', so (86), (87), and (88) simplify a great deal.

3¢1/72 = Pueq/2

g-Mass Method. Use f = 1 and masses from (57).

IGT-q. With these assumptions (86) gives the same result as (59) with P = 0,

so the conclusions of the general case apply here. Hence, a = 0 only if (63)

holds, and a_ is given by (64) with P = 0 and M omitted in )M,

14172 Youq/2

R
2 | - T - T -
2 = 3R (93 g% ,(pr-0)_p ARo if q = % ]
e (R% - Ry)  ae'aR o'
IGA-q. (87) gives F F in (65) with P, = P_ = 0 th lusi
q. T) gives 341727 Tye1/2 n wi 1 =P3=0, sSo e conclusions

of the general case with P = 0 and M absent apply here. This

1+172, M241/2

means that a, = 0 if the o spacing is uniform and a_ is given by (66),

R
replacing
1¢F _1¢F
TLlgwsly o

aR

_ 3R (P - 0)(1 + 1) L(r-0) P -0
2qp' (83 - &}) @'AR p' -

. §3 in (67) with P = 0, so the general case holds. This

means a, = 0 if the a spacing is equal, and (68) with M

FGI-q. (88) gives F
14172 Mo4q o terms

absent, but using 1/4 )M as in the general case, gives
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2
I B Y
4qp* (R3 - Ri) 2qp'AR  p' -

MAC-0 Mass Method. Use f = 1/2 and masses from (72). For all gradients,

using arguments similar to those above, we get

. PP -0
R v AR
L

XIV. CORNERS

In any mesh there are corner points (Fig. 23) which may fall into a
number of categories or even mixed categories. For example, point 0 may be
such that the side 0 - & may be a free surface or constrained to move along a
fixed line, and the same may be the case for the side 0 - (%+1). Hence, there
may be a mixture of conditions involved in deriving the gradients of point 0.
It would be too lengthy to consider all the possible variations, so we will
just indicate the general procedure, and consider a few special cases for Fig.
23.

S 1+

N

Fig. 23. A corner point.

We will use the general method, B3, applied in the two previous sections so

that our assumptions will be
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(1) For motion along a line § (or %+1), we assume that P (or

g = Poe1/2

p and set the accelerations normal to the line equal to

2+l Pz+1/2)

zero.

(2) For motion along a line % (or %+1) to be a free surface, set Pl =0

(or P, .. = 0). It is interesting to note that IGT and IGA have the

2+1
same general formulae for the case of a single zone. This remark is

obvious, because for IGA we are averaging over only one zone, SO

&~
|y
0
=
™
1

From (20b) applied to Fig. 23, the general formulae are:
IGT and IGA.

—’

F
;= M2+1/2=M1 {f%
,+1/2 L+1/2

[(Py = Pouqspdlz = 2)(r v )
* o™ Prersad (g = 2y g vl

« kg Ly = Py y,p)lry = r)lry +r)

+ (P2+1 - Pl+1/2)(r - r2+1)(r + r2+1)]} . (89)
FGI.
, Foer 1 s s
T2\ Mz Mersz) T By * Fyur)
- ZM_leZ TS0, = Ppyysa)z = 2)(r +0))
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+ (Poyy = Prarsa)(zge = 2)lrg v )]

+ k % [(Pl - -r)(r+r

Pre1s2)(7y z)

Note that (90) is identical to (89) except for the factor 1/2. This factor is
needed in FGI to counteract the use of q = 1/4 instead of q = 1/2 in the g-
mass method and the use of (1/2)M in the MAC-0 mass method.

Use of these formulae for corner points in the plane, cylindrical, and
spherical problems gives the same values for accelerations at a free surface
as the general free surface point, provided the same values of f, q, M, etc.,

are used.

COMMENTS AND ACKNOWLEDGMENTS

All the work described in this report was done in 1961-1967. At that
time the process of writing a report was started but never finished. Although
there are copies of this unpublished work around, I have been asked at this
time to publish a Los Alamos report. Although some work on this subject has
been done by me and others since that time and some of the gradient calcula-
tions have been used in various codes, no attempt is being made to rewrite the
report. Also, only a minor attempt is being made to revise the bibliography.

Much of the algebra and trigonometry of the derivations is quite lengthy,
80 in most places it has been omitted.

All the models discussed have been tried numerically and verify the
analytical conclusions. All the programming for these tests was done by Karl
B. Wallick. All the test problems were run by Karl B. Wallick and Leland R.
Stein.

I would like to thank Eldon J. Linnebur and Dan E. Carroll for suggesting
that I publish these notes as a report and for allowing me the time to do so.
I would also like to thank George N. White, Patrick J. Blewett, Karl B.
Wallick, and S. R. Orr for taking time to discuss two-dimensional Lagrangian
hydrodynamics with me., Karen Knapp did the major part of the typing, which
was very difficult, with assistance from Melissa Norris. Tessa Lippiatt

guided me through the intricacies of getting a set of notes published as a

77



report. Last but not least, I would like to thank Charlotte R. Hobart for
promptly and efficiently retyping the final copy of this report in its en-

tirety as it was necessary to input it into a different computer.

78



APPENDIX A
COMPARISON OF WAT TO INTRGRAL GRADIENTS

WAT, a code for calculating two-dimensional, Lagrangian, compressible

hydrodynamics, devised by Walter Goad9 is described in LAMS 2365. The forces
on a vertex are derived in a very clever manner by calculating the resistance
that the zones about the vertex offer to motion of the vertex, by D'Alembert's
principle. The WAT code combines these forces (and arbitrarily defined
masses) in a manner similar to IGT in (7). The objective here is to take the
WAT gradients and see how they compare with gradients obtained from the in-
tegral methods.

A general point in the mesh is shown in Fig. 1 of LAMS-2365, and is

reproduced below in our notation.

Fig. A-1. The WAT figure.

The acceleration is given as Eq. (2) of the report.

>

> F
; - % .2 L+1/2 , (A-1)
g Mer1/2
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where the M2+1/2 are taken as half the masses of the shaded portions of the

figure, and the forces are given by formulae on pp. 20, 21 of LAMS-2365, which

become in our notation

y
2 »
(Fedyar = & £§1 (Pyrjol(m v rg v rg 0z - 2,)
+ (l"l - P)(Zl+1 - Z) - (r‘2+1 - r‘)(zl - z)]} (A-2) -
and
2m J
(Fz)WAT = 251 [P2+1/2(r sy r2+1)(r£+1 - rl)] . (A-2a)

The angle of revolution about the z axis is 21 rather than the ¢ used in our
work.,

It is obvious from (A-1) that the WAT acceleration is of the type IGT,
where the sum of the forces is divided by the sum of the masses. The general

formulae for forces in IGT is given by (22) as (for revolution through angle

$),

y
(Fligr =3 I (Py_ysn = Paysad(z = 2)(r + vy)
(Prarjo [z =20 e e rg )= (2= 2)(r + rp)]} (A-3)
o !
(F,) o1 = 3 E (Pyt/2 = Pgaqsa)(rg = r)leg )

y
LoArgoqyp Llegyy = edrg  #0) = (o = 2)(ry + P)]} .
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Recall that r in (A-2) are the coordinates of the point out at the

2’ %
end of side % (while ri, zi in (A-3) represent points on side % which are at

some fraction, f, of the way. If we write (A-3a) in terms of

L1}
3
"

r+f (rl -r)

z + f (z, - 2] (A-4)

we can perhaps then compare the two methods. If we look at Fz first (A-3a)

and (A-U4) give

] 2— '2
(F)rer = 2 E (Poersa (rgay® = ry9)]

2

-©-

2. arr +r =-r

=51 dpy ., plertlryg = r)) + 2% (v g+1

= N

v 2rey = r9) ]}

2 2 _ .2

= % % (Poaqsalf” (rg,, %

G I I 0 N | I

(A-5)
Now for this to give the same form as (A-2a), it is necessary that

£2 = 2f - 2¢% or 3f% = 2 .
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Thus to achieve a WAT-like Fz from IGT one must use f = 2/3. Similarly (A-14)

with (A-3) gives

(F)igr = % % Poaryal= flzgy = 2)lar + £lry 4= r)] .

™o

+ f(zl - z)[er + f(rl -r)]}

>
2 - - 2 _
3 E (Porisalzlrgeymmgd = 2 g [rlg =1) v ry ]
ez, [r(E-1) +r ]} . (A-6)
) f '3
Again, (A-2) can be written
(F_) L y P {z(r -r ) -z (2r +r_ )
r’wAT 6 ) L+1/2 +1 '3 L+1 L+1
+ zl[Zr + rl)]} . (A-T)
These agree in form for f = 2/3.
As far as magnitudes of forces are concerned, from both (A-5) and (A-T7T)
we can get for £ = 2/3
286 -9 3 i}
Frer =T 327 Fuar “ 2 3 Fuar - (A-8)
General Conclusion.
If WAT were derived on a basis of angle revolutions ¢ rather than 2w,
then the forces obtained by IGT with f = 2/3 would have the same algebraic 5
form as those derived from WAT, and the magnitude would be larger by a factor b

of 4/3. 1In order to achieve exactly the same accelerations, one should then
use for IGT 4/3 of the mass used by WAT, that is, q' = 2/3 of the masses of
the shaded triangles in Fig. 24.
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Note. I have no knowledge of the boundary cases used, so no analysis has
been done on them. Also, we have done no numerical testing of this gradient.
Further analytic work has shown that these gradients do not give spherical

motion in an equally spaced spherical problem, as would be expected since the
form is IGT.

vy

APPENDIX B
FAMULARO-WHALEN GRADIENTS

In 1976, K. Famular‘o10 and Paul Whalen11 derived in very neat fashion,
using Hamilton's principles, a set of gradients for 2-dimensional Lagrangian
hydrodynamics. They came up with an IGT form of gradient. As might be ex-
pected with IGT, it was possible to prove analytically and numerically that
this gradient does not give spherical motion in a spherical problem with equal

angular spacing. I did not carry this work further.

APPENDIX C
SCHULZ GRADIENTS

I spent a good deal of time trying to write the Schulzu gradients in an
integral form and almost made it, but not quite. However, the Schulz
gradients have been used in many codes for a long time and do give spherical

motion in a spherical problem. I was not able to prove this analytically,

APPENDIX D
ANOTHER PROPOSED GRADIENT (1986)

In this report it was suggested that the ICA-MAC-0 gradient might be a
good one to try. Since that time (1964-1967), I have tried it in some quite

- complicated real problems. It worked fine in many problems, but had dif-

o) A

ficulty in one problem. This I traced back to the fact that one of the four

subzones around a point had a much smaller mass than the other three subzones.
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This meant one of the four ?/M terms in Eq. (8) had a very small denominator,

allowing that term to dominate the gradient calculation.

In the process of writing this report, it has occurred to me that one way to
prevent the above difficulty would be to use the FGI technique of taking zones
in pairs, but in an IGA-MAC-0 type model. This I am calling IGAP-MAC-0

(Integral Gradient Average of Pairs) just for the sake of a name.

This would give an expression of the type of Eq. (9), that is

> >

E Fo-172 * Fosr/2
=1 Ma-172 " Masrs2

(LR 4
[}

1
1 YL

=

L—)
! a, =
Q=

but with the masses as the MAC-0 masses and the forces given by applying (20b)
twice, once to each mass of the pair and adding these expressions together

before dividing by the sum of the masses.
I am quite positive that this technique would eliminate the difficulty and

give good motion in plane, cylindrical, and equi-angular spaced spherical

problems.
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