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INTEGRATEDGRADIENTS: A DERIVATIONOF S~E DIFFERENCEFORMSFOR THE
EQUATIONOF MOTIONFOR COMPRESSIBLEFLOW IN TWO-DIMENSIONALLAGRANGIAN

HYDRODYNAMICS,USINGINTEGRATIONOF PRESSURESOVERSURFACES

by

PhilipL. Browne

ABSTRACT

This paperdescribes a method of deriving gradients
(that is, accelerations)for differencecalculationsof the
equations of motion (momentum conservation) in two-
dimensional Lagrangianmeshesin an r-z coordinatesystem.
The methodbasicallyconsidersvariousways of defining the
masses associatedwith each vertexand methodsof integrat-
ing pressuresover the surfacesof those masses, and then
combiningthem in variousways to conservemomentumtransfer
betweenvertices. Thesegradientsare derivedanalytically
for planes, cylinders, and spheres to test for uniform
motion. All resultsdescribedhave beentestedwith actual
numericalcalculations.

1. INTRODUCTION

Most difference equations are derived by approximating differential

equations. However, the differential equations themselvesare derivedby

takinga smalldiscreteelement,applyingthe physics,and then allowing the
.
P properquantitiesto shrinkto zero.



By integratedgradientswe mean takinga smallelement and applying the

physics to it to get the difference equationdirectly.*This seemslikea

goodapproachbecausewe leaveout the stepof shrinking quantities to zero

(which often drops out terms that are importantas the differenceequations

are appliedover and over again in time-dependentproblems). This is the -

fundamentalapproachusedin thisreport.
.

Thiswork could result in a number of “models” of a fluid in a two- ~

dimensionalLagrangianmesh and the correspondingdifferenceequationsderived

therefrom.We haveworkedmostlywith threemodels,whichare named:

(1) according to the way the pressure integralover a surfaceis obtained,

denotedby

(2)

IGT = integratedgradienttotal,

IGA = integratedgradientaverage,and

FGI = forcegradientI (a name givenby S. R. Orr),and

accordingto the way that the mass associated with a vertex is chosen,

denoted by q = one quarterof the zonemass and MAC-O= themass of subzones

formedby joiningthe midpoints of the sides at the start of the problem.

Averagingthe four cornersgivesthe sameresult.

From a combination of the conceptual and analytic arguments in this
**1”3

reportplus investigationsof rezoning, viscosity,+3
and performancein a

numberof relativelysimpleproblems,we preferthe MAC-Omethodfor choosing

the masses and we lean toward the IGAmethodfor takingpressureintegrals.

Thismodelgives complete, exact conservationof the mass, momentum, and

energy of the model as theyare transferredbetweenadjacentpointson zones

of the mesh,withno overlappingof themassesassociatedwithadjacentpoints

of the mesh. Thus,one knowsexactlywhatmass is associatedwith eachpoint

in the mesh. Thismodelmade possiblethe derivationof a rezoningscheme1-3

with conservationof mass,❑omentum,and energy. It alsomade the derivation

*This conceptgraduallyevolvedduringdiscussionsbetweenthe authorand G. .
N. Whitein October1961. e.

**conductedby the authorandKarl B. Wallick,Groupx-6, M 1964-1965. .
.

tStudiesby the authorand Karl B. Wallick, Group x-6, in 1964-1965 and by
the authorand PatrickJ. Blewett,X-5, in 1966-1967.
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of the accelerationsfor boundarypointsand other special situations rela-

tively straightforward. Finally, numerical calculationswiththismethod

indicatethatit tendsto delaydistortionsand oscillations, especially at

freesurfaces.
. The IGTmethodwill not givesphericalmotionin a sphericalproblemwith

equalangularspacing. It is interestingto note thata mass weightedaverage
.

of the forceterms(F/M)in IGA givesIGT.

with

some

used

The FGI-qmethodhas beenusedfor many yearsby S. R. Orr and co-workers

goodsuccess,but the rezonein that codehad to giveup conservationof

of the quantities.

The IGA-MACOmethodof doingan automaticrezone
1-2

has beensuccessfully

by Karl Wallick and the current author in a largecodewhichusesthe

Schulz4gradientsfor the hydrodynamics.

II. THE INTEGRALMETHOD

In a continuousmediumthe differentialequationof motionfor a compres-

sibleflowwithoutviscosityis givenby

pL-vP , (1)

where

as

s,

p = density

P = pressure

~ s acceleration.$ = timederivativeof the velocity,~, of a particle

one movesalongwith the particle.

If we integrateequation(1)over any volume,V, enclosed by a surface,

we get

(2)

.
1-

where d~ is a vector representinga surfaceelementand has the directionof
.

the outwarddrawnnormal.5 A commonmethodof derivingdifference equations



for numericalwork is to startwiththe differentialequation,(1),or varia-

tions of it, and to approximate the derivatives by differences. As an

alternative, one might begin with an integralform,suchas (2),and try to

work directly toward the difference equations. This we have done. The

methods for derivingintegratedgradientsproposedin thisreportare general -

and can be appliedto many typesof Lagrangianmeshes. However,for a number -

of reasons, this work deals exclusivelywith quadrilateralmeshes,thatis, “

meshesin whicheach zonehas foursidesandfour cornersor vertices. Also,

except for special boundary cases, each vertexis a cornerfor eachof the

four zonessurroundingit. This typeof zoningseemsto havemany advantages:

it is easierto fit the requirementsof the zoningto the logicof a computer;

it is generallyeasierto adaptsucha mesh to the typesof configurationsone

wishes to workwith;and,finally,we havehad more experiencewith thistype

of mesh.6’7 We have done some experimentationwith triangular meshes and

found them generally unsatisfactoryfrom botha computationaland physical

standpoint.

III. BASICDEFINITIONS

Let us assumethatwe have a Lagrangianmesh6,7 imbeddedin a fluid (Fig.

1), and that we are looking at a point O(r,z) where L zoneshavea common

vertex.

f
\

(1+1)’

.
-.

.

Fig. 1. A typicalvertexwith the adjacentzonesand vertices.



Recallthatthispicturerepresentsa figure of revolution about the z

1 axis, which meansthat each zonerepresentsan elementof volumeand thatall

I scalarfunctions,suchas p, P, etc.,are independentof ~. The vectors such

I
as ~ and d; vary directionwith G, but theirmagnitudesremainconstant. We

.
cannottakea revolutionof 2m aboutthe z axis,for then the r component of

1~
the surface integral jPdS would vanish. Hence,we considera revolutionof

smallangle,$, aboutthe z axis,whichproducesa kindof wedge-shapedvolume

as viewed from along the z axis. The forceson the sidesof thiswedgemust

be considered.

We will identify quantities along the boundarybetweenzonesby a sub-

script!?and quantitiesin the zone by subscript1+1/2. The next vertex out

alongside 2 will be identifiedby l’. We assumethatin each zonethereis a

‘iform pressurept+l/2and ‘ensitJ’p~+l/2” Thesequantitiesmay thereforebe

discontinuousacrossthe boundariesbetweenzones.

Now, to findan accelerationat O, let us draw any closed surface, S,

aboutO (dashedlinesin Fig. 1) and considerhow to applythe integralmethod

of (2)to the materialenclosedby S. The most logicalmethod would seem to

be one in whichS wouldbe chosenin sucha way that O wouldbe at the center

8of mass of the materialenclosedby S. Thismethodappearsvery interesting,

but formidable. We have attemptedto devisesuch a schemein one-dimensional

problems,with inconclusiveresultsmainlybecauseof its complexity.

As will be shown later (Theorem8), when the pressurein a zone is con-

sideredto be uniform,the totalsurface integral, ~P~S, over that zone is

independent of the path chosen betweenE, 1+1. Thismeansthatonce having

selectedthe R’s, for differentS havingcenterof mass at O,

Usinga mean valuetypeargument,if
..

that
I
p;dV= 1. JpdV=~oMwecan. v v

we assume that there exists an ~
o such

thensay that



In other words,

thataO is not unique

at O. This implies

sinceM changeswith S, whileC doesnot, it is apparent

even thoughan S is chosen to give the center of mass

that otheradditionalcriteriamightbe neededto select
.

an S whichgivesa usefulvaluefor ~o.

The simpler methodswe have selected(fordealingprimarilywith a quad- -
4

rilateralmesh)

IGT -

IGA -

FG -

The use of

we shallcall:

IntegratedGradient,Total

IntegratedGradient,Average

ForceGradient.

the word gradient in these names is a misnomer for we are

derivingaccelerationsratherthan gradients.However,we continueto use the

namesabovebecausea greatdealof analytic work and computation has been

done usingthisnomenclature.Thesegradientsare herewithdescribed.

Thereare severalcommonprocedureswhich we must carry out in all the

methods. For each zoneor groupof

takenout of the integralso that

. .

zonesabouta vertex,~ in equation(2)is

: (]$+1/2= - s JPdi)/( pdV)E+1,2= $+1/2/Mk+l/2 .
v

(3)

As mentioned before, this is equivalent to making a mean value type

argument. Pointsk (theintersectionsof S with the commonboundariesbetween

zones)and it must be defined. As mentionedearlier,the choice of S inside

the zone will be shown to have no effecton ~L+(1,2)= -
I
Pd$,but it Will

0

.

obviouslyaffectthe valueof ME+1,2=
J
pdV . (4)
v

~+1/2
The pressures,PI

and p&-1/2
k’

alongside L usedin calculating

?=
~
Pd~ for zones!L+l/2and 1-1/2needto be defined.

S must be definedbetweenpoint1, (g+l)in orderto defineML+1,2.

.

(5) r

(6) ‘-

We now brieflydescribethe threegeneraltypesof gradients.
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(IGT) Integrated Gradient, Total. This methodderivesan accelerationfor

pointO froma totalforce on all zones around a point and the total mass

involved,that is,

(7)

(IGA) Integrated Gradient, Average. Thismethodevaluatesan acceleration,

+
a~+l/2’from each zonearounda pointand thenaveragestheseto get the point

acceleration,that is,

(8)

It is interesting that since~L+1,2is reallythe accelerationof the center

ofmassofM ~+1/2’ one could argue for a mass weighted average of the

+
‘ndividuala&+l/2’‘hat‘s’

+
a= \ (M 1/ i (Mg+1,2)1+1/2‘L+l/2 ~=, = ~~1 (~L+1,2)/ ~ (M1+1,2),(8a)

1-1 . !2=1

whichgivesthe accelerationat the centerof mass of the materialenclosedby

s. This is none other than IGT. Since a mass weighted average seems

preferable to an arithmeticaverage,we tendto lean towardIGT as beingmore

intuitivelyappealing. But IGT has its numericaldisadvantages.

(FG) Force Gradient. This method obtains an accelerationfor each pairof

zonesand then averagestheseaccelerations,thatis,

.
1-

.
(9)



UndercertainassumptionsaboutE’, one can obtaina gradientcalledFGI which

was derived by other (nonintegral)methods and was used by S. R. Orr in a

largecode.

There are many

forcesandmassesto

effortsto the three

other, more complicatedways in whichone couldcombine

get otheraccelerationformulae,but we have confinedour -

methodsdescribedabove.

IV. CONVENTIONSAND BASICTHEOREMS

.

When using cylindricalcoordinates(r,G, z) to dealwith a systemwhich

has cylindricalsymmetry,note thatalthoughscalerfunctionsand magnitudes

of vectors are independentof Q, the directionsof the vectorsmay varywith

(3. If one wishesto performintegrationsinvolvingvectorquantities(suchas

~Pd~),thesevariationsin directionshouldbe takenintoaccount. One way to

do this is to writethe vectorsin termsof a set of unitvectors[~1,;l, ~1)

in the cylindricalsystem(Fig.2).

x

Fig. 2. Unit vectorsin the cylindricaland Cartesiansystems.
.
m

The moving unit vectors (~1, ~1, ~1) can then be expressedin termsof .

the fixedunit vectors(~,~, ~) in a Cartesiansystemby

8



‘1
= ? cos e + j sin Q

.

.

.

a
.

.

+
‘1 =

z. (1o)

Since (~,~, ~) have constantmagnitudeand direction in space, they can be

removedfrom the integrals.

As mentionedearlier,the volumeswhichwe considerwill be wedge-shaped

slices produced by rotating the mesh througha smallangle,$, aboutthe z-

axis. If @ is consideredto extendfrom‘Q. to ~. (Fig.2), it will be useful

to recallthe relations

J cos@d~=2sinQo = 2CIO=41
-Q.

‘o

/
sinQdO= O

-Q.

c1ro

J de=2eo=$l .
-.
00

(11)

Theorem 1. If a function, P(r, z), and any curve,(i,!L+I),are definedin

the r, z (?,~) plane (Fig.3), thenthe surfaceintegralof P over the sur-

face formed by rotatingcurve (L,!l+l)throughan angle@ (-O.,Qo) aboutthe

z-axisis givenby the line integrals

(12)

9



r

Fig. 3. Any curve (L,!t+l)whichis rotatedthroughangle$ to givea surface

Proof: At any pointon the surfaceformed

d; =; , (rd~dz)+ ~1 (rdedr) ,

so

g+l e 1+1

J H
@.
H 1+

Pd~ = ;, (PrdQdz)+ ‘1 (PrdGdr) .
k k-. --

00 00
g+l

Substitutingfrom (10)and removing~, ~, ~, fromthe integrals,

‘o 1
+$

J/
PrdOdr .

1#1-.
00

Now, sinceP, r, dz, dr, are independentof Q, we can remove them from the O -

integrals,giving
.

.

10
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‘~+l -e.

Now,using (11) we get (12).

From now on, as mentionedin connectionwith Fig. 1, we will assumethat

P is constantin any zone,so we may removeP from the integralsand get from

Theorem1

Theorem2:

Thissays that

followsfrom k

Theorem3. If

(13)

the ~ (or z) integral is independent of the path the curve

to L+l,but the same is not truefor the ? (orr) integral.

the path from L to !Z+lis a straightline,then (13)becomes

1+1

. The proofis straightforwardif one takesr = az + b and evaluates
I

rdz.
R

. Consider any triangle In the r, z (1,F) plane,withthe verticesdenotedO,

1, !2+1as one goesaroundthe trianglein a clockwisedirection(Fig.4).

11



r

Theorem4. The area

A=
~
drdz = $

A

.

.

Fig. 4. A triangularzone.

of the triangleis givenby

(rzg- rgz) + (rz~fl+l- rfi+lzk)+ (rl+lz- rz~+l)1

= + [(zL+l- z) (rL- r) - (21- z) (rl+l- r)] . (15)

The clockwise conventionmust be followedfor the formulaein (15)to givea

positivevaluefor A. [A counter-clockwiseconvention would give negative

areaswith (15).] The proofis omitted.

Now considerthe triangleof Fig. 4 to be rotatedthroughan angle (from

‘QO to O.) aboutthe z-axisto forma wedge-shapedvolumecenteredaboutthe ~

(orr) axis (Fig.5).

.
.

.

12
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.

ckS(-&J

.

.

Theorem5.

v=;

The volume

A@ ,

;/

Fig. 5. End viewof a wedge.

of thiswedgeis givenby

(16)

where

r = centroidof triangle= ~ (rO+ rfl+ rg+l) .

Proofomitted.

Theorem 6. The sum of the surface integrals over bothsidesof the wedge

formedby the rotatedtriangle(forsmall80 ) is givenby

(17)

whereA, the area of the triangle,is givenby (15).



Proof. From Fig. 5 it is obvious that the ~ components of the integrals

canceland thatthe ? componentsadd to give

Id; = - ?2 (A sin QO) =
+

Now,underthe assumptionof constantP in any zone,it is apparent that

the surface integrals over the side faces of the wedgeand the surfacein-

tegralover the surfaceformedby rotatingthe line 2, !?+1willhave the same

pressure, so it is possibleto add theseintegrals.An interestingfactcan

be provedaboutthissum, namelythat it is independentof the path from !?to

~+1.

q#+l

/
Firstlet us derivethe formulafor this sum, which we denote by da

!2

(whichis not the sameas
I
d~).

4

+ ‘g+l ‘~+11 + ~ Q(r2- r~+l)2!l . (18)

Proof. From (14)and (15) substitutedin (17).

.

.
.

(19)

14



Collectingtermsand simplifying,we get (18).

.

.

●

~+1 ~+1

‘heorem’oJ d’=J“+Jd~ is independentof the pathfrom !?to !,+1.

Proof. Consideringthe triangle(O,i, L+l), let us join the points1 to k+1

by a seriesof line segments(j, j+1) wherej = O, 1, 2, ..., J . (Fig. 6. )
Now join eachj to O, to form a seriesof triangles(O,j, j+l).

z

Fig. 6. Approximationof any curvek, g+l by a seriesof line Sf?gM(XItS

betweenj = O, 1, 2, ..., J.

ApplyingTheorem7 to eachof thesetrianglesand summing,we have

j.+1

I J
j+l

J
“$ =

~i
“5 = i!$ ~ [-zjrj - r(zj - Zj+l)

1 j=0 j j=0

z (r. - rj) + z
J +1 j+l ‘j+l 1+ 1 ~ ~ (r:- r~+l) .

j =()

Becauseof cancellationof quantitiesfrom adjacenttriangles,we have

15



~+1

From this expression,we see that
I

d~ dependsonly on coordinatesof points
k .

0, L, !Z.+10Hence,if we let J + =we can approximateany curvebetweenk, L+l -

and thereforeconcludethatthe valueof the integral is independent of the -

path.

One can illustratethistheoremgeometrically. The ~ term is given by
the differenceof two integrals,(13)and (15).

1+1

J -j drdz = (AreaundercurveL, R.+1)

- (Areaenclosedby O, 1, L+l) .

From Fig. 7, we see that thisdifferenceremainsconstantas the pathbetween

(L, !t+l) changes, for as the pathis changedbothareasare beingchangedby

the same

in (13).

amount. For the ~ term,independenceof pathhas alreadybeen shown

+1

.
Fig. 7. Illustrationof Theorem8.
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.

.

.

.

Now considerthe totalforceon a typicalzoneof

r

Fig. 1 (seeFig. 8).

z
Fig. 8. The forceson a typicalzone.

Theorem 9. Given points ~, ~+1alongthe boundaries,andany path s in the

zonejoiningthesepoints, and assuming constant pressures P
g+l/2

,P
~+1/2

L ~+1

acting along these boundaries, and P~+1/2 actingwithinthe zone,then the

totalforceactingon the materialenclosedby S and the boundaries is given

by

-%+14p+j+
This can be writtenout in detail,using (14)and (18),to give

F~+1/2= ‘+1’2 (z - zt)(r+ rE) + P~~~’2(zR+l- z)(rR+l+ r)f $ {PA

+ ‘L+l/2[ZL‘~ + r(z~ - z~+,)+ z(r~+,- rLl - z~+, rL+ll}

(20)

17



By

+ t ~ [p~+”2(rt - r)(r + rL) + P~~~’2 (r - rg+l)(r + r J]

+ PL+V2 (r1+1 - rl)(rk+l+ rR) . (20a)

algebraicmanipulationthiscan be rewritten

= r : [(p~+lizk - PL+1,2)(Z- zl)(r+ rl)

~+1/2
+ (P~+1 - pg+l/2)(zL+l- z)(rl+l+ r)]

+ i! ; [(pfl+l/z
& - pi+,,#rfl - r)(r~+ r)

+ (P
~+1/2
g+l - pk+l/2)(r- rk+l)(r+ rL+l)] . (20b)

.

.

This is the fundamentalexpressionusedto deriveall gradients.

It mightbe well to add a word about conservationof momentum. Since

fPd~ is a momentum flux term, to conservethemomentumflowbetweentwo ad-

jacentzones,say t+l/2and t-1/2,thenit is necessaryto requirethat

Sincethe pressuresare assumedconstantalong (O,i), thisgives

.

(21) .

We will use this principle to assure conservationof momentumand simplify

notation.

18
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We shall now determinehow the generalformulae(20a,20b)simplifyfor

the variousgradients.
.

IGT: Using (20b)and (21)in the expressionof ~ ~~=1 ~+1/,2in (7),we get

+ (PIt1 - pL+,,2)@+, - z)(r~+,+ ‘)1

+ (P~+1 - P1+1,2)(r- rl+l)(r+ rk+l)] ,

in whichwe get cancellationof termsinvolvingPk so that

j, ij+1,2= ~: ~ [(Pk-1/2- P1+1,2)(z- zg)(r+ rk)]
!t=l

r

+ ~ ; i [(PL-1,2- pL+1,2)(ro-r)(r, +r)] . (22)
!?,=1

IGA: Thereis no simplification

FGI: Referringto (9)and using

.

1-
+ (P~+1/2- ‘&l/2)(zL

possiblehere.

(20b)and (21)

& J.,

see (8).

9 we get with simplification,

+ (P~+1 - PL+,,2)(ZL+,- Z)(rk+,+ ‘)1

19



+ 2$[(pi-l - pL-1,21(rL-1- r)(rt-l + r)

+ (P1-1/2 - pg+,,2)(ri- r)(rfl+ r)

.

+ (Pl+l- P~+1,2)(r- rg+l)(r+ r%+,)] . (23)

The formulae for FGI can be obtainedfrom (23)by settingthe firstand last

term in each componentequalto zero. This is equivalentto the assumption

(rk-l, ZL-l) = (r,z) and (rk+l, Zk+l)= (r,z) , (23a)

whichgivesfor FGI

#l =1* (PE+1,2-P !&l/2)(zk-z)(rk +r)

(23b)

The assumption(23b)is quiteinteresting.It means,for example,thatto get

$
L-1/2

used in ~
E’

one uses a path O to i completely in %-1/2.

Correspondingly,to get ~L_1,2used in ~
L-1’ one uses a path 2-1 to O com-

pletely in %-1/2. Since those pathshave differentend points,momentumis

not conservedbetweenthesetwo jP& (Theorem8).

L-1 ,

four

from

If we take a longer view and considerthe SPd~for all four verticesO,

In, k of a zone,we see thatmomentumcan be conserved in total if all

paths pass througha commonpoint01 insidethe zone,1.-l/2,and extend

vertexto vertex.

The momentumfluxwithinthe zonefor eachof the four cornersis
.

.

20



.

‘: p(f’d~+fd~+p(~’d~+f”,3)
The net momentumflux,or totalof all four expressions,is zero,so momentum

is conserved among al1 four vertices for that zone. However,momentumis

transferreddiagonallyas wellas nondiagonally.This is not necessarilygood

or bad, but it makes visualizationmore difficult.The commonpoint O J does

not appearin the formula (23a) for the forces,so it., along With the paths ,

is of use only in definingthe massesused.

v. ANALYTICALMETHODSFOR MORE SPECIFICDEFINITIONOF INTEGRATEDGRADIENTS

Since the ultimateobjectivein

gradientsdefinedin Sec. II is their

cal situations, it is true that

experimentalobservationsis probably

derivingthe varioustypesof integrated

use in numericalcalculationsof physi-

comparison of numerical results with

the besttestof theirvalidity. Indeed

this is the method which led to adoption of FGI for the S. R. Orr code.

However,thereare certainidealizedsituations(planes,cylinders, spheres )

in whichone wouldlike differencemethodsto givereasonablycorrectresults.

In the nextfew sections,we deal analytically with such motions. It has

turned out that to achieve the desired behavior in some of these simple

problems,certainconsistentdefinitionsof M, S, L, etc.,must be made. Al1

of the followingdiscussionwi11 pertainto quadrilateralmeshes. Somesimple

problemsare:

A Plane Problem. This is a problem in which the materialis dividedinto

planelayersthatare parallelto the r-axis,with uniformpressure , density,

etc., in each layer. In otherwords,thesequantitieshave no r dependence.

The naturalmesh to selectis rectangular(Fig.9). For such a problem, one

21



would hope that the accelerationsin the ?(r)directionvanishand thatac-

celerationsin the ~(z)directionbe independentof r.

A Cylindrical Problem. This is a problem in which there are cylindrical

layersof materialaboutthe z-axisfor whichP, p, etc.,are constantin each

layer (that is, independentof z). The naturalmesh for thistypeof problem

is alsorectangular(Fig.10). For thissituationone would expect that the .

accelerations in the ~(z)directionvanishand that the accelerationsin the

~(r)directionbe independentof z.

1

ElP:Q4 P,Q

4 0 2

P:Q’ P,Q

3

k

Fig. 9. A planeproblem.

1

ElP,Q P,Q

4
0 2

P:Q’ fQ’

3

i

z
Ii

Fig. 10. A cylindricalproblem.

A SphericalProblem. In thisproblem,thematerialis dividedinto spherical

shells centered about the origin, with P, p, etc.,constantfor eachshell

(thatis, independentof a). A natural mesh for this type of problem is

quadrilateral(Fig.11).
.
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.

.

I

.

r

4

Q-

Z

Fig. 11. A sphericalproblem.

For this problem, one would expect that the tangential (a) accelerations

vanish,whilethe radial(R)accelerationsbe independentof a.

Limit Test. Another test to applyto the integratedgradientsin difference

form is to approximatethe variousquantities(P,p, etc.) in the difference

equationsby a TaylorSeriesexpansionaboutthe pointO, neglecthigherorder

termsand see if ‘L- –..-.A,—.-L ,.-- L,- . — .— -— — .- J , “ -?! . .- ...-, ., a----- m–
~,– .+

typeof system.

me graalen~approachesme properalxrerenualxorm1or ma~

In otherwords,for:

planeproblem

cylindricalproblem

sphericalproblem

1 aP
a +O,a +-——r z P az

I apa +--—, a +0r par z

~- I ap
aR +0.

p 3R’ au
(24)

VI. THE PLANEPROBLEM- q-MASSMETHOD

As mentionedin (4)through(6),choicesof E and S (whichdefineM) must

be made. From the standpoint of computation, it is very advantageousto

‘efineMfi+l/2as a constantfraction,q, of the mass, mg+l/2’ of the whole

zonerotatedthroughangle~, that is,

(25)
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This means that M need be calculated only once, at the start of the

problem,for each zone. We havenamedthisgeneralapproach ‘the q method.w

Based on this generalassumption,the planeproblemcan be used to indicatea

logicalchoicefor

(orothermethods)

ing work,detailed

k. For the planeproblem(Fig.12),we can use Theorem 5

to get the massesML+1,2. (Here,as in much of the follow- -

algebraicstepswill be omittedto conservespace.) -

q ~ p Arl AZ2 ‘2r
%+1/2 = q$m1+1\2= + Arl)

%+’

M3+’

/2 = q0m2+1/2= q$pAr3Az2 (2r- Ar3)

/2 = cU@3+1/2= q $ p~ Ar3Az4 (2r-Ar3)

‘4+1/2= q$m4+,/2= q$p! Arl AZ4 (2r+ Arl)

~~1 ‘2+(1/2)=
q; IArl(2r + Arl) + Ar3 (2r- Ar3)] (p!Az4+ pAz2) .

(26)

r+4ir,

r-Ar3

Z-iAZ., Z-AZ1

.

Fig. 12. The q-methodin a planeproblem.
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To determine1, the intersectionof S with the commonboundary between zones

!t-1/2,k+l/2 (Fig. 1), assume !4to be located at some fraction,f, of the

totaldistancefrom O out to the next vertex. For example,for k =1,

‘1 ‘r f— = or rrt-r 1
= r + fAr

1
1

‘1
. z + fAz

1“

Thereis one more logicalassumptionwe canmake

pl+l/2= p2+l/2= p and ‘3+1/2= ‘4+1/2= ‘“ ‘t

definePi so that

P2= P, P4 =P’, P, =P
3“

Thiswill simplifymany of the formulae.

We now considerthe variousgradients:

IGT-q: Applying(22)to Fig. 12, in conjunction

4
~ ;R+1,2= 1 ~ [(P’- P)(0)(r+ r,) + O +
!.=1

+iq [(p?- p)(fAr1)(2r+ fArl)+ o + (p-

(27)

for the planeproblem. Since

seemsimperativethatherewe

(28)

with (27).

(P- P’)(0)(r+ r3) + 0]

P’)(-fAr3)(2r- fAr3)+ O]

= i(o) + i ; (p? - p)f[Ar1[2r+ fArl)+ Ar3(2r- fAr3)] ● (29)

Substituting(29),(26)in (7) ,

+

LIF
~ +~(pl -I(O)+ k p)f[Ar1(2r+ fArl)+ Ar3(2r- fAr3)l~+1/,2

~M =
.

&+l/2 q ~ (P’AZ4+ PAz2)[Ar1(2r+ Arl) + Ar3 (2r- Ar3)]

From thiswe see thatar = O, as it shouldin a planeproblemand thataz will

be independentof r and Ar if f = 1. In this case

25



(p? - p)
a=
z q (p’Az4+ pAz2J “

Applyingthe limittest (24),and droppingout secondorderterms

AZ2
(P.- ,x 3.) - (p.+ g ~)

a= az 2
z

q [(PO- ~~) AZ4 + (PO+ ~ ~) AZ2]

(30)

_ ~ + (Az4+ AZ2)
a+z q P. (Az4+ Az s

2J

or

1 ap I apa+-——=--—z 2qPo a. ifq=~ .
P az

The conclusionis thatfor IGT-qto work properlyin a plane problem, it is

necessaryto take: q = 1/2,f = 1.

u’ Using (27),(28)in (20b)for Fig. 12,

F1+1/2= :(0) + t g [(P1- P)(fAr1)(2r+ fArl]+ 01

$2+1/2= ~(o)+ ~ ~ [0 + (p3- P)(fAr3)(2r- fAr3)]

F3+1/2 = ~(o) + ~ !j [(P3 - P’)(-fAr3)(2r- fAr3)+ 0]

F 1(0) + i $ [0 + (p, - p~)(-fAr1)(2r+ fArl)] “4+1/2=

Substitutetheseand (26)in (8)using (28),

26
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-)
3g+l/2 {(P, -P P’ -Pl

)[~

f(2r + fArl)
:1—=a=— i(o)+l ‘

Ml+1/2 q PAz2 + p’Az4 2r + Arl)

f(2r - fAr3)
+

. (2r- Ar 1}3J “

.
Fromthis expression,we see thatar = O and a= is independentof r and Ar if—

f = 1. In this case,

1
a

(

‘1 - p “ - ‘1.——
2q

)

(32)
z pAz2 + p’Az4 ‘

with PI as yet undefined. We have arbitrarily chosenthe simplestway to

definePg

P& =

whichagreeswith (28),namely

‘k-l/2+ pi+l/2or p p! +p=— .
2 1 2 (33)

This givesfor (32)

for whichthe limittestgives (forequalAz)

(p! - pa=—z 4q

The conclusionis

)( )2 ~-~~
K

if q = 1/2 .
P az

thatfor IGA-qto give propermotionin a plane problem it

is best to use q = 1/2,f = 1.

FGI-q. Substituting(27), (28)in (23b)for Fig. 12
.

~1 = I(O) + ~ $ [(P’- P)(fArl)(2r + fArl)]
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;2 = 1(0) + i $ (o)

33 = Y(O) + ~ $ [(P- P’)(-fAr3)(2r- fAr3)]

FU=:(o)+ t%(o) .

Now using (34)with (26)in (9),

.

.

(34) --

t

[[

(P’- p)(fAr1)(2r+ fArl) (P’- P)(fAr3)(2r- fAr3)
:=1(0) +—4q Arl 2r +Ar

IJ~p’Az4
+pAz +

2J
Ar (2r- Ar

3 3J[
P’Az4+ pAZ2)l

=E {OJ
P’ -P

4q(p’Azq + PAZ2 [

f(2r + fArl) f(2r- fAr3)

2r + Ar + 2r - &1 D3“

From this

if f = 1,

a=z

expression,we

in whichcase

P’ - P

see thatam = O and a- will be independent of r, Ar

2q(p’Az4+ pAz21 “ (35)

Applyingthe limittest,

1 ~=.l~ ifq.1/4 .a+-—z 4qp az p az

Our conclusion is that for FGI-qto work properlyin the planeproblemit is

bestto use f = 1, q = 1/4.

Summary and Discussion. In the planeproblem,all threemethods(IGT,IGA,

and FGI)givear = O as desired. It is possibleto achieveaz independentof
.

r and Ar if we takef = 1 for all threegradients. Then the valueq required

1 3Pto givea properlimit,namely- - —, for the gradientsis:
.

p az
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IGT-q q = 1/2

IGA-q q = 1/2

FG1-q q = 1/4

Thesevaluesof f andq leadto a physicalmodelfor each gradient. By

this we mean a physical visualizationof the mass M associatedwith each
.

vertexand a surfaceS whichenclosesit. With thismodel it is possible to

considerhow momentumis transferredfrom one pointto anotherby the gradient

in question.

In IGT-q where f = 1, q = 1/2,we have a model (Fig.13a)in whichL is

takenout to the next vertexalongthe side (becausef = 1) and S is drawn in

any way between the proper end pointsso as to enclosehalf themass of the

zone (sinceq = 1/2). [Recallthat$Pd~is independentof the shape of S in

the zone (Theorem 8), so any curvebetweenthe properend pointson sides!2,

~+1 that encloses the proper mass will serve as a representation.] Similarly,

for IGA-q (Fig. 13b) we show surfacesS, whichextendfrom the end pointsof

the sides (f = 1) and enclosehalf the mass of the zones (q = 1/2). FGI-q is

less obvious(Fig.13c). Thismethod,accordingto (9),adds

r

z

Fig. 13. Modelsfor the variousq-gradients.
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surfaceintegralsfromtwo adjacentzones,and thenby (23a)bringsin the end

pointsat L-1 and !t+lto pointO, therebygivingwhatmay be representedby a

diamond-shapedmass straddlingeachof the foursides. Thisdiamond-shaped

mass extendsout to the end of the side (f = 1) and enclosesone-fourthof the

mass of each zone (q = 1/4).

It is interestingand instructiveto considerhow thesemodels(andhence

the correspondingequations)handlethe conservationof momentum. SincerPd$

representsa rate of transferof momentum,we can analyzemomentum conserva-

tion in a mesh by considering the relationshipsof the jPd~ of adjacent

vertices. For the q method,in general,momentum is conserved between ver-

tices of points which diagonally oppose each other across a zone. For

2

example,in IGT-q(Fig.13a)whenworkingon pointO, one uses
I

Pd~ for zone
1

1

1+1/2. Similarly, when working on point5, one uses
I

Pd~ for zone 1+1/2.
2

Sincethe endpoints of two integrals are the same because f = 1, the two

integrals will be equal in magnitudebut oppositein sign,whichmeansthat

one pointgains the momentum that the other loses, and hence momentum is

conserved in the problemas a whole. For IGA-qand FGI-q,similararguments

hold. In addition,by similarargumentsthere is momentum conservation be-

tweenthe adjacentM2+1,2usedwithinthesegradients.

One objectionto all the q methods is that the masses over which one

integrates for adjacent points overlapeachother. Thisobjectiondoesnot

seemvitalfor the gradients, but it leads to almost insurmountabledif-

ficulties when one tries to use the models for accomplishingrezoningor

1,2,3
viscosity. In the nextsection,we proposea methodfor definingmasses

whichdoesnot have thisoverlappingof masses.

VII. THE PLANEPROBLEM,MAC-OMASSMETHOD(Midpoint,AverageCentroidMethod)

Consider zone 1+1/2 of Fig. 12, and drawany set of curvesjoiningthe

midpointsof adjacentsides(Fig.14a). These curves define surfaces such

that there will be completeconservationof momentumamongthe fourvertices

of thiszonebecauseof jPd~. This is because$Pd$ is independentof the path

30
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(Theorem 8), and hencethe integralaboutthe closedpathvanishes. Next,one

may vary thesecurvesto definealmostany masses desired without affecting

the momentumconservation.However,we wish to use the totalmass of the zone

and at the same timeavoidthe overlappingof themassesassociated with the
. vertices. One simpleway to

. r

1

El
5

,.’\
‘..’ .,

.’ ‘...
.“ -----./ ------/*. ,
‘. :‘.

‘x./**I
0 2

1 5

E

..- r+Ar,
t

.:+!.--.- --
l’-

/’
I
I

0 ,i-r, I
z Z’+AZ2

(a) (b)

Fig. 14. The MAC-Omethod.

accomplishthis is to selectsome point8 (r1+1,2,Z1+1,2) within the zone and

make all the

assume that

(Fig.14b).

curves pass through this point. For our

the curves joining the midpointsto point

If we definepoint8 withthe two parameters

discussion we will

8 are straightlines

g, h, by

‘1+1/2. r + gAr
1 ‘1+1/2. z + hAz

2’

then the partof the mass in zone 1+1/2which is associated with point O is

givenby Theorem5 as

.1+1,2=p,{~q)(Az2)l[r+>(,+g]+[,(,)~Arl’j’j(+%]

‘p’Arfz2[r(h+g)+3:+hg+g2)]
31



In definingthe model in Fig. 14b, we have used the midpoints of the

sides, which means f = 1/2. Lookingat the expressionsfor l?1+1,2in (29),

(31), (34), we see that they all have factors like [2r + (Arl)/2] = 2[r

+ (Arl)/4], etc. To achieve

‘n %+1/2” The obviousway to

g=

For this

tionsof

(a)

(b)

h = 1/2

independenceof r, we alsowant similarfactors

get termslike this is to take

(36)

simplerectangularzone thereare a number of possible interpreta-

(36). For example,we coulddefinepoint8 as

The intersectionof the diagonals

The averagecentroidof the zone,

of the zone

thatis,

‘1+1/2 = + (r + r, + r5 + r2) ‘1+1/2
S;(Z+ 21 + 25+ Z2) (37)

(c) The real centroid of the zone,thatis, dividingthe zone intotwo

trianglesdenotedby A, B, and calculating(proofomitted)

~A AA -B B
1+1/2 1+1/2+ ‘1+1/2%+1/2

‘1+1/2= AA B
1+1/2+ %+1/2

(38)

-A AA -B
‘1+1/2 1+1/2+ ‘1+1/2AB1+1/2

‘1+1/2= A~+1,2+ A~+l/2
s

whereAA meansthe areaof triangleA and AB meansthe areaof triangleB.

Note that the centroidsare not the same quantities as the centers of

mass for the wedge-shaped volume formed by the rotation throughangle$.

Theremay be otherinterpretationsof (36). In later sections, when dis-

cussing other types of problems, it will be shownthatthe averagecentroid

method,(37),seemspreferableto use in general.

32
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1f ‘e calculateMk+l/2‘or ‘ig” 14 underassumptions(36),(37),

Q‘1+1/2= p 2
A7A’2 (2r + >)

4! ‘r3Az2~2r- ~
%+1/2 = p .2 4 2)

!4! ‘r3Az4 [2r ‘r3)
‘3+1/2 = p 2 4 2

IQ ‘rlAz4
‘4+1/2=P 2 4 (2r+ ~) . (39)

We now apply (39)to the variousgradients.

IGT. Usingf = 1/2 in (29),and (39),

+

:-lF r(o) + t+ (pf- P) ~ IArl(2r+ ~) s1+1/2 + Ar (2r- >)1.—
Ar,~ 1 (PAZ2+ “AZ4~ Mk+1,2 z ~ ) IArl(2r+ ~) + Ar3 (2r- _ “A;3) ]

whence

a = O az = P’ - P 1 ap
r

; (P’AZ4+ PAz2)+ - F % ‘
(40)

whichis independentof r and Ar.

IGA. Usingf = 1/2 in (31),and (39),

33



Thus ar = O and using (28),

‘1 ‘p “ - ‘1a=
z pAz2 + ptAz4

and (33)

(

P’ -P 1 +a=
z 2 pAz2

(P’- p3) + (p!- p,)
+

P’AZ ~ 1.
thatis, PI = P

3’

(41)

FGI. In this instance,we must use (1/2) ML+1,2 from (39) to achieve the

proper limit. At first this seems strange,but if we visualizethe masses

thatare neededfor the lth term in FGI (Fig.15), we see that to avoid Over-

lapping of the masses used, it is necessary to use (1/2)ML-1,2and (1/2)

ML+l/2”Now, we use f = 1/2 in (34) and (1/2)Mfrom (39). This gives

4

1

24

(a) IGT-MA~-O

-

I 1
3

(b) IGA-NWC-O

24

1

L 1

(c)FG1-MA~-O

2

z .

Fig. 15. Representationof MAC-Omassesin all threegradients. .
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.

.

-b

+ $
a !l-1/2‘F&+l/2
‘+ ~ ML-1,2+MR+1,2

i+;; (P, -p)
= :(0) +

[

(P’- P

ill!.1
+

224 PAz2+ p’Az4 pAz2 ‘1+pf&“
4

Soar=Oand

Z(pt -
a-= P) ● _~ap— . (42)

L
pAz2+ p’Az

—.

4 P az

Summary. Here

masses,M1+1/2’

1/2) to the centroidof the zone,all threemethodsgive an a independentofz

again,a = O regardlessof the assumptions.If we definether

as thoseenclosedby joiningthe midpointsof the sides (f =

r, Ar. 1 apThisaz approachesthe properlimit,- - —, as the spacing becomes
P az

small. (BY the nature Of the definitionof FGI,for it we must use half the

massesof the subzones.)

All methods conservemomentumbetweenadjacentpointsratherthanmerely

diagonallyas in the q-methodfor definingmasses. Thisseemsmore physically

realistic. In addition,thismethodalso usesthe more appealingconceptof

havingno overlappingof the massesbetweenpointsor withinpointsin setting

up the definitions.
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VIII. THE CYLINDRICALPROBLEM-

For a typicalvertexin the

r

q-MASSMETHOD

cylindricalproblem(Fig.16),

2 r+Ar2

P,Q

1 0 3

P:Q’“

z-Az, 4 r-Ar4
Z+AZ3

L
z

Fig. 16. The q-methodin a cylindricalproblem.

use of theorem5 givesthe massesof the zonesas

M1+V2= q$P (1/2)(Az1Ar2)(2r+ Ar2)

%+1/2= q@P (1/2)(Az3Ar2)(2r + Ar2)

‘3+1/2 = WP’ [1/2)(Az3Ar4)(2r - Ar4)

‘4+1/2 = Wp’ (1/2)(Az1Ar4)(2r- Ar4) .

Now applytheseto the variousgradientswithf [see (27)]unknown.

%’ From (22)using (27):

j, ;1+1/2=? * [(P’- P)(fAz1)(2r)+ o + (p- p’)[-fAz3)(2r)+ 0]

(43)

.

.

+ t $ (o + o + o + cl)
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.

1.

:g [(P’= - P)2rf(Az1+ AZ3) + ~(0) .

Hencefrom (43),(7),

;= ~=
? ~ (p! - P)2rf(Az1+ AZ3)

~ M q # (Az,+ Az3)[pAr2(2r+ Ar2) + p’Ar4(2r- Ar4)] ‘

so

a = O ar =
f(pt - P)

z .
pAr~- p’Ar~

q[(pAr2+ p’Ar4)+
2r 1

(44)

(45)

Thus,we find thataz = O and ar is independentof z and Az regardlessof the

choiceof f. In the limit

fa ~ ap
r ‘-z p s “

I apThis approaches the propervalue- - — if ~ = 2. As in the planeproblemq
P %

= 1/2,f = 1 wouldbe suitablechoice.

The conclusion is that for IGT-q to work properly in a cylindrical

problem,it is sufficientto use f/q = 2.

IGA-q: Using (43)and (28)in (20b),

; 1+1/2 =
y ~ [(p,- P)(fAz1)(2r)+ 01+ ml

+
%+1/2=1+ [0-+ [p3 - P)(fAz3)(2r)] + Z(O)

‘3+1/2 = i!+ [(P3- P’)(-fAz3)(2r)+ O] + Z(O)
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1?4+112= f $ [0 + (p, - p~)(-f~zl )(zr)]+ ~(o) ●

Using (46),(43),and (28) in (8),

(46)
{

-

(47)

Thus,az = O and ar is independentof z and Az. If we define PI by (33) and

applythe limit test,

f 1 apa+-—–— ,r 2q p 8r

‘ g if : =which gives the propervalue- ~ 2, as in the planeproblem. Here
q

againwe concludethatfor IGA-qto work properlyin the cylindricalproblem,

it is sufficientto use f = 1, q = 1/2.

FGI-q. Applying(23b)to Fig. 17,

;, = f : (P’- p)(fAz1)(2r)+ ~(o)

;2 = ?(0)+ Z(o)

~!2 (p?
‘3 = 1 2

- P)(fAz3)(2r)+ ~(0)

‘4 = :(0) + Z(o) . (48)
.

Using (48)and (43)in (9), .
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.
.

.

IL
[

(P’- P).
2q

d

+t(o).

(

pAr~- p’Ar4
(pAr2+ P1Ar4)+ 2r

(49)

Hencea= = O and ar is independentof z and Az. In the limit

I apa+-~-— ,r 4qp3r

whichgivesthe properlimitif f/q = 4. So we conclude that for FGI-q to

work properlyin the cylindricalproblem,it is sufficientthatf/q = 4.

Summary. For the q methodin the cylindricalproblemall gradientsgive az =

O and ar is independentof z and Az, regardlessof the assumptionsconcerning

q and f. To achievethe properlimit,it is sufficientto takef/q = 2, 2, 4

in IGT, IGA, FGI, respectively.The valuesof f and q requiredby the plane

problemin Sec.VI satisfytheseconditions (that is, f = 1, q = 1/2, 1/2,

1/4). The commentsconcerningmomentumconservationbetweenpointsand over-

lappingof massesin discussingthe q methodfor the planeproblemapply here

also (Sec.VI). Our generalconclusionis thatwhilestudyof the cylindrical

problemhas addedno new information,it has reinforcedthe conclusionsdrawn

from the planeproblem.

IX. THE CYLINDRICALPROBL~, MAC-OMASSMETHOD

If g = h = 1/2 as determined in Sec.VII is used,the MAC-Omassesob-

tainedfromFig. 16 are

Az, Ar2
Q4

Ml+l/2= p 2 (2r+ ~)

.

AZ3 Ar2
44

%+1/2 = p 2 (2r+ ~)
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AZ3 Ar4
‘3+1/2= ~’ ~ 4 (2r- ~)

1~
Az, Ar4

‘4+1/2= P 2 4 (2r- ~) .

IGT-MACO. Usingf = 1/2 in (44),and (50),in (7)

1+~= J/g+l/2=+ ? $ (P’- P) r (Az,+ AZ3) + Z(O)

; ‘L+l/2 $ (Az,+ Az3)[pAr2(2r+ ~) + p? Ar4 (2r- ~)1 “

a = O ar =
Z(pt - p)

z pAr~- p’Ar~
(pAr2+ p’Ar4)+ 4r

Hencethe az = O and ar is independentof z, Az. In the limit

~ - I apa .—Or Par

IGA-MACO. Usingf = 1/2 in (46),(50),(28)in (8)

+

[

‘1 - p
P’ - PI

a =; I ;1+1,2 =r
Ar4

pAr2 (1 + ~) + p~Ar4(1 - ~) 1
Again,az = O and ar is independentof z, Az. In the limitar

(50)
.

.
.

(51)

+ t(o). (52)

1 ap+- ——ePar
FGI-MACO. Usingf = 1/2 in (48),(1/2)M1+1,2from (50),in (9),

i = ; ~ ~L/[(1/2)M1_1,2+ (1/2)ML+1,21

40
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=?

[

Z(pt - p)

1

+ t(o)
Ar2

pAr2(l+ ~ 1 + P’Arq(l- 5]4r

(53)

.

Here again,a= = O and ar is independentof z, Az. In the limit
.

I apa+--—.r p ar

Summary. With the MAC-Omethodfor definingmassesfor a cylindricalproblem,

all three gradients give a = O, ar independentof z, Az, and approachthez

~ ~ as Ar ● oproperlimit-
p ar . All gradients conserve momentum exchange

betweenadjacentpointsof the mesh,and thereis no overlappingof masses.

x. THE SPHERICALPROBLEM- q-MASSMETHOD

Let us considera sectionof a sphericalmesh (Fig.11) in Fig. 17.

r &x-

.

.

Fig. 17’. A sectionof a sphericalmesh.
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Let us first calculate the masses of the zones. Each zone is divided

intotwo triangles,A and B, as shown. Sincethe areaformula (15) involves

termsof the form

-r.z.
‘izj J 1

and since in the

form

.

.

spherical problem all coordinatesmay be expressedin the

‘i
=Ri sinai

‘J
=Rj sina

J

‘i = Ri cos ai =R COSIX. ,
‘J J J

we can write

‘izj - ‘jzi = RiRj (sinai cos a. - Sin CYjCOs ai)
J

or

‘iz.J- ‘Jzi = RiRjsin (ai - aj) . (54)

Now using the

triangles,all

areaformula,(15),and (54),we can writethe areasof all the

positivesinceAa3 < 0,

*A ‘ R (R2-1+1/.2=7 R) sin Aal

B
%+1/2

= + R2 (R2- R) Sin Aal

A 1 R (R-A2+l/2= z R2) sin Aa3

A~+1,2= ~ R2 (R- R2) sin Aa3
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*A
1 R (Ru -3+1/2 = Z R) sin Aa

3

g+ 1/2
. ~ Ru (R4 - R) Sin Aa3

A~+1,2= ~ R (R- Ru) sin Aal

AB
4+1/2 =~R4 (R-R4) sin Aal .

The centroidsof the trianglesare

-A Aal Aal

‘1+1/2= ~ [2R sin (a + ~) cos ~ + R2 sin a]

~B Aal Aal
1+1/2 = ~ [2R2sin (a + ~) cos ~ + R sin (a + Aal)]

-A = ~ [2R sin (a + ~) .05 ~ + R2
‘2+1/2 sin a]

-B
‘2+1/2 = ~ [2R2sin (a + q) Cos > +Rsin (a+Aa3)]

-A Aa
‘;3) Cos +‘3+1/2= ~ [2Rsin (a + — +R4sina]

Aa
>) Cos p~;+l/2= ~ [2R4sin (a + ~ + R sin (a + Aa3)]

~A Aa Aal
4+1/2= ~ [2R sin (a + ~) cos ~ + R4 sin a]

-B
‘4+1/2= ~ [2R4sin (a + ~) ~o~ ~ +Rsin (a+Aal)] .

(55)

(56)
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By Theorem5 and (55),(56)

-A B ~BP(A~+l/2‘1+1/2‘1+1/2= + %+1/2 1+1/2)

-1

Aal
~ (R2-

Aal
.$P2 R) sin Aal Cos—

2 sin (a + #(R2 + RR2 + R;)

21 Aa Aa
‘2+1/2= ~ p ~ (R - R2) sin Aa3 cos# sin (a + +)(R2 + RR2 + R;)

Aa ‘;3, (R2 + RR4 + ‘;)2 p? ; (R4- R) sin Aa 3
‘3+1/2‘~ 3

Cos—
2

sin (a+—

Aal
2)(R2 + RR4 + R;) ●‘4+1/2 = ~ P’ !j (R - R4) sin Aal Cos—2 sin (a +

(57 )

We thenuse ML+1,2= q@m~+l/2

P2=P, P4=P1 andP1 =

IGT-q. From (22),usingf =

as in (25)and (28),that is, assume

‘3 “

and (58),

(58)

j, $+1,2 = ;: [(p? - p)(z -
Zl)(r + r,) + o + (PI - P)(Z3- z)(r3+ r) + 0]

+ t $ [(p’- ‘)(rl- r)(r + r,) + O + (P’- P)(r- r3)(r+ r3) + 0] .

(59)
From Fig. 17

Aal Aal
z-z=

1 R[cosa ‘COS (a+Aal)] = 2R sin (a + ~) Sin ~
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.

.

‘3 - z = -
2R sin (a + ~) sin ~

r -r =-
3

2R cos (a + ~) ,~. >

r+r . 2R sin (a + ~) .O.g> .
3

(6o)

Substituting(6o)in (59),IGT-qgives

1+
2 ‘2+1/2

4R2~ (P’- P)

{

Aal Aul
;= = 1 [sin~ Cos— sin2 (~ + ~)

2
~ M1+1,2 ~ ‘L+l/2

Aa3 Aa
- sin— 3

2
Cos—2 sin2 (a + >)]

Aal Aal
+i2 [sin— cos— sin (a+ ~) Cos (u. + ~)

2 2

Aa
3

Aa3
- sin — Cos— sin (a +

}

~) cos (a + ~]] .
2 2

(61)

In a spherical problem,one wouldexpectthe tangentialaccelerationto

be zeroand the radialaccelerationto be constantand independent of a. Is

thistrueof (61)?
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To break (61)up intotangentialand radialcomponents,considerFig. 18.

.

Fig. 18. Componentsof acceleration.

Fromthis,we knowthat

a =a (?0s a - a
a

sin ar z

al?“ ar sin a + a cos a .z

Applying(62)to (6I)

4R2~ p? - p)
2(

{

[sin2~ cos ‘~’
Aal

a=
a 2)

—sin (a + —
~M~ fi+l/2

z Aa3 Aa
- sin — Cos 3 sin (a + ~)]

2 T
}

4R2~ (P’- P)
c

{

[sin~ COS2‘:1
Aal

aR = 2)—sin (a+—
~M~ ~+1/.2

(62)

.

.
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Aa
3

~ Aa3
- sin —

2
Cos

T
sin (a +

}

~)1 ●
(62a)

From the firstrelation,we see thata = O ifa

z Aal Aal Aa3
~) = Sin*~ Cos y

Aa3
sin — Cos—2 2 sin (a + 2)sin (CY+ — . (63)

As yet,we havefoundno good

It is well to note that it implies

physicalinterpretation

unequalangularspacing

of this condition.

to achievea- = O.

Substitutingfor M&+1,2from (5’7),(58) in the expressionfor aR,

aR = {4R2(Pt- P) [sin~ Cos2~
Aal

2)sin (a + —

Aa
3

z Aa
- sin — Cos 3 sin (a + >)] }/2 T

{~ q [P (R;- R3) + P’ (R3- R~)1 [sinAalcos~
Aal

2)sin (a + —

Aa
3- sin Aa ‘COS ~

3
sin (a + >) 1}

Aal Aa,
Using the trigonometricrelationssin Aal = 2 sin ~ cos~, etc., we

get cancellationof all termsinvolvingangles,so aR becomes

3R2(P’- P)
aR = .

q [p(R;- R3) + p’(R3- R;)]
(64)

In the limit
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aR +

This

3R2(P’- p p? - p

,2PAR(3R9) ‘- “

I apapproaches- - — if q = 1/2. In conclusion,we can say that for ap aR .’

spherical problem, IGT-q using f = 1 gives aR independentof a, Aa and ap-

proachesthe properlimitfor q = 1/2,but a
.

= O only if the spacingin a is
a “

definedaccordingto (63).

IGA-q. From (20b)appliedto Fig. 17,usingf = 1 and (58).

1?1+1/2= p$ [(p,- p)(z- ~l)(r+ r,) + 0]

+ ~ ~ [(p,- p)(rl- r)(rl+ r) + 0]

+
%+1 /2 = ~ j [0 + (p3- P)(Z3- z)(r3+ r)]

+ ~ $_[0 + (p3- P)(r- r3)(r+ r3)]

$ = ~ $ [(p3- p’)[z- z3)(r+ r3) + 0]3+1/2

+ ~ ~ [(p3- p’)(r3- r)(r3+ r) + r)]

F4+1/2= ~ # [O + (p,- P’)(z1- z)(r + r,)]

+ z ~ [0 + (p, - P’)(r - rl)(r + r,)] .

Using (57),(6o),and P3 = PI,

(65)
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.

.

()$ {[

2
‘1 - p P’ - PI

a = ; : m ~+1,2 =r ~4q
+

P(R;- R3) p’(R3- R~)1
[

Aal Aa
sin (a + ~) sin (a + ~)

x +
Aal Aa

cos— 3
2 Cos— 1}

2

{[

3R2 ‘l-p + “-PI+$ —4q
p(R;- R3) 1p’(R3- R~)

Now, calculatingaa, aR, by (62a)

3R2

[

‘1 - p P’ - PI
a=

~
+

a
P(R;- R3) p’(R3- R~

[

3R2 ‘l-p + “ ‘PI”
aR = ~

P(R;- R3) p’(R3- R:)

Aal

2)
cos (a + —

Aal
Cos - 2

Aa3

2)
COS (a + —

+
Aa3

Cos —
2 0

(Aal Aa
tan~+tan~

)

(1+1) . (66)

From (66),it iS seen that aR is independent of a, Aa, and a = O if the
a

SpaCi!Igin a iS uniform,that is, Aa3 = - Aal In the limit
.

[1

3R2 P’ - P ~ - 1 ap
aR = ~ -—ifq=J- .

pAR(3R2) p aR 2
L J

In conclusion, we say that for a sphericalproblem,IGA-qusingf . 1

givesaR independentof a, Aa. aR approachesthe properlimitif q = 1/2. a
a

vanishesif the angularspacingis uniform.

FGI-q. If (23b)is appliedto Fig. 17,usingf = 1,
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+
‘1 = ~ [$ (p’ - PI(Z - Zll(r + r,)] + t [* (p! - P)(r,- r)(rl+ r)]

F, =? (o) +E (o]

‘3= wg (p’ -d(z3- z)(r3 + r)] + t [2 (P’- P)(r- r3)(r+ r3)l

84 = ~ (0) + t (o) . (67)

Now,using (6o),(57),and (67)in (9) ,

$1
:=1 3R2

4 ; Ml ,,2 ,Mk+1,2 = ~

{

(p!- p)

[P(R;-
}

R3) + P’(R3- Rj]

u Aal

2)
sin (a + —

x?
Aal

cos—2

Aa3

1[

Au

2)
sin (a + — cos (a +

)

Aa3)
~) COS (a + ~

+
Aa3

+; +
Aal Aa

Cos— cos— 3
2 2 Cos—2

Using (62a)to get the tangentialand radialaccelerations

3R2 (P’- P)
aR = (1 + 1) .

4q[P(R;- R3) + P’(R3- R;)]
(68)

.

.

Here again, aR
.

is independentof a, Aa, and a = O if AC13= - A(31.Ina

the limit, .
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~ 3R2 (P’- P) ~ 1 z f~~ q .+ .
aR 2q[2pAR(3R2)] - ~ aR

In conclusion,we can say that for a sphericalproblem,FGI-qusingf = 1
.

giveaR independentof a, Aa. aR approachesthe properlimitfor q = 1/4. a
a

. vanishesif the angularspacingis uniform.

Summary. For the q-Massmethodin the sphericalproblem,and takingf = 1 (as

requiredby the planeproblem),IGA-qand FGI-qwill give perfectlyspherical

motion, that is, aa = O and aR independentof ~, ACZ,if the spacingin a is

uniform(Aa = - ACZ1).
3

In agreementwith the plane and cylindrical cases,

these accelerationsapproach the proper limit for aR as the spacinggets

small,providedq = 1/2, 1/4respectively.It is possiblewith much tedious

algebra to show the reverse,that is, if the spacingin a is uniform,then it

is necessaryto choosef = 1 to achievetruesphericalmotion. This work is

not shownhere.

IGT-qhas some differences.To achieveperfectlysphericalmotionwith f

= 1, the spacingin a must satisfythe rathercomplicated

whichno obviousphysicalinterpretationhas beenfound.

it may be a center of mass-type condition. However,

uniformregardlessof the spacing. The condition(63)is

expression(63),for

It is suspectedthat

the value of aR is

neededto make a =
a

o. Here again,as in the planeproblem,q = 1/2givesthe properlimit.

In practice,we havefoundthe nonsphericalmotionin IGT-q to be small

for the typesof uniformangularspacingcommonlyused (Aa S 60). The conser-

VatiOIIof momentumdiscussionsin the summaryof Sec.VI, applyhere also. AS

in the plane problem, the q method does not give completeconservationof

momentumbetweenadjacentvertices,and thereis an overlappingof the masses

used to derive the accelerationsfor adjacentpoints. The MAC-Omassmethod

discussedin the followingsectiondoesnot sufferfrom thesedisadvantages.
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XI.

Fig.

THE SPHERICALPROBLEM- MAC-OMASSMETHOD

Consider the four adjacent zones of a spherical mesh, as shown in

19. We will assumef = 1/2,as was donefor the planeand cylinder.

r d’
xv

Q

<

Fig. 19. The MAC-Omethodin a sphericalproblem.

This means the midpoints of the sides will be used to partiallydefinethe

surfacesand massesassociatedwith the vertices,and hence prevent overlap-

ping of masses while conservingmomentumtransfer. The coordinatesof these

midpointsare givenby

’01
= ~ (r + r,) = R sin (a + ~) Cos ~

= ; (R + R2) sin a
’02

’03 =
R sin (a + ~) Cos >

s + (R + R4) sin a
’04

i

. I

.

’01 =
R cos (a + ~) Cos ~
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= ; [R + R2) cos C!
’02

’04
= ; (R + R4) cOS a . (69)

The plane problemdid not completelydeterminehow the points8 in zones

shouldbe defined. We will look at someof the possibilitieshere.

AverageCentroids. Usingthe definition(37)on Fig. 19, we have

r1+1,2= ~ {(R+ R2)[sina + sin (a + Aal)]

. ~ (R + R2)sin [a + ~) cos~ ,

and so on, giving

; 1+1/2= Ft*2sin (a + !!y Cos ~

Aa3
R*2 sin (a + ~) Cos y‘2.+1/2=

Aal Aal
;4+1/2 = R*4 sin (a + ~) COS ~

.

. ‘1+1/2= R*2 cos (a + ~) Cos ~
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whereR*
2
= ; (R + R2) R*4 = ; (R + R4) ●

RealCentroids.

we get the same

(70)

Applying(38)to Fig. 19 and omittingmany stepsof algebra,

formulae,(70),but with

(R3- R3)
R*2=$ ;

(R2- R2]

(R3- R;)
R*4 = ;

(R2- R:) “

Intersectionof Diagonals. Goingthrough

get the sameformulae,(70),but with

(71)

the analysisfor thison Fig. 19,we

2RRU2RR2
R*2 R*U .- .

‘q R + R4 (71a)

.

methods for definingpoints8 in the zoneThus we see that all the various

lead to the sameformula(70)for the coordinateswith different definitions

of R*z, R*4.

The next step is to calculate the MAC-O masses, that is, the masses

enclosed by joiningthe midpointsof the sides (69)to the Points8 (70)= We

do thisby dividingeach subzoneintotwo trianglesand using Theorems 4 and

5. Omittingmany tedioussteps,we finallyarriveat
.
.

M!C(js

R + R2 2
~ (sin ~){sin a [R*2[~) - R31

‘1+1/2= 6

.
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.

.
.

Aal
+ sin (a + ~) Cos ~ [R*; (>) . ~3])

. p ~~~ ‘;3
R + R2 2

%+1 /2 — (- sin ~){sin a [R*2(~) - R31

Aci
+ sin (a + ~) Cos z~ [R*: (R ‘2R2)_ ~3] }

.$$ ~os ~ (- sin >){sin a [R3
R + R4 2

M3+I/2
- R+u( 2)1

Aa
>) Cos z~ [R3

R+R
+sin (a+ -R*: ( 24)1}

. +$ Cos ~

R + R4 2
(5in >){5ina [R3

‘4+1/2 - R*4(~) 1}

Aal Aal ~R3- R*: (R ‘2R4]]]
+sin (a+ ~) Cos ~

IGT-MAC-O.Apply (22)to Fig. 19,usingmidpoints(f = 1/2)

4
J, $+1,2 = r ; [(P’- P)(z- Zol)(r+ rol) + ()

+ (P’- p)(203- z)(r + ro3) + o]

(72)

+ F ~ [(P1- P)(rol- r)(r + rol) + O + (P’- P)(r- ro3)(r+ ro3) + O] .

From (69),then
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+
a

+

x

+

‘y::;=K’::1;R2)’’c0s‘a+%’c”s%]
x [sina + sin (a + ~) ,“~~]

+ [ ‘0s (Lx+~) ,“’ ~ - cos a][sina + sin (CY+ ~) ~“s>]

[sina + sin (a + ~) ~“’ ~]

A:3, ~os >]} “
[sina - sin J][sin a + sin (a + —(a + +) co’ ‘;

Now using (62)

; (P’- P) R’ ‘ Au,
{[sina + sin (a + ~) cos ~] (sin ~)a=

a
~ ‘!t+l/2

- [sina + sin (CZ+ >) cos>] (sin‘ >,}

Thusthe conditionfor aa = O is thatthe spacingin a satisfy

‘ Aal
sin ~ [sina + sin (a + ~) C!os~]

z Aa
~ [sina + sin (a + >) ,“s>] ..= sin

(73)

(74)

.

.
.
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This looks similar to (63) and here again I see no obvious physical

interpretation.Againusing (62),

aR=(v’ilR2)

- [sina + sin !Z!] (,0,s> sin >)} .[a + ~) Cos 2

Now evaluate~ M~ ~+1/2from (72). It is obviousfrom the last equationthatwe

need to get termslike [sina + sin (a +
~) C09~], etc. A lookat R* in

(70), (71), (71a) shows that Only the average Centroid, (70), will give terms

1ike ‘his ‘n Mk+l/2” Hence,using (70)in (72),

R + ,4 3
; ML+1,2= & {P[(R : ‘2)3- R3] + p’[R3- (~ ) 1}

Aal Aal
x {Cos— sin2

~ [sina + sin (a + ~) cog q]

A;3, cog >]} “Aa
3

Aa
~ [sina + sin (a + —- Cos—2

sin

From this,we get

.

. 3,2 (P’- P)
a, = R + ,2 3

R ‘,4)31 ‘
P [(~) ‘R3]+P’ [R3- (~

(75)
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whichis Independentof

we can say that using

I apet,Au, and in the limita + - - —.R In conclusion,
p 8R

the masses enclosed by joining the midpointsof the

sides (f = 1/2)to the averagecentroidfor the

gives an aR which is independentof a, Aa and

the spacingbecomessmaller. However, a = O
a

(74)0

sphericalproblem,IGT-MAC-0,

approachesthe properlimitas
.

only if the a spacing obeys
.

IGA-MAC-O.Applying(20b)to Fig. 19, alongwi-th(58)and usingthe midpoints

(f = 1/2),

+F1+I,2= ~~ [(p,- p)(~- ~ol)(r+ rol) + 0]

+ 2 ~ [(P1- P)(rol- r)(r + rol) + O]

$2+1/2=
y ; [0 + (p3- p)(zo3- ~)(r + ro3)]

+ ~ $ [0 + (p3- p)(r- ro3)(r+ ro3)]

33+1/2=
7$ [(p3- pl)(~- ~03)(r+ ro3) + 0]

+ ~ $ (P3- P’)(ro3- r)(r + ro3) + 0]

$4+1/2= ? ; [0 + (Pl- P’)(zol- Z)(r+ r’oJl

+ ? # [0 + (Pl - P’)(r- rol)(r+ rol)]
● (76)

.

Using (69),(72) and average centroids to define the masses for the same .

reasonsas in IGT,
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+ ;1+1,2 ~ ~

{

3R2(P1- P)
a =+; ~R+1,2 = i ~

[
R + ‘2)3- R3P(2

r Aa. Aa.

3R2(P’- PI)
+

P’
[
R3 - (~ 301

I
Aci

‘) Cos +
Aa

COS a - cos (a + y COS a - cos (a + +) Cos +
x

Aal Aal
+

Cos—
2

sin —
2 1}

+1+k-
4

{

3R2(P1- P]

[

R + R2 3

1P ( z ) - R3

Aa3 Aa
Cos 3— sin —2 2

3R2(P’- PI)
+

[

R + R4 3
P’ R3- ( z )]1

[“
Aal Aal Aa3

sin (a + ~) COS ~ - Sin a sin (a + ~) Cos ~ -

}

sin a
x-

Aal Aal
+

Aci Aa ● (77)
Cos — sin — Cos 3 3

2 2 — sin —2 2

Now evaluatethe tangentialand normalaccelerationsby (62)

{

3R2(P1- P) 3R2(P’- PI)

}

(

Aal Aa
a=

[

R + R2 3 +
a 1[ R+R431 )tan~ + tan ~

4p ( z ) -R3 R3-( z )
2

4P,

{

3R2(P1- P) 3R2(P’- PI)

aR =

}4p[(R~R2f-R31+m ‘1+1)● ’78
Fromtheserelations,we note that aR is independentof a, Aa, and in the

. limit

●

(3R2)(P’- P> ~ _ ~ ap
aR +

P(3R2)AR fix ‘

but aa = O only if the spacingin a is uniform.
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In conclusion,we can say thatusingthe massesenclosed by joining the

midpoints of the sides (f = 1/2) to the averagecentroidfor the spherical

problem,IGA-MACO,givesan aR whichis independentof a, Aa and approaches

the proper limitfor smallspacing. However,aa = O only if the spacingin a

is uniform.

FGI-MAC-O. From (23b)appliedto Fig. 19,usingthe midpoints(f = 1/2)

F, = 7~ [(Pt - P](z - zO1)(r+ rol)]+ ? ~ [(Pt- P)(rO1- r)(rO1+ r)]

F2= o

;3= f: [(p! - P)(Z03- Z)(r+ro3)l + ~ # [(p’ - P)(r - ro3)(r+ ro3)]

(79)

.
Here again we use (69) and (72) with the averagecentroidsand~ Mk+1,2as

requiredfor FGI (Fig.15),giving

+ ‘1 ; R2 (P’- P)

a=;! , .
~ (M )

R + R2 3 R + R4 3
1-1/2 + ML+V2 P [( 2 ) - R3]+P’[R3-( z )]

ti

ACY3
COS a - COS (a + ~) co, ~ , Cos a - ~) Cos yCOS (a +

xi Aal Aal Aa3 Aa
sin — 3Cos —2 2 Cos — sin —2 2 1

sin (a + ~) Cos~ - sin a sin (a + >) Cos>- 1sin a
+

Aa, Aa, Aaa Aa2
. (8o)

L Cos- Sln
2“+

Cos~ sin —
2 2“ J

Exceptfor the coefficient,thisis the sameas (77),so
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32 Aal Aa
~R (p’- p) [tan ~ + tan +)

.

.

.

.

a=
L L

a

{[ 1[ R’+R43R + ‘2]3 - R3 , ~, R3 - (T
P(2 )]

32
z R (P’- P) (1 + 1)

aR =

{[

R + R2 3 1
* R+R43 “

P ( z ) - R3 + p! R3 - (T )~

(81)

‘ereagain,~ is independentof a, Aa, and in the limit

3R2 (P’-P) ~ 1X
aR +

P 3R2 AR - ~ aR

and a = O if the spacingin a is uniform.a

In conclusion, we can say that use of half the MAC-O masses in the

spherical problemfor FGI-MAC-Ogivesan a
R whichis independent

approachesthe properlimitfor smallspacing. However, aa = O

angularspacingis equal.

Summary. In the sphericalproblem,it appearsbest

as those massesenclosedby straightlinesjoining

the sidesto the averagecentroiddefinedby (37).

to definethe

the midpoints

of a, Aa and

only if the

MAC-Omasses

(f = 1/2)of

(Infact the abbreviation

MAC-O has been derived as an abbreviated descriptionof Midpoint,Average

Centroid.) Underthis definition,all theseintegratedgradients, IGT, IGA,

FGI, give a radialacceleration,aR, for the sphericalproblemwhichis inde-

pendentof anglea and angularspacingAa, and all approachthe proper limit

I ap To get aa = O, it is necessaryto use constanta spacingin IGA and-;=”

FGI, and the condition(74)for IGT. In practice,we havefoundthat uniform

angularspacingin IGT (forAa S 6°) givesverysmallnonsphericalmotions.

The conservationof momentumdiscussionsfor the planeproblemapplyhere

again. The appealof the MAC-Omethodof definingmassesis againevidentin

that it conservesmomentumtransferexactlybetweeneachvertexand its eight
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neighbors, and does not allow any overlappingof the massesassociatedwith

adjacentvertices.

XII. THE BOUNDARYCASES

In any numericalcalculationthereare boundaries,and it is necessaryto .

treat these boundaries properly, for any perturbationin thesepointsfre- .

quentlypropagatesthroughoutthe mesh,oftenwithmagnificationof the error.

Contrary to what one mightexpect,settingup propercalculationsat a bound-

ary is not necessarily simpler than the general case and is often more

difficult,as many peoplewith computingexperiencewill testify. In fact,it

was inabilityto understandthe boundarycaseswhichpromptedthiswholestudy

of gradientsfor two-dimensionalLagrangianhydrodynamics.

In general,by a boundarywe willmean any point for which the general

gradients are not applicable unlessspecialassumptionsare made. Examples

couldbe a free surface,pointsconstrainedto move alonga particularlineor

surface, etc. In this section, we will confine ourselves to the latter,

leavingthe free surfacecaseto be discussedin the followingsection.

Suppose we consider a pointO whichis constrainedto move alonga line

(representinga surfacein the cylindricalsystem) in the r, z plane (Fig.

20). The most common examplesof thisare motionalonga line,r = constant

(includingthe z axis),and motionalonga line,z = constant(includingthe r

axis). Thereare a numberof ways thispointcouldbe treated,of whichthree

will be mentioned.

/H?
/ \

r

/ \/ \
\

(“ \
\ \cl
\\\

1 z

Fig. 20. A boundarypoint.
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B1 The pointO can bemoved alongthe line (Jt+l)- 0 - (L-l) with the same—
velocity that point 2 has in that direction.We will say no more about

thismethod, except to remark that since it prevents the mesh at the

boundary from becoming badly distorted,it can be usedas a last resort
. if othermethodsfail.

B2 The zones 1 + 1/2,L - 1/2 can be reflectedacrossthe line (dashedlines—.
in Fig. 20) to give fictitiousL + ~, E - ~, whichhave the samepressures

and massesas theirreal counterparts.However,caremust be takento use

(r + rL+2)= (r + r~) in calculatingthe forceson the surface O - (1+2)

in fictitiouszonesso that the areaoverwhichthe pressuresact will be

the same as the area of surfaceO - g. Caremust also be taken with the

masses. This can be a bit confusing.Thismethodhas the advantagethat

it makesthe accelerationnormalto the line vanish,as desired.

B3 The gradientscan be calculatedusingonlythe zonesinvolved. If we use—
zonesL + 1/2,!?+1/2,takingP%-,= PI-1,2,Pg+l = P%+1,2 in (20b), and

involved,we get an ac-

direction. However,we

totheline (2+1)-O-

Thismethodis exactly

summing and averaging over only the two zones

celebrationwhichis not necessarilyin the desired

can keep only the component which is tangential

(E-l)and set the normalcomponentequalto zero.

equivalentto B2, becausefor

IGT,B2 givestwicethe forcedividedby twicethe mass;for

IGA,FGI,B2 givestwicethe

We will use B3 because it

! ficulties of meddling with the (r + rA+2) of the reflected zones. The

forcedividedby 4 ratherthan 2.

involves fewer terms and avoids the dif-

followingsectionswill containdiscussionsof someof the boundary cases in

\ the plane,cylinder,and sphere. We will showthatsimilarassumptionsfor f,

; q, etc.,are requiredto givethe sameaccelerationsfor boundary points as
II for the general points. This reinforcesthe argumentsadvancedin the dis-

1 cussionof the generalpointsand leadsto a consistentmodel,exceptfor FGI,I
. wheresomeof the assumptionsto be made are not clearlyevident./-.
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XIIA. MOVEMENTCONSTRAINEDTO A LINE r = CONSTANT

Consider the case (Fig.21) wherepointO is to slidealongtheline r =

constant.

1

r
4 0 2

=constant

z

Fig. 21. Slidingboundary.

To use B3 we assumear = O and P4 = P4+1,2,P2 = P1+1,2. Thenfrom (20b)

IGT.

IGA.

FGI.

64

+
a=a=

z’ (‘4+1/2 + Fl+l/2

‘4+1/2 + Ml+m
)

a= ~ ‘p4+l/2z - ‘,+,,2)(rl- ‘)(r,+ ‘)/(M4+,/2+ ‘1+,,2) ● ’82)

+
a.a .

z

[

+ (;) (;)
4+1/2+ 1+1/21

a = ; # [(P1- P4+1,2)(r - r,)(r + rl)/M4+1,2z
.

+ (Pl- P1+1,2)(r1- r)(rl+ r)/M1+1,2] .

+ 1a=a=–z 2
‘1

‘4+1/2+‘1+1/2

(83)
.
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az =4: [@ll+l/2- pl+l/2)(r,- r)(r,+ r)l%+,,z + M,+,,*)*(84)

The use of l/L = 1/2 is not obvious for FGI, but it is necessary to

achievethe correctanswerin latersteps.

We now applytheseformulaeto the planeproblemfor the

usingmassesfrom (26)and notationsof Fig. 12.

IGT-q: (82)becomes

$ (p!- p)(fAr1)(2r+ fArl)
a=z

q$Ar1(2r + Arl)(p’Az4+ pAz2) “

q-mass method,

This agreeswith the generalcase (30)if f = 1, as requiredalso in (30).

IGA-q: (83)becomes

[

=!.Q ‘P1- p~)(-fAr1)(2r+ fArl) (Pl- P) (fAr1)(2r+ fArl)
az 22

+
q $ ptArlAz4(2r+ Arl) q $ pAr1Az2 1(2r+Arl) ‘

whichagrees

FGI-q: (84)

with the generalcase (32)if f = 1, as requiredalso in (32).

becomes

[( P’ - p)(fAr1)(2r+ fArl)
h 1
5 1q # Ar1(2r+ Arl)(p’Az4+ PAz2)

“1

9

with (35) for f = 1, as requiredtherewhichagrees

Applying (82),(83, (84)to the planeproblem

usingmassesfrom (39),

IGT-MAC-O. (82)becomes

+ (P’- P) (fArl)(2r + f~l)
a=z

~ (~) (2r + z
‘rl 1
‘) ~ (P’AZ4+ PAz2)

also.

for the

9

MAC-Omassmethod,

whichagreeswith (40)for f = 1/2.
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IGA-MAC-O. (83)becomes

[

(P’- ‘1) (fArl)(2r+ fArl) (p,- P) (fArl)(2r+ fArl)
a .14! +

p’Az4 pAz2
z 22 ~ (fArl) [~) (2r+ fArl) ~ (fArl) (y) (Zr+ ‘Art)1 .

.

whichagreeswith (41)for f = 1/2.
.

FGI-MAC-O. (84)becomes,usinghalf of M’s from (39)(seeFig. 15c),

[

(P’- P) (fArl)(Zr+ fArl)
a .;$
z 1~~(f’&l)(Zr+fArl)~(p!Az4+pAz2)‘

whichagreeswith (42)for f = 1/2.

The general conclusion for the plane problem is that boundary cases

derived by B3 for motion along a line r = constantgiveexactagreementof

accelerationswiththe generalcaseunderthe sameassumptionsfor f, q, etc.,

for both the q methodand the MAC-Omethod.

Let us now apply (82),(83),(84)to the sphericalproblemfor motion of

the boundary points along the z axis. We will use notationof Fig. 17 with

a = o and zones2+1/2,3+1/2 omitted. Using the B3 boundary method, P4 =

‘4+1/2$ ‘2 = ‘1+1/2$ and ar = 0“ Equations(82),(83),(84)are stillap-

plicableexceptnow r = O.

For the q-massmethod,withf = 1, we get from (6o)and (57)

Aal Ac+,

‘1 - r
=r+r

1 = 2R cos~ sin ~

Aal Aal
I (R3 - ~3) 2 sin2 y- COS2~

‘1+1/2
.$P2 z

2Aa1 2Aa1

‘4+1/2 = ~ p’ ~ (R3- R:) 2 sin ~ Cos
7“

Usingthese,we get
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IGT-q: From (82)

~ (pt-
Aal z Aal

P) 4R2 COS2y sin T
aR

=a =z Aal s

~ 2 sin2~q$3 Cos2 ~ [P’(R3- R~) + P(R;- R3)]

whichis identicalto aR for the sphericalcasegivenby (64).

IGA-q. From (83)

!-J (p,-
Aal 2Aa1

22 PI) 4R2 sin2~ Cos T
aR =a=z z Aal z Acil

cl$$P
,(R3- R?) 2 Sin ~ co’ y

+

whichis identical

FGI-q. From (84)

;!$(P -
Aal 2Aa1

1 P) 4R2sin2~ Cos
T

Acil Aal ‘
q $ ; ~ (R3- R3) 2 sin2~ C092~

2

to (66).

;$ (p?-
Aal 2Aa1

P) 4R2 sin2~ Cos -Z-
aR

=a=z z Aal
$ 22sin ~

2Aa1
qyj Cos ~ [P’(R3- R;] + P(R:- R3]] ‘

whichagreeswith (68).

For the MAC-Omethod,for the sphericalproblemalongthe z axis, we get

from (69)and (72),takingf = 1/2,

Aal Aal

’01 ‘r ‘rol ‘r ‘RsinTcOsT
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~ h,

q +1/2. p ~ cos ~sin 2 ‘> [R:2 (R : ‘2) - R3] .

Usingthesewith R:, R; definedas requiredfor the generalcases,

IGT-MAC-O. (82)gives

$ (p?-
Aal z Au,

P) R2 sin2~ Cos —2
aR = aZ =

~ sin2 ~ ~os2 ~{pt [R3 - ( zR + ‘4 3
) 1 + P[(R; ‘2)3 - R31} ‘

.

whichagreeswith the generalcase (75).

IGA-MAC-O. (83)gives

~ # (pf – p1)R2sin2Aal z Aal
— Cos2 7

aR = aZ =
4!

z Aal
p’ ~ sin ~cos 2 ~ [R3- (R ; “)3]

-!-~ (p - p) R2~in2Au, z Aal

1
—Cos —z. z.

+ ‘-

i

z Aal
P sin — Cos2 2 ~ [(R ; ‘2)3 - R31 ‘

whichagreeswith (78)

FGI-MAC-O. (84)gives[rememberingto use (1/2)Ml

Aal z Acil
~ 1 (pf- p) R2 sin2
22

— Cos2 T
aR = aZ “ Aal z Aal

~{p’[R3 - (R ; “)3] + P[(R: ‘2)3- R3]}

9

~ * sin2— Cos
2

.
whichagreeswith (8I). .

The general conclusion of the sphericalproblemis thatboundarycases .

derivedby B3 formotionalongthe z axis (r = constant)giveexact agreement

of accelerationswith the generalcaseunderthe sameassumptionsfor f, q,

etc.,for both the q and the MAC-Omassmethods.
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For motion along a line z = constant(forexample,the r axis),methods

verysimilarto thoseabovecan be usedto showthatboundarymethod B3 gives

accelerationswhichagreeexactlywith the generalcase in the cylindricaland

sphericalproblemsfor the same valuesof f, q, etc.

XIII. FREESURFACES

By a free surface,we mean any pointO whichliesalonga boundary (L-1)

-o- (Q+1) beyond which there is no material (Fig. 22). Here again,for

derivingthe formulae,we coulduse the reflectiontypemethod,

I z

Fig. 22. Free surface.

B2, in whichthe fictitiousreflectedzonesare assumedto have zeropressures

and zero masses, or we can use a B3 method,wherewe use only the zonesthat

actuallyexist. The lattergives correct formulae for IGT and IGA but re-

quires the inclusion of an extrafactorof 1/2 for FGI. The B2 methodgives

correctresultsprovidedone usesthe definitionthat the indeterminate 0/0

. 0. We will use methodB3.

In a Lagrangianmesh,wheremass is confinedto initially chosen zones,

there will be no mass flow and henceno momentumflow acrossa free surface.

SinceJPd~representsa flow of momentum,the logicalassumptionwould appear

to be that on a free surfaceP = O. Thus in Fig. 22, at the free surfacewe

assume

PR+I=0 ‘L-1 = 0 “ (85)

69



Usingthe generalformula(20B)on Fig. 22, taking(85)into account, we get

the formulaefor a freesurface:

IGT.

$ +
+
a= L-1/2 + Fg+l/2. : # [(0- PL-1,2)(z - z~_,)(r + r!-,)M

1-1/2 + Mg+l/2

+ (P1+1/2 - Pk-1,2)(zL- z)(r~+ r)

+ (o - PL+,,2)(ZL+,- Z)(rfl+,+ r)]

+ t $ [(0- pk_l/2)(rfl-1- r)(r~-l+ r)

+ (P~+1/2 - PL-1,2)(r- rg)(r+ r~)

+ (o - P~+1,2)(r- r~+l)(r + rl+l)]/(ML,,2 + M1+1,2) . (86)

*( 5.
L 2M [(0- PL-1/2)(z- zg-l)(r+ r )

L-l/2 %-1

+ (P- P
%

~-1,2)[zL- z)(rl+ r)]

$

+ 2M [(Pg- P~+1,2)(z- zk)(r+ rk)
&+l/2

+ (o - PJ3+,,2)(ZA+,- z)(r~+,+ r)]
}
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{

$
+C [(0 - P

2M%-1/2 kl/2hl - w-l + ‘)

+ (P - P
!2 ~-1,2)(r- r~)(r + rk)]

+ 2

%:1,2 ‘(p%
- PL+1,2)(rL- r)(rl+ r)

+ (o - P

}

~+1,2)(r- rl+l)(r+ rfl+l)] . (87)

FGI. We insertan extrafactorof 1/2,and use (20b)withassumption(23a)

( $ $ +
+FL+l/21?:=1 1-1/2 1-1/2 g+l/2

4
‘&l/2

‘M
J1-1/2+ Mfi+l/2‘M ~+1/2

)

{

$~= 1 4MR-1,2[(0- P- -~ ,,2)(2- ZL ,](r + rl-l)]

$
+ 4(Mg_1,2+ M [(Pg+l/2- PR-1,2)(ZR- z)(rfl+ r)]

~+1/2J

$
+ 4ML+1,2[(O-P

}

9+,,2)[21+,- Z)(rfl+,+ r)]

{

:
+ z ~M [(0- P

!L-1/2 HA-I - ‘)(r + %1)1

L

+ 4(ML-1,2 + Ml+,,2J [(PJ?#+l/2 - PR-1,2)(r- rk)(r + rg)]



$
+ 4M

}

[(0- pL+1,2)(r- rk+l)(r+ ‘1+1)1 ●

~+1/2
(88)

Applicationto the PlaneProblem.

q-MassMethod. (Referto Sec.VI.)

zones3+1/2,4+1/2as the real zones

IGT-q. Using (86)with1-1 = 3, L =

.

We use the notation of Fig 12, taking -
.

and usingmassesfrom (26).

4, 1+1 = 1

~ * f(P’- O)[Ar3(2r- fAr3)+ Ar1(2r+ fArl)]
:=?(o) +k

~ ~! Az4[Ar3(2r- Ar3) + Ar1(2r+ Arl)] “

We see that, as in the general case, (30), az is independent of r, Ar if

f= 1, in whichcase

.lH+.-L2az q p’Az4 P az

if q = 1/2.

to (30)for a

w“ using

This approachesthe properlimit

generalpoint.

(87)with p4 = p?

[1
+ ~ # (p’- 0) fAr3(2r- fAr3)

+

LZq ~ p! Ar3Az4(2r - Ar3)

for a free surfaceas compared

-$ (pt - O) fAr1(2r+ fArl)1zq~ p? Ar1Az4(2r + Arl) “

Thus a= is independentof r, Ar if f = 1, in whichcase,for q = 1/2

(P!a= - 0)(1+ l] . H
z 2qp‘AZ4 AZ4

P’ ~
.
●

approachesthe properlimitfor a free surface.

FGI-q. Using (88) if f = 1, q = 1/4 as in the generalcase
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a=:(c)) +’ i ~ ‘p’-0)‘Ar3[2r-fAr3)+:‘p’-0)‘Ar1(2r+fAr1.+
4q $ p’ Ar3Az4(2r- Ar3) qq $ p? Ar1Az4(2r+ Arl)1

whencea is independentof r, Ar if f = 1 so that
z

P’ – o
Ifq=~, az= Az givesthe properlimitfor a free surface.

P’+

MAC-OMASSMETHOD. (Referto Sec.VII.) AgainusingFig. 12, butmassesfrom

(39),omittingthe details, we get agreement with the general case. For

example, to have az independentof r, Ar, it is necessaryto takef = 1/2.

The resultsare

IGT-MAC-O. (86),with f = 1/2,becomes

p, - ()
~.a=

z Az4’
whichapproachesthe properlimit.

.
Pry

IGA-MAC-O. (87),withf = I/2,becomes

~ (P’-~=a .1 0)(1+ 1) = (P’- o)
z AZ4 AZ4 “

P’ ~ P’~

FGI-MAC-O. (88),with f = 1/2,and as customaryusing (1/2)Mfrom (39)

[P’-~=a .1 0)(1+ 1) =~P’ - o)
z 4 Az AZ4 “

P’; P’ ~

Cylindrical Problem. Similar derivations can be carried throughfor the

cylindricalproblem,using Fig. 16 and masses from (43) and (50). Taking
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J?= 4 in Fig.

expressionfor

is found that

16 and applying (86), (87),and (88),one gets az = O and an

ar in termsof f for all gradients.As in the generalcase,it

for the q-mass method, it is necessaryto takef = 1 and q =

1/2, 1/2, 1/4 for the threegradientsto get the proper limiting case. For

the MAC-O mass method, it is necessaryto takef = 1/2 in all gradientsand

againto use (1/2)Min FGI.

Spherical Problem. Referringto Sees.X and XI, Figs.17 and 19,we use only

pointsk = 3, 4, 1 and assumethe two outerzonesare not present. Again we

‘se ‘3+1/2= ‘4+1/2= “~ so (86),(87),and (88)simplifya greatdeal.

q-MassMethod. Use f = 1 and massesfrom (57).

IGT-q. With theseassumptions(86)givesthe sameresultas (59)with P = O,

so the conclusionsof the generalcaseapplyhere. Hence,a = O only if (63)
a

holds,and aR is givenby (64)with P = O and M1+1,2,M2+1,2omittedin ~M,

3R2 (P’- O) ~ (P’- 0~ P’ - (1
aR =

.— if q = ~ .
qp’ (R3- R?) qP’AR Ptg

IGA-q. (87)gives~3+1/2,F4+1,2in (65)with PI = P3 = O, so the conclusions

of the generalcasewith P = O and M1+1/2, %+1/2 absent apply here. This

means that a = O if the a spacing is uniform and aR is given by (66),a

replacing

3R2 (P’- 0](1+ 1]+ (P’- ())-p’ - ()
aR=

if q =; .
2qp’ (R3- R?) qp’AR p, ~

FGI-q. (88)givesF,, ~3 in (67)with P = O, so the generalcaseholds. This

meansa = O if the a spacingis equal, and (68) with M1+1,2, M2+1,2 terms
a

absent,but using1/4 ~M as in the generalcase,gives
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3R2 (P’- 0)(1+ 1~ ~ (P’- O) = P’ - 0 if ~ = ~
aR = 4qp’ (R3- R;) 2qp‘AR

4“p? ~

MAC-O Mass Method. Use f = 1/2 and masses from (72). For all gradients,

usingargumentssimilarto thoseabove,we get

P’ - 0
aR = .

p, ~

XIV. CORNERS

In any mesh there are corner points (Fig. 23) which may fall intoa

numberof categoriesor evenmixedcategories. For example, point O may be

such that the side O - !?may be a free surfaceor constrainedto move alonga

fixedline,and the samemay be the casefor the side O - (L+l). Hence,there

may be a mixtureof conditionsinvolvedin derivingthe gradientsof pointO.

It wouldbe too lengthyto considerall the possible variations, so we will

just indicatethe generalprocedure,and considera few specialcasesfor Fig.

23.

t
I
I

I
I
I

I
I

---..-.-
11

------- n

1 0

+1

Fig. 23. A cornerpoint.

We will use the generalmethod,B3, appliedin the two previous sections so

that our assumptionswillbe

75



(1) For motion alongaline !2(or 1+1), we assumethat PI = PL+1,2 (or

) and set the accelerationsnormalto the line equaltop~+l = p%+l/2

zero.

b

(2) For motion alonga line 1 (or!L+l)to be a free surface,set Pk = O -

(orPq+l= O).
*

It is interestingto note that IGT and IGA have the
..

samegeneralformulaefor the caseof a singlezone. Thisremark

obvious,becausefor IGA we are averagingover only one zone,so

From (20b)appliedto Fig. 23, the generalformulaeare:

IGT and IGA.

+ ; g+l/.2 1a= ‘M
{:+ [(pL- pL+1,2)(z- Zk)(r+ ~L)

Mx+l/2 g+l/2

+ (P~+1- P1+,,JZR+, - Z)(ri+,+ ‘)1

+ ~ # [(PL- pL+1,2)(rL- r)(rl + r)

+ (pR+1
- pk+1,2)(r - rL+l)(r + ‘g+l)l} “

FGI.

is

(89)

1
‘2M {rg [(PR- PR+1,2)(z- zl)(r+ rE)

~+1/2
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+ (P~+1 - pR+l/2](ZL+l- Z](t’l+l+ r]]

.

+ (Pk+l- PL+1,2)(r- rl+l)(r+ rk+l)]} . (90)

Note that (90)is identicalto (89)exceptfor the factor1/2. Thisfactoris

needed in FGI to counteract the use of q = 1/4 insteadof q = 1/2 in the q-

massmethodand the use of (1/2)Min the MAC-Omassmethod.

Use of these formulae for corner pointsin the plane,cylindrical,and

sphericalproblemsgivesthe samevaluesfor

as the generalfreesurfacepoint,provided

are used.
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APPENDIXA

COMPARISONOF WAT TO INTRGRALGRADIENTS

WAT, a code for calculating two-dimensional,Lagrangian,compressible

hydrodynamics,devisedby WalterGoadgis describedin LAMS 2365. The forces

on a vertex are derivedin a very clevermannerby calculatingthe resistance

thatthe zonesaboutthe vertexofferto motionof the vertex,by DtAlembert~s

principle. The WAT code combines these forces (and arbitrarily defined

masses)in a mannersimilarto IGT in (7). The objectivehere is to take the

WAT gradients and see how they comparewith gradientsobtainedfrom the in-

tegralmethods.

A general point in the mesh is shown in Fig. 1 of LAMS-2365, and is

reproducedbelowin our notation.

Fig. A-1. The WAT figure.

The accelerationis givenas Eq. (2)of the report.

+ F
a=-=M

(A-1)

’44

79



wherethe Mfl+l/2 are takenas halfthe massesof the shaded portions of the

figure,and the forcesare givenby formulaeon pp. 20, 21 of LAMS-2365,which
becomein our notation

and

(Fr]WAT= ~ ~ {p1+1,2[(r+ rl + r2+1)(zR- ~1+1)
1=1

+ (r -
L r)(zl+l- z) - (rl+l- r)(z~- z)]}

(FZ)WAT= ~ ~ [pR+1,2(r+ rl + rg+l)(ri+l- rk)1 ●

L=l

(A-2)

(A-2a)

The angle of revolutionaboutthe z axis is 21Tratherthanthe $ usedin our

work.

It is obvious from (A-1) that theWAT accelerationis of the type IGT,

wherethe sum of the forcesis dividedby the sum of the masses. The general
formulae for forces in IGT is givenby (22)as (forrevolutionthroughangle

4)),

(Fr)lGT= * 1, (P2-1,2- p~+1/2)(z- z;)(r + r~)

= : ; {PL+1,2[(2 - z~+l)(r +r;+l) - (Z - Z~)(r + r;)]} (A-3)
!?=1

(FZ)lGT= $ ~ (P1-1,2- pR+1,2)(r~- ~)(r~+ r)
L=l

= $ ~ {PL+1,2 [(r~+l - r)(r;+l + r) - (r;- r)(r~+ r)]} ●

L=l

(A-3a)

80

?

●

e

.

.
.



Recallthatr
t’ ‘1

in (A-2)are the coordinatesof the point out at the

end of side L (whiler’ z~ in (A-3)representpointson sidek whichare at
!?’ E

somefraction,f, of the way. If we write (A-3a)in termsof

a

.

r’=
1

r +f (rR-r)

(A-4)z~= Z+f (Zg-z)

we can perhaps then compare the two methods. If we look at Fz first (A-3a)

and (A-4)give

(FZ)lGT= ~ ~ [Pg+1,2(r~+12- r~2)]
2&

~ ~ {pL+1,2[r2+ 2rf (r~+l- ‘).
2k

+ f2 (rR+l- r)2 - r2 - 2rf (ri- r) - f2 (rR- r)2]]

=+ ~ {Pk+1,2[2rf(rk+1- rk) + f2 (rL+12 22
- zrr~+l+ r - ‘~

+ 2rr~ - r2)l}

; ~ {PL+1,2[f2(rk+12. - rk2) + (2f- 2f2)r (rL+l- rl)]} .
1

(A-5)

Now for thisto givethe same form as (A-2a),it is necessarythat

f2=2f- 2f20r 3f2 =2f .
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Thus to achievea WAT-likeFz from IGT one must use f = 2/3. Similarly (A-4)

with (A-3)gives

(Fr)lGT=
~ ~ p ,2{-f(z~+l-

~ &+l z)[2r+ f(rk+l-r)] ●

+ f(zg- z][2r+ f(rl- r)]}

= fz$ ~ [pL+l/2{z(rL+, - r-l)- ZL+l [r($‘1) +‘~+11
L

+ zl[r(~-1) +rl]] .

Again,(A-2)can be written

(A-6)

(Fr)WAT=

(A-7)

Theseagreein

As far as

we can get for

2
‘IGT = f

g;P fl+,,2{@+, - rk) - z~+, (Zr+ rg+,)

+ z1[2r+ rl)]} .

formfor f = 2/3.

magnitudesof forcesare concerned,from both (A-5) and (A-7)

f = 2/3

$& ~!!F
‘WAT = 2~ 3 WAT “

GeneralConclusion.

(A-8)

If WAT were derived on a basis of angle revolutions@ ratherthan 21T,

then the forcesobtainedby IGTwith f = 2/3 would have the same algebraic c
form as those derivedfromWAT, and the magnitudewouldbe largerby a factor .

of 4/3. In orderto

use

the
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for IGT 4/3 of

shadedtriangles

achieveexactlythe sameaccelerations,one should then
.
*

the mass used by WAT, that is, q! = 2/3 of the massesof

in Fig. 24.



Note. I haveno knowledgeof the boundarycasesused,so no analysishas

beendoneon them. Also,we have doneno numericaltestingof this gradient.

Further analytic work has shown that these gradientsdo not givespherical

motionin an equallyspacedsphericalproblem,as wouldbe expectedsince the
a

form is IGT.

APPENDIXB

FAMULARO-WHALENGRADIENTS

10 11In 1976,K. Famularo and PaulWhalen derived in very neat fashion,

using Hamilton’s principles,a set of gradientsfor 2-dimensionalLagrangian

hydrodynamics.They cameup with an IGT form of gradient. As might be ex-

pected with IGT, it was possibleto proveanalyticallyand numericallythat

thisgradientdoesnot givesphericalmotionin a sphericalproblemwith equal

angularspacing. I did not carrythiswork further.

APPENDIXC

SCHULZGRADIENTS

I spenta good dealof time tryingto writethe Schulz4 gradients in an

integral form and almost made it, but not quite. However, the Schulz

gradientshave beenused in many codesfor a longtimeand do give spherical

motionin a sphericalproblem. I was not ableto provethisanalytically.

APPENDIXD

ANOTHERPROPOSEDGRADIENT(1986)

a In thisreportit was suggestedthat the ICA-MAC-O gradient might be a
~

good one to try. Since that time (1964-1967),I have triedit in some quite
.

complicatedreal problems. It worked fine in many problems, but had dif-*
ficulty in one problem. This I tracedbackto the fact thatone of the four

subzonesarounda pointhad a much smallermass than the otherthreesubzones.
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This meant one of the four ~/M termsin Eq. (8)had a verysmalldenominator,

allowingthattermto dominatethe gradientcalculation.

In the process of writingthisreport,it has occurredto me thatone way to

preventthe abovedifficultywouldbe to use the FGI techniqueof takingzones 6

in pairs, but in an IGA-MAC-O type model. This I am calling IGAP-MAC-O s:
(IntegralGradientAverageof Pairs)just for the sakeof a name.

a

Thiswouldgivean expressionof the typeof Eq. (9),that is

L
+ +

2=; ~ :&. ~ i
‘1-1/2 + FL+l/2

2=1 !?.=1‘!-1/2 + ‘L+l/2

butwith the massesas the MAC-Omassesand the forcesgivenby applying(20b)

twice,once to eachmass of the pair and adding these expressions together

beforedividingby the sum of

I am quitepositivethat this

give good motion in plane,

problems.

the masses.

techniquewould eliminate the difficulty and

cylindrical,and equi-angularspacedspherical
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