This work was supported by the US Department of Energy, Office of Safeguards and Security.

Edited by Dorothy C. Amsden, Group Q-2
Composition and Layout by Cheryl R. Sanchez, Group Q-2
Illustrations by Gary W. Webb, Group Q-2

DISC'LAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof. nor any of their employecs. makes any warranty. express or implied, or assumes any legal liability or responsibility for the accuracy. completeness. or usefulness of any information. apparatus. product. or process disclosed. or represents that its use would not infringe privately owned rights. Reference herein to any specifie commercial product, process. or service by trade name, trademark. manufacturer. or therwise. does not necessarily constitute or imply its endorsement. recommendation. or favoring by the (Inited States Government or any ageney thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Computer Simulation of the Sequential Probability Ratio Test for Nuclear Safeguards

国

Kenneth L. Coop

Alonos

CONTENTS

ABSTRACT 1
I. INTRODUCTION 1
II. COMPUTER SIMULATION OF THE SPRT 3
A. Description of the Method 3
B. Setting Up Problems 5
C. Interpreting the Computer Output 8
III. RESULTS FOR SAMPLE PROBLEMS 10
A. Problem 1 10
B. Problem 2 12
C. Problem 3 18
IV. PARAMETER COMPARISONS 20
A. False-Positive Probability 21
B. False-Negative Probability 22
C. Average Step Number 23
V. EFFECT OF VARYING THE NOMINAL STEP NUMBER 25
VI. SELECTION OF THE INPUT FAI_SE-NEGATIVE PROBABILITY VALUE 28
VII. SUMMARY AND CONCLUSIONS 31
ACKNOWI.EDGMENTS 33
REFERENCES 33
APPENDIX A. SPRTEST FORTRAN LISTING 35
APPENDIX B. SPRTREP FORTRAN LISTING 39

COMPUTER SIMULATION OF THE SEQUENTIAL PROBABILITY RATIO TEST FOR NUCLEAR SAFEGUARDS

by
Kenneth L. Coop

Abstract

A Fortran IV computer program called SPRTEST is used to simulate the Sequential Probability Ratio Test (SPRT). The program provides considerably more information than one can obtain from the approximate SPRT theory of Wald. For nuclear safeguards applications SPRTEST permits the equipment designer to optimize the input test parameters and, indeed, to determine whether the SPRT is the statistical test of choice. Using Monte Carlo techniques, SPRTEST simulates the use of the SPRT in a radiation monitor. The accumulation of monitoring data from a normal distribution is simulated by repeated sampling of a random number generator. In this way, SPRTEST determines the expected false-positive (α) and false-negative (β) detection probabilities and the average step number (ASN) for a particular SPRT. The report describes SPRTEST, provides a Fortran listing, and demonstrates SPRTEST applications. The report also compares results with those expected from the single-interval test (SIT) on which the SPRT is based; generally, the SPRT provides better detection probabilities for a wide range of source strengths and, at background levels, it takes less time, on average, to make decisions. To obtain optimal results with the SPRT, it must have the capability to detain the counting subject for longer than the SIT time. The SPRTEST program should be useful in choosing the best statistical test for a wide variety of applications, including safeguards, health physics monitoring, and general nuclear detection.

I. INTRODUCTION

The Sequential Probability Ratio Test (SPRT) of Wald ${ }^{1}$ is a statistical analysis method in use at Los Alamos for nuclear safeguards applications. ${ }^{2-9}$ The test, as used for portal safeguards monitors, ${ }^{4-6}$ consists of examining nuclear counting data sequentially in time and making one of three decisions after each step or increment of data is obtained.

1. Accept the hypothesis H_{o} (background only).
2. Accept the hypothesis H_{1} (count is above background).
3. Accept neither hypothesis; continue counting by obtaining another increment of data.

When either of the first two decisions is made, the counting sequence usually terminates and the result is indicated visually or audibly. Wald shows that eventually acceptance of either H_{0} or H_{1} will occur if the sequence continues long enough.

The average time required to make a decision for a properly designed SPRT may be considerably less than the time required for a single-interval test (SIT) of similar statistical strength for differentiating between back-ground-only and above-background radiation levels. ${ }^{1}$ That is the primary reason for using the sequential test. The primary disadvantages of the SPRT are that it is more complex to set up, that the time required for a particular trial or test may be longer than that required for the equivalent singleinterval test, and that the analytic equations provided by Wald generally provide only approximate values for the statistical parameters of interest. These parameters are α, β, and the average step number (ASN).

1. α : error of the first kind, or the false-positive detection probability.
2. β : error of the second kind evaluated for a particular or nominal source strength; this is also referred to as the false-negative detection probability.
3. ASN: the average number of increments or steps required to reach a decision to accept H_{0} or H_{1}.

The α and β actually obtained using Wald's equations are generally somewhat different from the nominal (input) values (designated with a zero subscript), but the input values provide reasonably good approximations for many problems. However, those approximations may become considerably poorer if the testing sequence is forced to terminate after a set maximum number of steps. In practice, it is often desirable to force a termination to ensure that a counting period does not exceed some predetermined time. Doing so, however, also decreases the ASN, and Wald does not provide a method of estimating the magnitude of that effect.

Furthermore, the input value for $\beta\left(\beta_{0}\right)$ only approximates the true value for a particular or nominal source strength. (As described in Sec. II-B, that nominal source strength is determined by the input parameters for α and β, referred to as α_{0} and β_{0}, and, of course, the background count rates and counting times.) In safeguards applications, as well as many others, sources (i.e., above-background signals) of different strengths may be present, and it is desirable to know the false-negative detection probabilities for them even though the SPRT is set up to optimally detect the nominal source strength.

To determine the parameters estimated by Wald more accurately, a computer program, called SPRTEST, was devised to simulate the SPRT using

Monte Carlo techniques. While developed independently, presumably SPRTEST is similar in concept to other programs that have been written previously. ${ }^{9}$ Alternative methods ${ }^{10,11}$ for improving on Wald's theory were not pursued in this study.

Data similar to those obtained with SPRTEST could, in theory, be obtained experimentally, but results can be generated much more quickly by computer, without the potential uncertainties associated with experimental data. Of course, the fluctuations associated with sampling from statistical populations (i.e., sources of nuclear radiation) are preserved using the Monte Carlo technique. Thus, the results obtained with the computer simulation will, if properly performed, represent the best statistical test performance that can be expected experimentally.

Two versions of the Fortran IV code, SPRTEST and SPRTREP, used for simulating the SPRT on the Los Alamos computer system appear, respectively, in Appendixes A and B. These two programs run on a CDC Cyber-176 computer. Los Alamos users can obtain the programs from the MASS storage system under the directory root KLCQ2.

II. COMPUTER SIMULATION OF THE SPRT

This section describes the method used in the SPRTEST program, setting up a problem, and interpreting the program output.

A. Description of the Method

The basic computer program, SPRTEST, is designed to simulate actual experiments by using Monte Carlo sampling techniques described as follows.

The decision levels for accepting hypothesis H_{0} and H_{1} are set by the user's selection of nominal (input) parameters α_{0} and β_{o}, following Wald's approximations

$$
\begin{aligned}
& B=\ln \left[\beta_{0} /\left(1-\alpha_{0}\right)\right] \quad \text { and } \\
& A=\ln \left[\left(1-\beta_{0}\right) / \alpha_{0}\right]
\end{aligned}
$$

At the start of any step in the sequential analysis, SPRTEST calls a random number generator RANF (1)* twice to obtain two numbers uniformly distributed between 0 and 1. It uses these numbers to calculate Y, which corresponds to a point on the abscissa of a normal distribution with a mean of zero and a standard deviation of 1 . This value is always positive; the probability of

[^0]obtaining a value from any region of the positive abscissa is proportional to the corresponding ordinate of the normal distribution. A third call to the random number generator is then made to determine whether to assign a positive or negative value to the abscissa, depending on whether the third random number is larger or smaller than 0.5.

This value, in nuclear counting applications, then corresponds to the detection of a number of photons or nuclear particles. Thus, it is assumed that in each step of the actual test being simulated, enough events are detected to approximate the population sampled by a normal distribution; fifty or more events detected per step would be adequate for most experimental applications. The SPRTEST never actually refers to a specific number of counts, but as will be described in Sec. II-B, the results can be related to a particular mean number of counts per step.

SPRTEST is set up such that the normal distribution just described, which has a mean of zero, corresponds to the background-only distribution. To simulate counts obtained from populations with means greater than zero (i.e., background plus a radiation source), a value, UADD, is added to the Y obtained previously to obtain the sum U. (The units of UADD are standard deviations of the normal distribution.) Thus, it is assumed that the standard deviation of all the populations sampled--background only and above background --are the same, which is a good approximation for many safeguards applications. For example, if one wishes to detect a source giving an average count per step of 100 plus a background mean of 1000 , the approximate standard deviations are $(1000)^{1 / 2}=31.6$ for the background and $(1100)^{1 / 2}=33.2$ for the background plus source. Differences of this magnitude will generally not appreciably affect comparisons of experimental results derived from these calculations.*

Next, the program computes $Z=\ln \left[f\left(U, \Theta_{1}\right) / f\left(U, \Theta_{0}\right)\right]$, which is the logarithm of the quotient of the two normal distributions' ordinates evaluated at the abscissa value, U, obtained previously. In the case of the normal distribution, Z takes the simple form $Z=\Theta_{1} \times U-0.5 \Theta_{2}^{2}$, where Θ_{1} is the abscissa of the distribution mean of a nominal (user-selected) source and U is the abscissa value obtained using the random number generator, as described previously.

Then Z is added to the Z value obtained in the previous step of the sequence and the sum is compared to A and B. If the sum is less than or equal to B, the hypothesis H_{0} (background only) is accepted; if the sum of Z is greater than or equal to A, the hypothesis H_{1} (above background) is accepted. In either case, the result is recorded by incrementing by +1 the value of the decision matrix $\mathrm{IHO}(\mathrm{i})$ or $\mathrm{HHI}(\mathrm{i})$, respectively, where i corresponds to the step number where the decision is made. Then another independent trial is begun.

[^1]If neither decision to accept H_{0} or H_{1} occurs, then another step is made by sampling again from the normal distribution. Another Z is computed and added to the previous value. Then that sum is compared to A and B to determine whether to accept hypothesis H_{0} or H_{1}, or to continue the trial. This process can be repeated for up to 98 steps (as now programmed), if necessary, to reach a decision to accept H_{0} or H_{1}.

SPRTEST also provides for forcing a decision after NSTEP steps; the forced result is stored in $1 \mathrm{HO}(100)$ or $\mathrm{HI}(100)$, respectively, depending on whether H_{0} or H_{1} was accepted. The criterion used for this forced decision is to determine whether the sum of Z is equal to or less than 0.0 (accept H_{0}) or greater than zero (accept H_{1}), as suggested by Wald. ${ }^{*}$ Other criteria can readily be substituted by editing SPRTEST, and might be more appropriate in particular cases; see Ref. 8 for examples of such criteria. Whereas a decision can be forced at any step number and the result recorded as indicated, the trial also continues until a decision is made using the original, nonforcing decision points (A and B) or until step 98 is completed. In the sample tests described in Sec. III, step 98 seldom is reached. However, if it is, a decision is forced (using the same criterion as at NSTEP) with the result recorded in $\mathrm{IHO}(99)$ or $\mathrm{IHI}(99)$, respectively, depending on whether H_{0} or H_{1} is accepted.

After completion of a trial, another independent trial begins and the process repeats until a total of 100,000 trials have been made. This typically takes less than 30 s of computer time, including compilation.

The value of 100,000 can, of course, be readily changed by editing SPRTLST. Increasing the number of trials may be necessary to obtain sufficient statistical precision in some cases, such as, for example, when α_{0} is less than 10^{-3}.

B. Setting Up Problems

The usual method for setting up an SPRT is to base it on a single-interval test with false-detection probabilities of α_{0} and β_{0}, as the SIT is relatively easy to visualize and set up. The intent, then, is that the SPRT will have a better α or β or will require less time to run, on average, even though the nominal α_{0} and β_{0} are the same as for the SIT.

The following example will illustrate the general approach to setting up the SPRI based on a single-interval test. Assume that a safeguards radiation monitor has a mean background of 500 counts/s; you want to set up a 30-s single-interval test with an $\alpha=0.01$ and a $\beta=0.05$. Thus, in 30 s the mean background will be $30 \times 500=15,000$ and the standard deviation will be $\sigma=(15000)^{1 / 2}=122.5$. From a table of areas under the normal curve ${ }^{13}$ you

[^2]find that the abscissa for $\alpha=0.01$ is 2.326 and for $\beta=0.05$ is 1.645 standard deviations. Therefore, the mean of the source that can be detected in 30 s with these errors must be $(1.645+2.326) \sigma=486$ counts $/ 30 \mathrm{~s}$ above background. These relationships are illustrated in fig. l. A source whose count rate is greater than 486 counts $/ 30$ s will give a smaller β, and vice versa. The decision level, of course, always remains at a count rate of 15000/30 s + $2.326 \sigma / 30 \mathrm{~s}=15285 / 30 \mathrm{~s}$. Every count will be 30 s in length, regardless of a source's presence or size.

To set up the SPRT, use the same α and β (referred to here as α_{0} and β_{0}, the input values) and divide the 30-s interval, somewhat arbitrarily, into a number of steps. If the number of steps is too small, say 3 or less, the average length or time to make the test may be unnecessarily long. On the other hand, if there are too many steps, say more than 30 or 40 , you may need to modify SPRTEST to keep the number of forced decisions after step 98 to a small fraction of the total. There is usually little, if anything, to gain by increasing the number of intervals beyond 30 or so. For purposes of illustration, let us choose to divide the $30-\mathrm{s}$ interval into 10 steps and choose the step number, NSTEP $=15$, to force a decision if neither hypothesis H_{0} or H_{1} is accepted based on the A or B decision criterion at the completion of the step. The forced result, as stated previously, is stored in $1 \mathrm{HO}(100)$ or $\mathrm{IHI}(100)$, and the trial continues.

Another input parameter required is the location on the abscissa, in units of o, of the mean of the source distribution of interest. If you wish to determine the actual α and ASN for background only, the abscissa location is 0.0.

UADD (standard deviations)
トig. 1.
Sketch of normal distributions with means of background -only and above-background, as appropriate for a single-interval test with $\alpha_{0}=0.01$ and $\beta_{0}=0.05$.

To test for the ASN and β for the nominal source strength giving 486 counts/ 30 s above background, use an abscissa value of $1.645+2.326=3.971$. Of course, you can select other values in between or even greater than 3.971 to determine the $A S N$ and β for other source-strength values; you should do this for a complete comparison with other statistical tests. SPRTREP does this automatically for background and 10 other incremented values of the source strength (see Appendix B for a listing).

The last parameter to select is the starting argument for the random number generator. Normally, this is input as 0 (zero), which causes the generator to start at its default value. At the end of each run, a number related to the current argument of the random number generator is printed out. If this number is reinserted at the start of a subsequent run, the random number sequence will start at that point. This would be useful, for example, if you wish to compare two different runs using the same parameters, but using a different subset of random numbers. If you use 0 in both runs, the results will be identical, because the random numbers used are the same.

The preceding paragraphs give the complete set of parameters required to run a simulated SPRT. They are shown in Table I.

TABLE I
INPUT VALUES FOR SAMPLE PROBLEM I

Fortran Name	Value for Example	Meaning
ALPHA	0.01	Nominal α_{0} (false-positive detection probability)
BETA	0.05	Nominal β_{o} (false-negative detection probability for UADD $=3.971$)
YI	2.326	Abscissa value corresponding to α_{0}, in standard deviations
Y2	1.645	Abscissa value corresponding to β_{o}, in standard deviations
UADD	0.0 or 3.971	Abscissa value of the mean of the source to be sampled
No	10	Number of steps corresponding to the nominal single-interval test length
NSTEP	15	Step after which a decision is forced
NSEED	0	Number that provides the starting argument for the random number generator

To run SPRTEST at the Los Alamos Central Computing Facility on the Livermore Time Sharing System (LTSS), store SPRTEST as a local file and issue the command

FTN (I=SPRTEST,GO) /t p

The letters t and p stand for the maximum time in minutes allowed for the run and the priority assigned; normally, values of 1 (the default value) for both parameters will suffice.

After compilation, SPRTEST prompts the user for the parameter values, in the order listed in the table, with the Fortran name of the parameter. During and after completion of the run, the results are printed at the user's terminal, as explained in Sec. II-C.

C. Interpreting the Computer Output

The first 10 lines of output data constitute the IHO matrix, which is a record of decisions for accepting the H_{o} hypothesis; i.e., decisions that the population sampled was background only. A sample printout appears in Fig. 2. The first element of the first row is the number of times, out of the 100,000 trials, that H_{0} was accepted after step 1 . The second element is the number of times H_{0} was accepted after step 2, etc. Row 2 contains the number of decisions for H_{0} after steps 11 through 20; row 3, steps 21 through 30; etc., for rows 4 through 9 . In row 10, the ninth element corresponds to forced decisions for H_{0} after completion of 98 steps in which no decision for either H_{0} or H_{1} was reached using the normal (A and B) decision criteria. Hence, $\mathrm{IHO}(99)$ is the number of decisions made to accept the hypothesis H_{0} (background only) based on the sum of $Z \leq 0.0$ after step 98. Finally, $\mathrm{IHO}(100)$ represents the number of decisions for H_{0} after step NSTEP, where a decision was forced (using the sum of $Z \leq 0.0$).

The next 10 rows of data represent the decisions for H_{1} (above background), arranged in the same manner as for H_{0}. Elements 99 and 100 represent forced decisions after steps 98 and NSTEP, based on the sum of $Z>0.0$. Examination of the elements of these matrices can be very instructive regarding when decisions (correct or incorrect) are made in the sequential analysis.

The next row contains values labeled ASN and ASN(FORCED). The first is the average step number, when the only forced decisions, if any, occur after step 98. ASN(FORCED) is the average step number resulting from termination of the sequence after step NSTEP, made by forcing a decision after that step if a decision to accept H_{0} or H_{1} is not made sooner. Both are obtained by appropriate calculations using the IHO and IHI matrix elements. These values, divided by NO, give the fraction of the single-interval test length that the average SPRT takes to make a decision, shown in the next row. It is, of course, best that these fractions be less than 1 over the range of UADD values of most interest to the user.

MATRIX IHO(BACKGRDUND-ONLY) :									
3914	17776	19423	15662	11579	8302	6013	4414	3231	2349
1730	1225	1038	739	557	394	272	211	157	131
108	68	34	43	25	21	20	15	14	10
9	2	2	3	2	1	1	0	1	0
0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1120
MATRIX IH1 (ABOVE-BACKGROUND) :									
1	28	60	69	71	65	45	36	33	19
24	13	9	7	4	7	4	2	2	1
1	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	444
$A S N=$		4.969			$\operatorname{ASN}($ FORCEO $)=$			4.905	
ASN/NO $=.4969$					ASN(FORCED)/NO=			4905	
	$\mathrm{NHO}=$	99497	$\mathrm{NH} 1=$		503		-		
ALPHA $=.005030$									
	$\mathrm{NHO}=$	99072		$\mathrm{NH} 1=$	928				
ALPHA (FORCEO $)=.009280$									
LAST RAN		NODM N	. STA	RTING	SEED=	274451029000570645			

Fig. 2.
Computer printout of calculated results for UADD $=0.0$ for problem l. See the text for details.

The next row contains NHO and NH , which are simply the total number of decisions in the matrices IHO and IHI , respectively, excluding elements 100 in both cases. Then $\mathrm{NHI} /(\mathrm{NHO}+\mathrm{NH})$ is the fraction of decisions accepting the hypothesis H_{1}. This represents α (the false-positive probability) when the population being tested in the SPRT simulation is the background; i.e., for runs with UADD $=0.0$. For runs with UADD $>0.0, \mathrm{NHO} /(\mathrm{NHO}+\mathrm{NHI})$ is equal to β, the false-negative probability. The computed ALPHA or BETA is shown in the next row. The β obtained for $\operatorname{UADD}=Y 1+Y 2$, and the α can be compared with the input, nominal β_{0} and α_{0}, respectively, to determine how the statistical performance of the SPRT compares with the single-interval test. These calculated α and β values, of course, are based on no forced decisions (except possibly after step 98).

The next row contains FNHO and FNH , which are the sums of the IHO and IHI matrix elements, respectively, from elements 0 through NSTEP, plus elements 100. Thus, they represent decisions made for an SPRT with forced decisions made after step NSTEP. An α or β can be obtained with these values in analogous fashion to the preceding calculations; they are shown in the next row as ALPHA(FORCED) or BETA(FORCED). These values can be compared to the α and β calculated previously to determine the effect of truncating the sequential test at step NSTEP. Of course, these values for α and β can also be compared directly with α_{0} and β_{0} of the nominal single-interval test.

For the program SPRTREP, the next value shown is UADD, which is the mean (in standard deviations) of the distribution being sampled.

Finally, the LAST RANDOM NO. STARTING SEED appears. Insertion of this value into the input of a subsequent run will start the random number generator at this point.

III. RESULTS FOR SAMPLE PROBLEMS

This section contains results for three sample problems, and a brief discussion of the results. The problems explore how different combinations of initial input parameters affect the SPRT results.

Sample Problem 1: $\alpha_{0}=0.01, \beta_{0}=0.05$,
Sample Problem 2: $\alpha_{0}=0.01, \beta_{0}=0.01$,
Sample Problem 3: $\alpha_{0}=3.16 \times 10^{-5}, \beta_{0}=0.5$.

A. Problem 1

Problem $1\left(\alpha_{0}=0.01, \beta_{0}=0.05\right)$ uses the values from Table I as input parameters to SPRTEST. (The problem is discussed in Sec. II.) Two runs were made: the first with UADD = 0.0, corresponding to background only, and the second with UADD $=3.971$, which corresponds to a source giving a mean count of $486 / 30 \mathrm{~s}$ above the background mean. The computed results for UADD $=0.0$ and 3.971 are shown in Figs. 2 and 3, respectively. Figure 4 shows selected portions of the printout obtained at the data input stage when the program was compiled and run for UADD $=0.0$, showing the input of the parameters from Table I.

For the first run (UADD = 0.0), it can be seen (Fig. 2) that the ASN is just less than 5 , regardless of whether a decision is forced after NSTEP $=15$. Because the SPRT is based on a single-interval test of 10-step length, this means that for background only the SPRT requires, on average, just one-half the length of the single-interval test, as shown by ASN/NO.

The false-positive probability, α, is ALPHA $=0.00503$ for the unforced case and ALPHA (FORCED) $=0.00928$ for the test when the sequence is terminated no later than step 15. These values can be compared with the nominal α_{0} of 0.01 for the single-interval test. Thus, both versions of the SPRT give a lower (better) value for α, with the nonforced value considerably better than that obtained when the decision is forced after step 15.

MATRIX IHO(BACKGRDUND-DNLY) :									
122	458	500	343	283	175	153	100	73	49
33	31	24	13	10	12	6	8	3	0
3	2	1	0	0	2	0	1	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	270
MATRIX IH1(ABDVE-BACKGRDUNO):									
139	4626	11783	14588	13764	11841	9644	7465	5826	4440
3336	2576	1892	1473	1156	792	575	450	322	254
177	128	90	59	52	36	25	29	17	11
7	4	4	1	3	2	0	2	2	1
0	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2814
ASN=		6.660			$\operatorname{ASN}($ FORCEO $)=$			6.542	
ASN/NO $=.6660$					ASN(FORCED)/NO=			542	
	$0=$	2405	$\mathrm{NH} 1=$		97595				
BETA $=.024050$									
	$0=$	2637	F	$\mathrm{H} 1=$	97363				
BETA $($ FORCEO $)=.026370$									
LAST RANDOM ND. STARTING SEED= 274530846076037529									

Fig. 3.
Computer printout of calculated results for UADD $=3.971$ for problem I.

For UADD $=3.971$, the ASN from Fig. 3 is about 6.6 for both the forced and unforced cases, whereas β is about 0.025 . So again, the average trial time is less than the SIT time and the β is about half the nominal β_{o}.

Examination of the matrices shows that because element 99 is always zero, the nonforced decisions were all made before the completion of step 98. Element 100 contains the number of decisions forced at the completion of step 15 (NSTEP). For example, of the forced decisions in Fig. 3, 2814 were made to accept H_{1} and 270 were made to accept H_{0}.

In summary, these results show that the SPRT for this case gives a better α and β, and requires less time, on average, for both the nonforced and forced

Fig. 4.
Computer printout at the data input stage for problem 1. The question marks are computer prompts, requiring the user to type in the particular input parameter values.

```
FTN (I=SPRTEST.GD) / 1 1
    TYPE IN ALPHA (F10.8)
?.01
    TYPE IN BETA (F10.8)
?.05
    TYPE IN Y1 (F7.5)
? 2.326
    TYPE IN Y2 (F7.5)
? 1.645
    TYPE IN UADD (F7.5)
? 0.0
    TYPE IN NO (I2)
? 10
    TYPE IN NSTEP (I2)
? 15
    TYPE IN NSEED (I18)
? 0
    RANOOM ND. STARTING SEED=O
```

(NSTEP = 15) decision cases than the nominal single-interval test on which it was based, for the two distributions tested. For other values of source strength, the SPRT may or may not be a better test than the single-interval test; problem 2 illustrates this point.

B. Problem 2

Problem 2 ($\alpha_{0}=0.01, \beta_{0}=0.01$) uses the input parameters shown in Table II. Thus, this SPRT is based on a single-interval test with $\alpha_{0}=\beta_{0}=0.01$, having a nominal length of 12 steps. Decisions will be forced after step 12; i.e., for the forced-decision situation, no trial will be longer than the singleinterval test. To solve the problem took a total of 11 runs, starting with UADD $=0.0$ and incrementing by $Y 1+Y 2=4.652 / 5=0.9304$ for succeeding runs. These incremental runs will provide a range of source strengths ranging from zero to 9.3 times the standard deviation of the single-interval background. The run for UADD $=4.652$ corresponds to the source strength on which the single-interval test was based; i.e., for that source strength the single-interval test is expected to result in $\beta=0.01$. By varying the source strengths in the above manner, we can determine the variation in actual ASN and the actual α and β; they can then be compared with the single-interval test values.

This result could be accomplished by running SPRTEST eleven times with the appropriate value of UADD input for each run. However, this type of problem can more readily be handled by the program SPRTREP, which is simply SPRTEST with a DO-LOOP added to automatically increment UADD and repeat the test for a total of 11 runs. Each run starts with the next random number, so that a different set of random numbers are sampled for each run. The input UADD is 0.9304 , the increment value we want.

TABLE II
INPUT VALUES FOR SAMPLE PROBLEM 2

Fortran Name	Value
ALPHA	0.01
BETA	0.01
YI	2.326
Y2	2.326
UADD	$[(Y 1+Y 2) * J] / 5 .,]=0,10^{\mathrm{b}}$
NO	12
NSTEP	12
NSEED	0
aSee Table I for the definition of the Darameters. The actual input value is $0.9304, ~ a s ~$ discussed in the text.	

Selected results are shown in Table III. The single-interval data were calculated by hand using standarized tables ${ }^{13}$ of the cumulative area under a normal curve.

The value of α can be derived from the first row (UADD $=0.0000$) of Table III as described previously. For the unforced case, $\alpha=0.0045$; for the forced, it's 0.0118; and for the single-interval test, $\alpha=0.0100$. Thus α for the unforced problem is considerably better than that for the single-interval test and slightly worse for the forced SPRT case.

By examining the second, fourth, and last columns of the other rows in Table III, whose values are all equal to $\beta \times 10^{5}$, one can compare the falsenegative detection probabilities for the three different tests. For UADD less than about 2, the forced and single-interval tests give similar values for β, whereas the unforced test gives poorer values. In the range of UADD from about 2 to 6 , the unforced SPRT gives better results for β, whereas for larger UADD, the single-interval test appears to give a smaller β. (Because the statistics in the table are poor for small β, runs using SPRTEST were made with 10^{6} trials at UADD $=6.5128$ and 7.4432 to confirm the latter conclusion.)

Figures 5-7 show the computer output for runs with UADD $=0.0,2.7912$, and 9.3040, respectively. Comparison of the matrices in Figs. 5 and 6 shows that decisions are generally made more quickly in the case of background only ($\mathrm{UADD}=0.0$), as can also be seen from the ASN values. From Fig. 5, in fact, it is evident that all decisions are made before step 50, whereas in Fig. 6, that is not the case. Based on this observation, it is apparent that the unforced

TABLE III
RESULTS FOR SAMPLE PROBLEM 2

		$\operatorname{ced}^{\mathrm{a}}$		$\begin{aligned} & \text { SPRT } \\ & \text { orced } \end{aligned}$	Single- Interval Test ${ }^{\text {C }}$
UADD	NHO	ASN	FNHO	ASN Forced	$\beta \times 10^{5}$
0.0000	99554	6.22	98815	5.99	99000
0.9304	96045	9.49	91243	7.87	91900
1.8608	74346	14.87	67561	9.35	67900
2.7912	25610	14.87	32520	9.34	32100
3.7216	3877	9.43	8543	7.85	8100
4.6520	426	6.17	1166	5.95	1000
5.5824	45	4.54	96	4.52	56
6.5128	2	3.62	2	3.62	1
7.4432	1	3.02	1	3.02	0
8.3736	0	2.62	0	2.62	0
9.3040	0	2.33	0	2.33	0
a Decisions were actually forced after step 98 if the trial continued that long; this occurred only 33 times out of 100,000 trials, in the worst case. Decisions were forced after step 12, if the trial continued that long. ${ }^{\mathrm{c}}$ Based on a single-interval test corresponding in length to 12 steps.					

SPRT could be improved somewhat, by forcing a decision at, say, step 50 to accept H_{1}; i.e., if the sequence does not terminate before reaching step 50 , force termination with the decision that the trial is sampling background plus a source (above background). Not only would that result in a somewhat decreased β for UADD between 2 and 3, but the ASN in that region would also decrease slightly. Moreover, the maximum possible length of a trial would be reduced by a factor of 2 . So, there would appear to be several advantages to making such a forced termination of the sequence, and no apparent disadvantages.

Figure 6 shows that a few trials did not result in a decision after completion of 98 steps. Thus, a decision was forced and the result recorded in element 99. In this case, the SPRT made 11 decisions to accept H_{0} (background only) and 16 to accept H_{1} (above background). Generally, the SPRI has
the most difficulty making a decision--and thus, the largest ASN--for UADD values about midway between 0 and (Y1 + Y2). When the corresponding mean count rates are lower or much higher, the SPRT can make decisions more quickly, which, at higher count rates, are more frequently correct. It can be seen, for example, in Fig. 7, where UADD $=9.304$, that all decisions are made before step 9 , with the majority made at the end of step 2 , and all decisions were made correctly to accept H_{1}.

Fig. 5.
Computer output for problem 2, with UADD $=0.0$.

MATRIX IHO(BACKGRDUND-ONLY):									
16	463	1083	1463	1612	1624	1501	1469	1348	1177
1118	1068	1000	897	807	724	659	664	546	538
439	466	431	371	379	302	284	242	253	227
207	171	171	153	141	126	121	109	104	89
76	84	69	61	59	52	48	51	41	42
46	45	27	26	24	26	20	19	21	26
18	13	7	8	13	9	6	4	5	4
6	3	10	5	7	8	6	4	5	5
4	4	2	1	2	2	1	0	3	2
3	1	2	0	0	0	1	0	11	18582
MATRIX IH1(ABOVE-BACKGROUND):									
56	1203	3176	4303	4663	4702	4475	4147	3813	3618
3292	2962	2783	2571	2370	2164	2002	1834	1668	1493
1426	1309	1136	1157	1020	903	851	724	715	665
576	576	503	441	435	406	324	313	291	275
234	246	209	194	173	152	154	141	110	123
126	109	81	99	82	58	70	59	39	44
36	47	31	41	31	32	21	25	32	19
23	13	21	18	18	3	6	13	13	7
10	6	5	9	4	8	8	2	1	2
3	4	6	4	0	3	1	3	16	27066
$A S N=$		14.869			$\operatorname{ASN}($ FORCEO $)=$			9.344	
ASN/NO $=1.2391$					$\operatorname{ASN}(\mathrm{FORCEO}) / \mathrm{NO}=.7787$				
	10=	25611	$\mathrm{NH} 1=$		74389				
$\mathrm{BETA}=.256110$									
	$\mathrm{NHO}=$	32524		$\mathrm{NH} 1=$	67476				
BETA $($ FDRCED $)=.325240$									
UADD $=\quad 2.79120$									
LAST RANDOM ND. STARTING SEED $=274706265348229153$									

Fig. 6.
Computer output for problem 2, with UADD $=2.7912$.

Fig. 7.
Computer output for problem 2, with UADD $=9.3040$.

C. Problem 3

Problem 3 ($\alpha_{0}=3.16 \times 10^{-5}, \beta=0.5$) involves computer simulations of a vehicle portal monitor used in a nuclear safeguards application, as the monitor was initially set up. The monitor's decision logic requires some changes in SPRTEST. Only part of the results are described in this report; a listing of the modified program is not included because of the program's specialized nature.

The actual monitor consists of four detector modules, each performing the SPRT using identical parameters. The simulated SPRT for a single module is described first, then the simulation for the four modules combined.

For the single module, NO = 12 and NSTEP $=15$. But, SPRTEST was modified so that A is equal to 8.0, and after step 15 the forced decision always accepts hypothesis H_{0} (background only). The results for β and the ASN as a function of UADD are plotted in Fig. 8.

The ASN for background only (UADD $=0.0$) is 2.4 , meaning an average time savings of a factor of 5 over the nominal (12-step) single-interval test for a monitoring situation where no source is present. The ASN increases to almost 9 for UADD $=2.0$, then declines for higher values of UADD. Because the actual monitoring that is being simulated is almost always of vehicles without sources, the value of the ASN for UADD $=0.0$ is, by far, the most important one.

The actual α determined by the simulation is $(1.07 \pm 0.10) \times 10^{-4}$, which is considerably larger than the nominal α_{0}. This larger α is due primarily to the use of the modified value of 8.0 for A (instead of the value 9.67, which would have been calculated by the normal equation used in SPRTEST and SPRTREP).

To compare the power of the SPRT with the (12-step) single-interval test, the latter was calculated using the same α as determined above; i.e., $\alpha_{0}=1.07$ $\times 10^{-4}$. The results for β are also plotted in Fig. 8, where it can be seen that they are very close to the SPRT values for UADD less than 4.0. At higher values of the abscissa, the single-interval values of β are superior (i.e., lower).

To model the simultaneous use of the four detector modules, further modifications of SPRTEST were made to simulate the logic of the system controller. That logic is basically as follows. A background indication is given only when all four modules accept hypothesis H_{0}. An alarm results as soon as any of the modules makes a decision to accept H_{1}. Thus, for the H_{0} hypothesis, the length of time required to complete the trial is governed by the module that takes the longest time to make a decision. For the H_{1} hypothesis, the module making the decision in the shortest time controls the overall time for the trial.

Fig. 8.
Plots of the computer results for problem 3, for a single detector module. The top plot shows the false-negative detection probability, β; the bottom shows the average step number, both as a function of UADD. Input parameter values $\mathrm{NO}=12$, NSTEP $=15$, and $\beta_{0}=0.5$.

The results of this simulation are shown in Fig. 9. The problem assumed that all modules had the same background intensity and were exposed to the same source strength; the plot is in terms of the UADD for a single detector module. A comparison of Fig. 9 to Fig. 8 shows that the ASN goes up considerably for small values of UADD, and is smaller for large values, as would be expected based on the controller logic. The ASN for UADD $=0.0$ is 4.8 , which is twice the single-module value. Still, it is only 40% of the nominal singleinterval time. The calculated α for the four-module SPRT is $(4.3 \pm 0.2) \mathrm{x}$ 10^{-4}, which, as would be expected, is four times the single-module value.

The single-interval test results for β are also plotted in Fig. 9 for comparison with the SPRT values. Again, for UADD less than about 4 they are quite similar to the SPRT values, but diverge at larger values with the singleinterval β being lower. The single-interval values shown here for β were simply calculated from the single-interval values in Fig. 8 by taking those values to the fourth power. The 4 -module SPRT values for β were obtained from the computer simulation, but similar values could also have been obtained from the one-module SPRT values by the same method used to calculate the single-interval results.

Fig. 9.
Plots of results for problem 3 for four detector modules operating simultaneously. See caption of Figure 8 for details.

IV. PARAME TER COMPARISONS

This section describes selected results of a series of runs made with SPRTEST to provide a systematic comparison of the parameters α, β, and the ASN. Runs were made for $\alpha_{0}=0.1,0.05,0.01,0.001$, and 0.0001 , while for each α_{0}, β_{0} took on the values of 0.5, 0.1, 0.05, and 0.01. For each of these combinations, a run was made with $\mathrm{UADD}=0.0$, corresponding to background, and UADD $=Y 1+Y 2$, corresponding to background plus a source that would give $\beta=\beta_{o}$ for the nominal single-interval test.

One-hundred thousand trials were made for each run, except for those with $\alpha_{0}=0.001$ and 0.0001 with UADD $=0.0$, where the number of trials was set at 4×10^{5} and 2×10^{6}, respectively. Changes were made in the Fortran code to obtain reasonable statistical precision for the low-probability tallies in IH-1 for those values of α_{0} and UADD. NO and NSTEP were set at 10 and 15 respectively, for all the runs.

The values of α_{0} and β_{0} chosen cover a range of practical use in most safeguards applications. The NO and NSTEP were selected somewhat arbitrarily, but again they are typical of what might be used in actual applications. Although the results in the following paragraphs strictly apply only for these parameter values, similar results and conclusions would be expected for other parameter choices similar to these.

A. False-Positive Probability

Table IV shows the values obtained for α for various values α_{0} and β_{o} from the various computer runs when no forced decisions were made (except in a few rare and insignificant number of trials where a decision was forced after step 98).

In all cases α is less than α_{0}, ranging in value from about 30 to 98% of α_{0}. The ratio of α / α_{0} is largest for large β_{o} and decreases as β_{0} decreases. Although not shown in the table, runs were made for the extreme cases of $\beta_{0}=0.5$ and $\alpha_{0}=0.25$ and 0.40 ; even in those cases α was not greater than α_{0}, within the statistical uncertainties of the 100,000-trial runs.

Table V shows the results for α when a decision is forced after step 15. In many cases α is greater than α_{0}; indeed, in some cases it is greater by more than an order of magnitude. On the other hand, for some sets of α_{0} and β_{0}, α is less than the nominal α_{0} by almost 50%. This wide difference in the α / α_{0} ratio for forced decisions clearly illustrates the need for caution when you force the sequential test to terminate prematurely.

TABLE IV
CALCULATED VALUES FOR α FOR UNFORCED DECISIONS

α_{0}	β_{0}			
	0.5	0.1	0.05	0.01
0.1	0.098	0.064	0.062	0.051
0.05	0.048	0.031	0.028	0.024
0.01	0.0091	0.0056	0.0046	0.0042
0.001	0.00084	0.00052	0.00042	0.00038
0.0001	0.00009	0.00005	0.00004	0.00003

B. False-Negative Probability

Table VI shows the calculated values of β for various values of α_{0} and β_{0} for unforced decisions. These are the calculated β values for a source strength corresponding to $\mathrm{Yl}+\mathrm{Y} 2$; i.e., a source that would give the nominal β_{0} in the single-interval test used to set up the particular SPRT.

TABLE V
CALCULATED VALUES FOR α FOR FORCED DECISIONS AT NSTEP $=15$

α_{0}	β_{o}			
	0.5	0.1	0.05	0.01
0.1	0.152	0.081	0.072	0.054
0.05	0.096	0.045	0.037	0.026
0.01	0.038	0.013	0.0085	0.0057
0.001	0.011	0.0026	0.0016	0.00069
0.0001	0.0078	0.0020	0.00036	0.00012

TABLE VI
CALCULATED VALUES FOR β FOR UNFORCED DECISIONS ${ }^{\text {a }}$

α_{0}	β_{0}			
	0.5	0.1	0.05	0.01
0.1	0.392	0.064	0.030	0.0056
0.05	0.367	0.059	0.028	0.0053
0.01	0.322	0.053	0.024	0.0046
0.001	0.273	0.046	0.021	0.0038
0.0001	0.239	0.041	0.018	0.0033

aEvaluated at a source strength corresponding to $\mathrm{Y} 1+\mathrm{Y} 2$ for each β_{0}.

The values for β are all less than the β_{o} values, ranging from about 33 to. 78% of β_{o}. In Sec. IV-A for the unforced case, α was always less than α_{0} for the range of α_{0} and β_{0} covered, therefore it follows that $\alpha+\beta \leq \alpha_{0}+\beta_{0}$, which is the relationship derived by Wald ${ }^{1}$ for the general case. The trend observable in the table is for β / β_{0} to decrease as α_{0} decreases.

Table VII shows the calculated values of β when a decision is forced after NSTEP $=15$. The trend here is the same as in the preceding table, namely, β / β_{0} decreases as α_{0} decreases. However, for $\beta_{0} \leq 0.1$, the values of β here are somewhat greater than those in the preceding table, and in the case of $\alpha_{0}=0.1$ and $\beta=0.01, \beta / \beta_{0}$ is greater than 1. For $\beta_{0}=0.5$, the values of β are less than those in Table VI. So, the actual β for forced decisions can be smaller or larger than the unforced β values, depending on β_{0}.

A different decision criterion for forced decision could markedly change the results shown in Tables V and VII for α and β, respectively. For example, if hypothesis H_{0} is always accepted after NSTEP ($=15$ or otherwise), then the forced-decision values for α will be lower than those shown in Table V, while the values for β will be higher than in Table VII; in fact, the forced-decision α values will be equal to or lower than the unforced values.

TABLE VII
CALCULATED VALUES FOR β FOR DECISIONS FORCED AT NSTEP $=15^{\circ}$

α_{0}	β_{0}					
	0.5	0.1	0.05	0.01		
0.1	0.380	0.081	0.043	0.0126		
0.05	0.356	0.069	0.036	0.0095		
0.01	0.316	0.056	0.027	0.0058		
0.001	0.272	0.047	0.021	0.0041		
0.0001	0.238	0.041	0.019	0.0034		aEvaluated at a source strength corresponding to Y1 + Y2 for
:---						
each β_{0}.						

C. Average Step Number

Table VIII shows the ASN values versus α_{0} and β_{0} for unforced decisions with $U A D D=0.0$ (background). These values range from 24 to 75% of NO, the
nominal length of the single-interval test on which the SPRT is based. The obvious trends are that the ASN decreases as α_{0} decreases and as β_{0} increases. The lowest ASN is for $\alpha_{0}=0.0001$ and $\beta_{0}=0.5$.

For UADD $=\mathrm{Y} 1+\mathrm{Y} 2$, the results are shown in Table IX. These values are higher, on average, than for UADD $=0.0$, but they are always less than N0 ($=10$). However, for some values of UADD between 0.0 and Y1 + Y2, the ASN might be greater than NO, as is apparent from some of the sample problems discussed in Sec. III.

As expected, for those entries corresponding to $\alpha_{0}=\beta_{0}$, the ASN values in Tables VIII and IX are equal, because the analysis of UADD $=0.0$ and UADD $=$ $Y 1+Y 2$ is symmetrical in that situation. Similarly, the values for α in Tables IV and V are equal (within statistical variations) to the values of β in Tables VI and VII, respectively, for $\alpha_{0}=\beta_{0}$.

TABLE VIII
THE AVERAGE STEP NUMBER FOR UADD $=0.0$ (BACKGROUND)

α_{0}	β_{0}			
	0.5	0.1	0.05	0.01
0.1	7.1	7.3	7.4	7.5
0.05	6.1	6.3	6.5	6.7
0.01	4.3	4.7	4.9	5.3
0.001	3.0	3.5	3.7	4.1
0.0001	2.4	2.8	3.0	3.4

TABLE IX
THE AVERAGE STEP NUMBER FOR UADD $=\mathrm{Y} 1+\mathrm{Y} 2$

α_{0}	β_{0}				
	0.5	0.1	0.05	0.01	
0.1	9.7	7.3	6.3	4.7	
0.05	9.7	7.4	6.5	4.9	
0.01	9.7	7.5	6.7	5.3	
0.001	9.8	7.7	6.9	5.6	
0.0001	9.9	7.9	7.2	5.9	

In fact, for α_{0} and β_{0} in Tables IV, V, and VIII equal to β_{0} and α_{0} in Tables VI, VII, and IX, respectively, the entries should be equal, within statistical variation. For example, the entry in Table VIII for $\alpha_{0}=0.01, \beta_{0}=0.1$ is equal to the Table IX entry for $\alpha_{0}=0.1, \beta_{0}=0.01$. As another example, the entry in Table IV for $\alpha_{0}=0.01, \beta_{0}=0.05$ is 0.0046 , whereas the equivalent value in Table VI for $\alpha_{0}=0.05, \beta_{0}=0.01$ is 0.0053 . Because these values are each based on 10^{5} trials, they represent approximately 460 and 530 decisions, respectively. Thus, their standard deviations are approximately (460) ${ }^{1 / 2} \simeq 21$ and $(530)^{1 / 2} \simeq 23$. To determine if these entries are within reasonable agreement, the normal distribution test ${ }^{13}$ may be applied to yield $t=|530-460| /$ $(530+460)^{1 / 2}=2.22$. This means that a difference at least this large would be expected with a frequency of 2.6%. Considering the number of entries being compared in the tables, these two entries seem to be in reasonable agreement. Most of the other entries appropriate for comparison are in closer agreement.

v. EFFECT OF VARYING THE NOMINAL STEP NUMBER

To gain some insight into the effect of varying NO, the number of steps corresponding to the nominal single-interval test length, a series of runs was made with $\mathrm{NO}=1,2,4,8,16$, and 32. For all runs the value $\alpha_{0}=\beta_{0}=0.01$ was used, while UADD took on values from 0.0 to 6.0 in increments of 1.0. Each run was 100,000 trials in length.

The results for α and β are shown in Table \times for the unforced decision case. (Although a decision was actually forced after step 98 for some trials, this did not have a significant effect on the results shown except for $N 0=32$, where the values for UADD $=2.0$ and 3.0 would have been, respectively, somewhat larger and smaller.) It can be seen that smaller $N O$ values resulted in smaller values for α. However, for small values of UADD, β is poorer (larger) for smaller NO values; this is, of course, always the case for very small values of UADD, because in the limit as UADD goes to zero, $\beta=1-\alpha$.

Because $\alpha_{0}=\beta_{0}=0.01$, it follows that for UADD $=Y 1+Y 2=2.326+$ $2.326=4.652, \beta=\alpha$; and for UADD $=2.326, \beta=0.5$ for all values of NO. Also, for any NO, the β for any UADD' $=4.652$ - UADD is equal to $1-\beta$ for UADD. For example, the β for UADD' $=4.652-2.0$ is equal to $1-0.685=0.315$ for $\mathrm{NO}=8$. Thus additional values for β may be derived from the table for UADD' $=0.652,1.652,2.652,3.652$, and 4.652 .

Based on these characteristics, it follows that for values of UADD between 2.326 and 4.652, the smaller NO is, the smaller (relatively) is β. This is clear from the table for UADD $=3.0$ and 4.0 , and, indeed, the table indicates that this might be the trend for considerably larger values of UADD.

The statistical cost of the lower α as a function of lower NO is demonstrated in Table XI, where the ratio of the ASN to NO is shown for the unforced decision case. (Again, a decision was actually forced after step 98, if
no decision had been reached by then. This only had a noticeable effect on the runs with NO = 32 and with UADD = 2.0 and 3.0, where otherwise the values for ASN/NO would have been somewhat larger.)

The average time for a test (relative to the nominal single-interval test) increases with decreasing NO. For example, if these tests were based on a single-interval test that took 10 s , the average length of the SPRT test for UADD $=0.0$ would be 10.9 s for $\mathrm{NO}=1$, but only 4.7 s for $\mathrm{NO}=32$. Actually, every trial for the SPRT test for $N 0=1$ takes as long or longer than the single-interval test because no decision can be made until the end of step 1 , which is exactly the length of the single-interval test.

TABLE X
CALCULATED RESULTS FOR α AND β FOR UNFORCED DECISIONS

	UADD							
N0	0.0^{a}	1.0	2.0	3.0	4.0	5.0	6.0	
1	0.0004	0.986	0.736	0.106	0.0048	0.0002	$<10^{-5}$	
2	0.0016	0.975	0.713	0.134	0.0098	0.0006	$<10^{-4}$	
4	0.0027	0.967	0.699	0.153	0.0149	0.0012	0.0001	
8	0.0038	0.959	0.685	0.165	0.0185	0.0016	0.0002	
16	0.0048	0.952	0.675	0.179	0.0213	0.0021	0.0003	
32	0.0061	0.946	0.664	0.191	0.0255	0.0025	0.0003	
a Entries under the column with UADD $=0.0$ are the calculated values for								
$\alpha ;$ all other columns contain the calculated β values.								

TABLE XI
ASN/NO VALUES FOR UNFORCED DECISIONS

N0	UADD								
	0.0	1.0	2.0	3.0	4.0	5.0	6.0		
1	1.09	1.48	2.56	2.12	1.28	1.05	1.00		
2	0.75	1.14	1.96	1.66	0.96	0.68	0.56		
4	0.62	0.97	1.60	1.39	0.81	0.55	0.42		
8	0.55	0.87	1.38	1.21	0.72	0.48	0.36		
16	0.50	0.79	1.24	1.10	0.66	0.44	0.33		
32	0.47	0.74	1.11	1.00	0.63	0.41	0.31		

So, although α is better for small NO than large, the length of time required to make a decision is larger. It is, thus, not apparent from these two tables that there is a universally best NO for the SPR1 with $\alpha_{0}=\beta_{0}=0.01$. This general problem of a best NO requires further study.

For the same runs discussed previously, but for forced decisions at $\mathrm{NO}=$ NSTEP, the results are shown in Tables XII and XIII. Setting NSTEP = NO ensures that the SPRT never takes longer than the single-interval test on which it is based. In fact, because of the forced-decision criteria used in the program, for $\alpha_{0}=\beta_{0}$, the run with NO = NSTEP $=1$ is exactly equivalent to the single-interval test. In Table XII, the theoretical results of the single-interval test, as determined from cumulative probability tables for the normal distribution, are shown in the first row, while the values obtained from the computer program are shown in the second row ($\mathrm{NO}=1$). The agreement between the two rows is excellent. The trends noticeable in Table XII are that α increases slightly with increasing NO, and the β values for particular source strenths are very similar for a large range of UADD values, increasing somewhat with NO as UADD increases above 2.326.

Table XIII shows that for $\mathrm{NO}=1, \mathrm{ASN} / \mathrm{NO}=1$; in fact, one and only one step is always required. For the other values of NO, the ASN is always less than 1. Of particular interest is the ASN/NO ratio for UADD $=0.0$. This is, for example, equal to 0.48 for $N 0=16$; i.e., the SPRT with a decision forced after step 16 takes only half as long on average, as the single-interval test. It never takes longer than the single-interval test for any value of UADD, and

TABLE XII
CALCULATED RESULTS FOR α AND β FOR FORCED DECISIONS AT NSTEP + NO

NO	UADD							
	0.0 a	1.0	2.0	3.0	4.0	5.0	6.0	
$(1)^{b}$	(0.0100)	(0.908)	(0.628)	(0.250)	(0.0470)	(0.00375)	(0.00012)	
1	0.0104	0.908	0.627	0.250	0.0454	0.0038	0.0001	
2	0.0108	0.907	0.629	0.255	0.0492	0.0042	0.0002	
4	0.0112	0.905	0.629	0.255	0.0496	0.0045	0.0002	
8	0.0115	0.903	0.627	0.252	0.0504	0.0049	0.0004	
16	0.0122	0.900	0.622	0.256	0.0502	0.0049	0.0004	
32	0.0133	0.899	0.624	0.254	0.0533	0.0052	0.0004	

[^3]TABLE XIII
ASN/NO VALUES FOR FORCED DECISIONS AT NSTEP = NO

	UADD								
	NO	0.0	1.0	2.0	3.0	4.0	5.0		
1	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
2	0.70	0.83	0.92	0.89	0.79	0.66	0.62		
4	0.59	0.75	0.85	0.83	0.69	0.54	0.42		
8	0.52	0.69	0.81	0.78	0.63	0.47	0.36		
16	0.48	0.65	0.78	0.75	0.59	0.43	0.33		
32	0.46	0.62	0.75	0.72	0.56	0.41	0.31		

has similar β values (Table XII) for a range of UADD of interest to many safeguards problems. The α is, however, somewhat larger, and β for large values of UADD is also larger than that for the single-interval test. Tests such as this may well be useful in particular applications, because they allow considerably faster tests on average, are never longer, and have only a slight decrease of statistical power, compared to the single-interval test.

VI. SELECTION OF THE INPUT FALSE-NEGATIVE PROBABILITY VALUE

The input parameter α_{0} is selected to provide the (approximate) desired false-positive detection probability; to maximize detection sensitivity, it is generally chosen to be as large as tolerable for field conditions. However, selecting the input false-negative probability value β_{0} may be less straightforward, especially if you expect to encounter a range of source strengths. This difficulty arises because the choice for β_{0} affects the value of β for all source strengths (in contrast to the single-interval test, where the choice of α_{0} fixes β for all source strengths).

To gain some understanding of this effect, a series of runs was made using SPRTREP for $\alpha_{0}=0.0228$, and with $\beta_{0}=0.5,0.1587,0.0228,0.00135$, and 3.167×10^{-5}, corresponding to $Y 2=0.0,1.0,2.0,3.0$, and 4.0 , respectively. For each of the five runs, NO equaled 10 while UADD varied from 0.0 to 6.0 in increments of 0.5.

The results for α and β are shown in Table XIV for all five runs and are plotted in Fig. 10 for three runs. Examination of these data shows that, in general, each column has one region with a β lower than in any other column; this is near the region of UADD corresponding to the mean of the distribution appropriate for β_{o}. Thus, for example, in Fig. 10 the curve for $\beta_{o}=0.0228$ is best in the vicinity of UADD $=\mathrm{Yl}+\mathrm{Y} 2=2.0+2.0=4.0$. The other obvious generality is that the larger β_{0} is, the better (lower) β is at lower source strengths and the poorer it is at high source strengths. The converse is also

TABLE XIV
VALUES FOR α AND β VERSUS β 。

	β_{0}				
UADD	0.5	0.1587	0.0228	0.00135	3.167×10^{-5}
0.0^{a}	0.0213	0.01447	0.01125	0.00914	0.00760
0.5	0.9165	0.9486	0.9660	0.9761	0.9825
1.0	0.7686	0.8462	0.9043	0.9402	0.9612
1.5	0.5447	0.6351	0.7530	0.8517	0.9113
2.0	0.3457	0.3839	0.5001	0.6697	0.8070
2.5	0.2056	0.1960	0.2456	0.3842	0.5962
3.0	0.1243	0.0917	0.1116	0.1501	0.3011
3.5	0.07265	0.0426	0.0340	0.0430	0.0902
4.0	0.04379	0.0191	0.0112	0.0105	0.0177
4.5	0.02681	0.0088	0.0038	0.0023	0.00320
5.0	0.01581	0.0043	0.0011	0.00061	0.00043
5.5	0.00942	0.0020	0.0040	0.00012	0.00008
6.0	0.00582	0.00094	0.00015	0.00003	0.00001

true; i.e., small β_{o} results in relatively high values of β for small UADD and low β values for large UADD. The choice of β_{o} also affects α, as described in Sec. IV. The values for α are shown in the first row of Table XIV, for UADD $=0.0$.

Table XV shows the ASN/NO values obtained for all five runs and Fig. 11 shows plots for three of them. It appears that for each run there is a region of UADD where the ASN/NO value is less than for any other run. This is near, but not identical to the region corresponding to β_{o} for that run.

From this limited amount of data, it is obvious that the choice of β_{0} can significantly influence the statistical parameters α, β, and ASN. To determine the exact effect to expect for a particular α_{0}, you might think it necessary to perform a series of Monte Carlo runs as I did. However, to the extent that these data can be generalized, it appears that a particular choice for β_{0} gives the best test for source strengths corresponding to that value, as expected from the theory. If your concern is primarily with detecting sources of that

Fig. 10.
Plot of β versus UADD for selected SPRT runs with $\alpha_{0}=0.0228$ and $\mathrm{NO}=10$.

intensity, the choice of β_{o} then is obvious. Because the actual problem is not always (or even usually) that simple, a more detailed examination of the expected results, using the technique demonstrated here may be appropriate.

For example, examination of the curves in Fig. 10 shows that the one for $\beta_{o}=3.167 \times 10^{-5}$ has the poorest detectability at low values of source strength. In most safeguards applications, this would be undesirable and, therefore, a larger β_{0} would be chosen. However, this feature may be useful in some radiation monitoring applications, when, as here, it is coupled with very good capabilities at larger source strengths. Such features might be useful, for example, in a contamination monitor where only significant levels of contamination are of interest, and you don't want an alarm for levels just above background.

TABLE XV
CALCULATED VALUES FOR ASN/NO VERSUS β_{0}

UADD	β_{o}				
	0.5	0.1587	0.0228	0.00135	3.167×10^{-5}
0.0	0.506	0.536	0.581	0.623	0.660
0.5	0.706	0.712	0.730	0.752	0.775
1.0	0.930	0.934	0.936	0.931	0.929
1.5	1.022	1.121	1.176	1.172	1.140
2.0	0.974	1.123	1.287	1.411	1.408
2.5	0.866	0.985	1.168	1.443	1.646
3.0	0.751	0.814	0.932	1.177	1.577
3.5	0.655	0.676	0.725	0.863	1.168
4.0	0.572	0.567	0.577	0.639	0.794
4.5	0.506	0.486	0.477	0.496	0.564
5.0	0.453	0.424	0.403	0.405	0.433
5.5	0.410	0.377	0.351	0.343	0.353
6.0	0.375	0.338	0.312	0.298	0.300

VII. SUMMARY AND CONCLUSIONS

SPRTEST simulates the SPRT for populations described by the normal distribution. SPRTEST and its variation SPRTREP are listed in the appendixes; Los Alamos users can obtain them directly from the MASS storage system using the command GET/KLCQ2/name.

The SPRTEST program should prove useful in deciding whether to use the SPRT or another statistical test in various applications, in selecting parameters for the test, and in determining what experimental results would be expected ideally using a particular SPRT. Its current use is primarily for nuclear safeguards testing, but it should also be useful in other fields involving random sampling from populations approximated by the normal distribution. The various tables and figures in this report provide some insights into the usefulness and limitations of the SPRT for such applications.

For the domain of α and β of most interest in safeguards applications, it was shown that for $\mathrm{NO}=10, \alpha$ is always equal to or less than the nominal α_{0} for unforced decisions, and $\beta<\beta_{0}$ for UADD $=Y 1+Y 2$. For other values of UADD, β may be greater or lesser than the single-interval test β, but a number of trends were noted.

Fig. 11.
Plot of the fractional average step number, ASN/NO, for selected SPRT runs with $\alpha_{0}=0.0228$ and $\mathrm{NO}=10$.

The average length of time required to complete an SPRT is usually less than that for the single-interval test on which it is based for background (UADD $=0.0$) sampling and for UADD $\geq Y 1+Y 2$. In between, however, it is often longer.

The effect of dividing the nominal single-interval period into different numbers of steps, NO, was investigated and trends were noted. For NSTEP = NO = l, the SPRT was shown to be equivalent to the nominal single-interval test on which it is based, for the forced decision criteria used in the program.

A maximum time may be imposed on the SPRT by forcing a decision after NSTEP steps of the sequence. This never improves α and β simultaneously and may increase both, while the ASN decreases (or in extreme cases, remains the same). In general, NSTEP should be as large as tolerable to maximize the power of the SPRT. However, even when NSTEP = NO, the SPRT may be preferred to the single-interval test for particular applications; this choice for NSTEP ensures that the SPRT is never longer than the single-interval test on which it is based.

The effect of varying β_{0} was investigated over a limited range. In general, if it is most important to detect the source strength corresponding to a particular β_{o}, then input of that value provides the best SPRT. However, if a broad range of source strengths is of more or less equal importance, then it may be desirable to investigate the effect of varying β_{0}, using the Monte Carlo technique, before deciding on which β_{0} to use in the particular safeguards monitor. That type of investigation was demonstrated in this report.

While not described in this report, SPRTEST can be easily modified to examine more complex safeguards problems. For example, the source strength can be varied during a test sequence to simulate passage of a source through a radiation monitor. ${ }^{4}$ The frequency of detection with the SPRT can then be compared with that for the single-interval test, or other commonly used tests such as the sliding-interval procedure. ${ }^{14}$ SPRTEST may also be readily modified to use a Poisson distribution ${ }^{8}$ instead of the normal distribution used in this report.

ACKNOWLEDGMENTS

I am grateful to Paul E. Fehlau of Los Alamos who introduced me to the subject of the SPRT. The Monte Carlo Theory and Application Course, taught by Tom Booth also of Los Alamos, provided me with the background necessary to conceive this study and the basic technique to carry it out.

REFERENCES

1. Abraham Wald, Sequential Analysis (Dover Publications, Inc., New York, 1963).
2. P. E. Fehlau, J. C. Pratt, J. T. Markin, and T. Scurry, Jr., "Smarter Radiation Monitors for Safeguards and Security", 24th Annual Meeting of the Institute of Nuclear Materials Management, Vail, Colorado, July 10-13. 1983.
3. J. T. Markin, J. E. Stewart, and A. S. Goldman, "Data Analysis for Neutron Monitoring in an Enrichment Facility," Proceedings of the 4th Annual ESARDA Symposium Specialist Meeting on Harmonization and Standardization for Nuclear Safeguards," Petten, Netherlands, April 27-19. 1982.
4. P. E. Fehlau, K. L. Coop, and J. T. Markin, "Application of Wald's Sequential Probability Ratio Test to Nuclear Materials Control," ESARDA/INMM Joint Specialists Meeting on NDA Statistical Problems, Ispra, Italy, September 10-12, 1984.
5. P. E. Fehlau, K. Coop, C. Garcia, Jr., and J. Martinez, "The Pajarito SNM Monitor: A High-Sensitivity Monitoring System for HighlyEnriched Uranium," Proceedings of the 25th Annual Meeting of the Institute of Nuclear Materials Management, Columbus, Ohio, July 16-18, 1984.
6. P. E. Fehlau, K. L. Coop, and K. V. Nixon, "Sequential Probability Ratio Controllers for Safeguards Radiation Monitors," Proceedings of the 6th Annual ESARDA Symposium on Safeguards and Nuclear Material Management, Venice, Italy, May 14-18, 1984.
7. P. E. Fehlau "Materials Control and Accounting (MC\&A) Technology Development: Sequential Decision Logic for Safeguards Radiation Monitors," in "Safeguards and Security Progress Report August 1982 January 1983," D. R. Smith, Comp., Los Alamos National Laboratory report LA-9821-PR (November 1983).
8. K. L. Coop, "Monte Carlo Simulation of The Sequential Probability Ratio Test for Radiation Monitoring," Proceedings of the IEEE Nuclear Science Symposium, Orlando, Florida, October 31-November 2, 1984.
9. J. P. Shipley, "Sequential Likelihood-Ratio Tests Applied to Series of Material Balances," in Mathematical and Statistical Methods in Nuclear Safequards, F. Argentesi, R. Avenhaus, M. Franklin, and J. P. Shipley, Eds. (Harwood Academic Publishers for the Commission of the European Communities, New York, 1982).
10. E. H. Cooke-Yarborough and R.C.M. Barnes, "Rapid Methods for Ascertaining Whether the Activity of a Weak Radioactive Sample Exceeds a Predetermined Level," Proceedings of the Institution of Electrical Engineers 108 B, 153 (1961).
11. L. A. Aroian, "Applications of the Direct Method in Sequential Analysis," Technometries (3) $\underline{18}$ (August 1976).
12. C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler", Los Alamos National Laboratory report LA-9721-MS (March 1983).
13. J. B. Kennedy and A. M. Neville, Basic Statistical Methods for Engineers and Scientists, 2nd ed. (Thomas Y. Crowell Co., New York, 1976).
14. W. H. Chambers et al., "Portal Monitor for Diversion Safeguards", Los Alamos Scientific Laboratory report LA-5681 (December 1974).

APPENDIX A

SPRTEST FORTRAN LISTING
Los Alamos Identification No. LP-1732

```
$ FTN (I=SPRTEST.GD.SET.SYM=^)
        PROGRAM SPRTEST (TTY.INPUT=TTY. OUTPUT=TTY)
    KEN COOP'S PROGRAM TO TEST WALD'S SEOUENTIAL PROB. RATIO TEST
        GROUP 0-2. LOS ALAMOS NATIONAL LAGORATORY. MAIL STOP J-562
    WRITTEN IN FORTRAN IV FOR THE LDS ALAMOS LTSS COMPUTER SYSTEM
        UANUARY 3. 1985 VERSIDN
            INTEGER FNHO, FNH1
            OIMENSIDN IHO(100).IH1(100)
C
    INITIALIZE SOME PARAMETERS
            OD 10 J=1.100
            IHO(J)=0
    10 IH1(U)=0
        NH1=0
        NHO=O
        ASN=0.0
        LODP= - 1
C
C READ IN PARAMETERS FROM KEYBOARD
    REAO IN THE NOMINAL ALPHA
    PRINT }1
    READ 14.ALPHA
C READ THE NOMINAL BETA
    PRINT }1
    READ 18.BETA
C READ IN Y1.THE ABSCISSA VALUE CORRESPONOING TO ALPHA(NOMINAL)
    PRINT 20
    READ 22.Y1
C READ IN Y2. THE ABSCISSA VALUE CORRESPONOING TO BETA(NOMINAL)
    PRINT 24
        READ 22. Y2
C READ FROM KEYBOARD VALUE TO ADO TO U TO GET MEAN OF OISTRIBUTION
        THAT IS BEING TESTEE DR SIMULATED
        PROPERLY LOCATED FOR HYPOTHESIS HO.THE VALUE IS 0.O
        PRINT 30
        READ 60.UADD
C READ IN NO. ND. DF STEPS CORRESPONOING TD NDMINAL SINGLE-INTERVAL TEST
        PRINT 26
        READ 28.NO
C REAO IN STEP NO. AFTER WHICH A DECISIDN IS FDRCED
        PRINT 40
        READ 70,NSTEP
C READ IN SEED FOR RANODM ND. GENERATOR:
C USUALLY THIS WILL BE O (ZERO)
            PRINT }5
            READ 80.NSEED
            PRINT 90.NSEED
    12 FORMAT(/.3OH TYPE IN ALPHA (F10.8))
    14 FORMAT (F 10.8)
    16 FORMAT(/.3OH TYPE IN BETA (F10.8) )
    18 FORMAT (F 10.8)
    20 FDRMAT(/.3OH TYPE IN Y1 (F7.5) )
    22 FDRMAT(F7.5)
    24 FDRMAT(/.3OH TYPE IN Y2 (F7.5)
    26 FORMAT(/.3OH TYPE IN NO (I2) )
    28 FORMAT(I2)
    30 FORMAT (/.3OH TYPE IN UAOD (F7.5)
    4O FORMAT (/.3OH TYPE IN NSTEP (I2)
    50 FORMAT(/.3OH TYPE IN NSEED (I18)
    60 FORMAT (F7.5)
    70 FORMAT (I2)
    80 FORMAT(I 18)
    90 FORMAT(5X.25HRANDDM NO. STARTING SEED=.I2O)
C ALPHA IS THE FALSE POSITIVE PRDBABILITY (ERROR OF FIRST KIND)
    BETA IS FALSE NEGATIVE PROB. (ERROR DF SECONO KIND)
    Y1 IS THE ABSCISSA DF THE NORMAL DIST. CORRESPONOING TO ALPHA
    Y2 IS THE ABSCISSA (ABSOLUTE VALUE) FOR BETA
        NO IS THE NOMINAL NUMBER DF STEPS CORRESPONOING TO THE SO-CALLED
        (BY WALO) "CURRENT BEST SINGLE TEST PROCEOURE"
        I REFER TO IT AS THE "SINGLE-INTERVAL" TEST OR "SIT"
```

```
C
C
CALCULATE SOME VALUES USED FOR ALL TRIALS BELOW
        A=ALOG((1.O-BETA)/ALPHA)
        B=ALDG(BETA/(1.O-ALPHA))
        UADO=UADO/NO**.5O
        THETA=(Y1+Y2)/NO**O.50
        INITIALIZE RANODM NUMBER GENERATOR. USING RANSET( ).IF CALLEO
        IF(NSEED.EQ.O) GD TD 100
        CALL RANSET(NSEEO)
C
C MAIN LDOP STARTS
    100 LODP= LODP + }
        X=0.0
        IF(LDOP.GE. 100000) GO TO 300
        OD 200 K=1.98
        FIND EFFECT DF STOPPING AFTER NSTEP STEPS
            IF(K.NE.NSTEP+1) GO TO 120
            IF(Z.LE.O.O) IHO(100)=IHO(100)+1
        IF(Z.GT.O.O) IH1(100)=IH1(100)+1
    120 CDNTINUE
        OBTAIN ABSCISSA VALUES FRDM NDRMAL DISTRIBUTIDN SAMPLING
            R=(-ALOG(RANF (1)))**O.5
            TNU=1.5707963*RANF (1)
            Y=1.4142136*R*CDS(TNU)
            IF(RANF(1).GT . .5000) GO TD 150
            Y=-Y
    150 CONTINUE
        CALCULATE Z. THE LOGARITHM DF THE PROBABILITY RATIO
            M=K
            U=Y+UADD
            X=X+THETA*U
            Z=X - M*THETA*THETA*.50
        COMPARE Z WITH LIMITS.REPEAT TEST OR STORE RESULT
        IF(Z.LE.B) GO TO 280
        IF(Z.GE.A) GO TD 290
    200 CONTINUE
        IF(Z.LE.O.O) IHO(99)=IHO(99)+1
        IF(Z.GT.O.O) IH1(99)=IH1(99)+1
        GO TD 100
    280 IHO(M)=IHO(M)+1
    GO TO 100
    290 IH1(M)=IH1(M)+1
        GO TO 1NO
C PRINT OUT MATRICES
300 PRINT 380
        PRINT 400. (IHO(K).K=1.100)
        PRINT 390
        PRINT 400. (IH1(K).K=1.100)
    380 FORMAT(//. 1OX."MATRIX IHO(BACKGROUNO-ONLY): "./)
    390 FORMAT(//.10X. "MATRIX IH1(ABDVE-BACKGRDUND):"./)
    400 FORMAT(5X. 10I6)
```

```
129 C
129
131
133
134
135
137
138
1 3 9
140
1 4 1
142
143
144
145
146
147
148 C
149
150
151
152
153 c
153 C
155
155
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
178
179
180
181
182
183
```

```
Calculate average number dF steps
```

Calculate average number dF steps
ASN IS THE NUMBER WITH 98 STEPS PERMITTEO
ASN IS THE NUMBER WITH 98 STEPS PERMITTEO
FASN IS THE NUMBER WITH A MAX. DF NSTEP STEPS PERMITTED
FASN IS THE NUMBER WITH A MAX. DF NSTEP STEPS PERMITTED
NHO IS TOTAL NUMBER DF RUNS ENOING WITH HO FOR 98 STEP MAX.
NHO IS TOTAL NUMBER DF RUNS ENOING WITH HO FOR 98 STEP MAX.
NH1 IS TOTAL ENOING IN DECISIDN HI FOR }98\mathrm{ STEP MAX.
NH1 IS TOTAL ENOING IN DECISIDN HI FOR }98\mathrm{ STEP MAX.
OD 500 U=1.99
OD 500 U=1.99
IF(U.NE.NSTEP+1) GO TD 450
IF(U.NE.NSTEP+1) GO TD 450
FASN=ASN
FASN=ASN
FNHO=NHO
FNHO=NHO
FNH1=NH1
FNH1=NH1
450 CONTINUE
450 CONTINUE
NHO=NHO+IHO(U)
NHO=NHO+IHO(U)
NH1=NH1+IH1(U)
NH1=NH1+IH1(U)
500 ASN=ASN+(IHO(U)+IH1(U))*U
500 ASN=ASN+(IHO(U)+IH1(U))*U
ASN =ASN/LOOP
ASN =ASN/LOOP
FASN=FASN+(IHO(100) +IH1(100))*NSTEP
FASN=FASN+(IHO(100) +IH1(100))*NSTEP
FASN=FASN/LOOP
FASN=FASN/LOOP
FNHO IS THE NUMBER OF TESTS ACCEPTING HO FOR A MAX. OF NSTEP STEPS
FNHO IS THE NUMBER OF TESTS ACCEPTING HO FOR A MAX. OF NSTEP STEPS
FNH1 IS THE ND. DF TESTS REJECTING HO FOR A MAX. DF NSTEP STEPS
FNH1 IS THE ND. DF TESTS REJECTING HO FOR A MAX. DF NSTEP STEPS
FNHO=FNHO+IHO(100)
FNHO=FNHO+IHO(100)
FNH1=FNH1+IH1(100)
FNH1=FNH1+IH1(100)
PRINT DUT CALCULATED RESULTS ANO NEXT RANODM GEN. SEED USING RANGET()
PRINT DUT CALCULATED RESULTS ANO NEXT RANODM GEN. SEED USING RANGET()
PRINT 550.ASN.FASN
PRINT 550.ASN.FASN
550 FORMAT(///.10X.6H ASN= .F10.3.10X."ASN(FORCEO)= ".F10.3)
550 FORMAT(///.10X.6H ASN= .F10.3.10X."ASN(FORCEO)= ".F10.3)
PRINT 560.ASN/NO.FASN/NO
PRINT 560.ASN/NO.FASN/NO
560 FORMAT(/.11X."ASN/NO=".F7.4.11X."ASN(FORCEO)/NO=".F7.4)
560 FORMAT(/.11X."ASN/NO=".F7.4.11X."ASN(FORCEO)/NO=".F7.4)
PRINT 6OO.NHO.NH1
PRINT 6OO.NHO.NH1
600 FDRMAT(///.10X.6H NHO=.I7.5X.6H NH1= .I7)
600 FDRMAT(///.10X.6H NHO=.I7.5X.6H NH1= .I7)
ANHO=NHO*1.O
ANHO=NHO*1.O
ANH1=NH1*1.O
ANH1=NH1*1.O
AFNH1=FNH1*1.O
AFNH1=FNH1*1.O
AFNHO=FNHO*1.0
AFNHO=FNHO*1.0
IF(UADO.GT.O.O) GD TO 635
IF(UADO.GT.O.O) GD TO 635
620 PRINT 630.ANH1/(ANH1+ANHO)
620 PRINT 630.ANH1/(ANH1+ANHO)
630 FORMAT(/.11X."ALPHA=".F9.6)
630 FORMAT(/.11X."ALPHA=".F9.6)
GO TO 645
GO TO 645
635 PRINT 640. ANHO/(ANHO+ANH1)
635 PRINT 640. ANHO/(ANHO+ANH1)
640 FORMAT (/.10X."BETA=".F9.6)
640 FORMAT (/.10X."BETA=".F9.6)
645 PRINT 650. FNHO.FNH1
645 PRINT 650. FNHO.FNH1
650 FORMAT (///.10X.6HFNHO=.I7.5X.6HFNH1= .I7)
650 FORMAT (///.10X.6HFNHO=.I7.5X.6HFNH1= .I7)
IF(UAOD.GT.O.O) GO TO 685
IF(UAOD.GT.O.O) GO TO 685
PRINT 680.AFNH1/(AFNH1+AFNHO)
PRINT 680.AFNH1/(AFNH1+AFNHO)
680 FORMAT (/.10X. "ALPHA (FORCEO)=".F9.6)
680 FORMAT (/.10X. "ALPHA (FORCEO)=".F9.6)
GO TO 700
GO TO 700
685 PRINT 690.AFNHO/(AFNHO+AFNH1)
685 PRINT 690.AFNHO/(AFNHO+AFNH1)
690 FORMAT(/. 10X. "BETA(FORCED)=".F9.6)
690 FORMAT(/. 10X. "BETA(FORCED)=".F9.6)
700 RAN=RANF (1)
700 RAN=RANF (1)
CALL RANGET(NUM)
CALL RANGET(NUM)
PRINT 800.NUM
PRINT 800.NUM
800 FORMAT(////.10X.30HLAST RANODM NO. STARTING SEED=.I 20.//////)
800 FORMAT(////.10X.30HLAST RANODM NO. STARTING SEED=.I 20.//////)
END

```
    END
```


APPENDIX B

SPRTREP FORTRAN LISTING

```
$ FTN (I=SPRTREP.GO.SET.SYM=^)
    PROGRAM SPRTREP(TTY.INPUT=TTY.OUTPUT=TTY)
C KEN CODP'S PROGRAM TO TEST WALO'S SEQUENTIAL PROB. RATIO TEST
C GROUP Q-2. LOS ALAMDS NATIONAL LABORATORY. MAIL STOP J-562
    WRITTEN IN FORTRAN IV FOR THE LOS ALAMOS LTSS COMPUTER SYSTEM
    JANUARY 3. 1985 VERSIDN
    THIS VERSIDN REPEATS SPRTEST 11 TIMES WITH INCREMENTED UADD VALUES
    INTEGER FNHO. FNH1
    OIMENSION IHO(100).IH1(100)
C
C
C READ IN THE NOMINAL ALPHA
    PRINT }1
    READ 14.ALPHA
C READ THE NDMINAL BETA
    PRINT }1
    READ 18, BETA
C READ IN Y1. THE ABSCISSA VALUE CORRESPONDING TO ALPHA(NOMINAL)
    PRINT 20
    READ 22.Y
C READ IN Y2. THE ABSCISSA VALUE CORRESPONOING TO BETA(NOMINAL)
    PRINT }2
    READ 22 Y2
C READ IN UADO. WHICH IN THIS PRDGRAM IS THE INCREMENT FOR THE ABSCISSA
    USUALLY THIS IS IN THE RANGE FROM ABDUT .5 TO 1.0
    PRINT 30
    READ 60.UADO
C READ IN NO. ND. DF STEPS CORRESPONDING TO NOMINAL SINGLE-INTERVAL TEST
    PRINT }2
    REAO 28.NO
C READ IN STEP ND. AFTER WHICH A DECISION IS FDRCED
    PRINT 40
    REAO 70.NSTEP
C READ IN SEED FOR RANDOM ND. GENERATOR.
    USUALLY THIS WILL BE O (ZERO)
    PRINT 50
    REAO 80.NSEED
    PRINT 90.NSEED
    12 FORMAT(/.3OH TYPE IN ALPHA (F10.8))
    14 FORMAT (F 10.8)
    16 FORMAT(/.30H TYPE IN BETA (F10.8) )
    18 FORMAT (FiO.8)
    2O FORMAT(/.3OH TYPE IN Y1 (F7.5))
    22 FORMAT(F7.5)
    26 FORMAT(/.3OH TYPE IN NO (I2) )
    28 FORMAT(I2)
    40 FORMAT(/.3OH TYPE IN NSTEP (I2) )
    5 0 ~ F O R M A T ( / . 3 O H ~ T Y P E ~ I N ~ N S E E D ~ ( I ~ 1 8 ) ) ,
    60 FDRMAT(F7.5)
    70 FORMAT (I 2)
    80 FDRMAT(I 18)
    90 FORMAT (5X. 25HRANDDM NO. STARTING SEEO=. I 20)
C ALPHA IS THE FALSE POSITIVE PROBABILITY (ERROR OF FIRST KINO)
    BETA IS FALSE NEGATIVE PROB. (ERROR DF SECOND KIND)
    Y1 IS THE ABSCISSA DF THE NDRMAL OIST. CORRESPONDING TO ALPHA
    Y2 IS THE ABSCISSA (ABSOLUTE VALUE) FOR BETA
    NO IS THE NDMINAL NUMBER DF STEPS CDRRESPDNDING TD THE SD CALLED
    (BY WALD) "CURRENT BEST SINGLE TEST PRDCEDURE"
    I REFER TD IT AS THE "SINGLE-INTERVAL" TEST DR "SIT"
```

```
66 C CALCULATE SOME VALUES USEO FOR ALL TRIALS BELOW
A=ALOG((1.0-BETA)/ALPHA)
    B=ALOG(BETA/(1.0-ALPHA))
    UADDI J=UADD/NO**.50
    THETA=(Y1+Y2)/NO**O.50
C INITIALIZE RANODM NUMBER GENERATOR USING RANSET( ). IF CALLEO
        If(NSEED.EQ.O) GD TO 97
        CALL RANSET(NSEED)
        97 CDNTINUE
        THIS VERSIDN REPEATS SPRTEST 11 TIMES WITH INCREMENTEO UADD VaLUES
        OD 1000 I }J=1.1
        UADD=(IJ - i)*UADOIU
C
        INITIALIZE SOME PARAMETERS
        OD 98 Jx1.100
        IHO(U)=0
        98 IH1(U)=0
        NH1=0
        NHO=O
        ASN=0.0
        LODP=-1
C
C MAIN LODP STARTS
    100 LODP=LODP+1
        X=0.0
        IF(LODP.GE.100000) GO TO 300
        OD 200 K=1.98
        FIND EFFECT DF STOPPING AFTER NSTEP STEPS
            IF(K.NE.NSTEP+1) GO TD 120
            IF(Z.LE.0.0) IHO(100)=IHO(100)+1
            IF(Z.GT.0.0) IH1(100) =IH1(100)+1
    120 CDNTINUE
C OBTAIN ABSCISSA VALUES FRDM NORMAL OISTRIBUTIDN SAMPLING
            R=(-ALOG(RANF(1)))**0.5
            TNU=1.5707963*RANF(1)
            Y=1.4142136*R*CDS(TNU)
            IF(RANF(1).GT..50) GO TO 150
    Y=-Y
    150 CONTINUE
        CALCULATE 2. THE LOGARITHM OF THE PROBABILITY RATIO
            M=K
            U=Y+UADD
            X=X+THETA*U
            Z=x - M*THETA*THETA*. }5
C CDMPARE Z WITH LIMITS.REPEAT TEST DR STDRE RESULT
            IF(Z.LE.B) GO TO 28O
            IF(Z.GE.A) GO TD 290
    200 CDNTINUE
        IF(Z.LE.O.0) IHO(99)=IHO(99)+1
        IF(Z.GT O.O) IH1(99)=IH1(99)+1
    GD TD 100
    280 IHO(M)=IHO(M)+1
        GD TD 100
    290 IH1(M)=IH1(M)+1
            GD TD 100
C PRINT DUT MATRICES
    300 PRINT 380
    PRINT 400. (IHO(K).K=1.100)
    PRINT 390
    PRINT 400. (IH1(K).K=1.100)
    380 FORMAT(//.10X."MATRIX IHO(BACKGROUND-ONLY): "./)
    390 FORMAT(//.10X."MATRIX IH1(ABOVE-BACKGROUND):"./)
    400 FORMAT(5X.10I6)
C
```

```
    CALCULATE AVERAGE NUMBER DF STEPS
    ASN IS THE NUMBER WITH }98\mathrm{ STEPS PERMITTEO
    FASN IS THE NUMBER WITH A MAX. DF NSTEP STEPS PERMITTEO
    NHO IS TOTAL NUMBER OF RUNS ENOING WITH HO FDR 98 STEP MAX.
    NH1 IS TOTAL ENDING IN DECISIDN H1 FOR }98\mathrm{ STEP MAX.
        OD 50D J=1.99
        IF(U.NE.NSTEP+1) GO TO 450
        FASN=ASN
        FNHO=NHO
        FNHi=NH1
    450 CONT INUE
        NHO=NHO+IHO(U)
        NH1=NH1+IH1(U)
    500 ASN=ASN+(IHO(U)+IH1(U))*J
        ASN=ASN/LODP
        FASN=FASN+(IHO(100)+IH1(100))*NSTEP
        FASN=FASN/LDOP
    FNHO IS THE NUMBER DF TESTS ACCEPTING HO FOR A MAX. DF NSTEP STEPS
    FNH1 IS THE ND. DF TESTS REJECTING HO FOR A MAX. OF NSTEP STEPS
        FNHO}=\textrm{FNHO}+IHO(100
        FNH1=FNH1+IH1(100)
    PRINT DUT CALCULATEO RESULTS.UADD. ANO NEXT RANDOM GEN. SEED
        PRINT 550.ASN.FASN
    550 FORMAT(///.10X.6H ASN= .F10.3.10X."ASN(FORCEO)= ".F10.3)
        PRINT 560. ASN/NO.FASN/NO
    560 FORMAT(/.11X."ASN/NO=".F7.4.11X."ASN(FORCED)/NO=".F7.4)
        PRINT 6OO.NHO.NH1
    600 FDRMAT(///.10X.6H NHO=.I7.5X.6H NHI= .I7)
    ANHO=NHO*1.0
    ANH1=NH1*1.O
    AFNH1=FNH1*1.O
    AFNHO=FNHO*1.0
    IF(UADD.GT.O.O) GD TD 635
    620 PRINT 630, ANH1/(ANH1+ANHO)
    630 FDRMAT(/.11X."ALPHA=".F9.6)
        GD TO 645
    635 PRINT 640. ANHO/(ANHO+ANH1)
    640 FORMAT(/.11X."BETA=".F9.6)
    645 PRINT 650.FNHO.FNH1
    650 FORMAT(///.11X.6HFNHO=.I7.5X.6HFNH1= .I7)
        IF(UADO.GT.O.O) GO TO 685
        PRINT 680.AFNH1/(AFNH1+AFNHO)
    680 FORMAT(/.11X."ALPHA(FDRCED)=".F9.6)
        GD TD 700
    685 PRINT 690.AFNHO/(AFNHO+AFNH1)
    690 FORMAT(/. 11X."BETA(FORCED)=".F9.6)
    700 RAN=RANF (1)
        CALL RANGET(NUM)
        PRINT 750.UAOD*NO**O.5
    750 FORMAT (//.11X.7HUADO= .F9.5.//)
    C THE VALUE PRINTED OUT FOR UADD HAS THE INTERPRETATION DF BEING
        THE ABSCISSA VALUE DF THE MEAN OF THE DIST. BEING TESTEO
        PRINT 800.NUM
    800 FORMAT(11X.3OHLAST RANDOM ND. STARTING SEED=.I 20.//////)
    1000 CDNTINUE
        END
```

Printed in the United States of America Available from
National Technical Information Service US Deparment of Commerce 5285 Port Royal Road Springfield. VA 22161

Microfiche (AOI)

Page Range	NTIS Price Code						
001.025	A02	151.175	A08	301325	A 14	451.475	A 20
026.050	A03	176.200	A09	326.350	A 15	476.500	A21
051.075	A04	201.225	A 10	351.375	A 16	501.525	A22
$076 \cdot 100$	A05	226.250	All	376400	A 17	526.550	A23
101.125	A06	251.275	Al2	401425	A18	551.575	A24
126.150	A07	276300	A13	426.450	A19	576.600	A25
						601 up*	$\wedge 99$

${ }^{-}$Contact NTIS for a price quote.

Los Alanos

[^0]: *RANF (1) is a standard random number generator widely used at los Alamos, written by M. Steuerwalt. The generator uses the algorithm $S^{\prime}=S * F$ $\bmod 2^{48}$, and delivers $2^{-48} * S^{\prime}$ as a normalized fraction. It uses $F=5536458$ and starts with $S=1274321477413155_{8}$. The value 1 in parentheses following RANF is a dummy argument of no significance.

[^1]: *SPRIESI program could be changed, rather easily, so that the effective width of the normal distribution would become a function of the mean count. This could be done by recasting the program to make counts the unit for the abscissa, instead of fractions of the standard deviation, as it now is. For very low count rates, it would be more appropriate to sample from a Poisson distribution, ${ }^{12}$ instead of the normal distribution.

[^2]: "Comparison of the sum of \angle with 0.0 corresponds, in nuclear counting applications, to making a decision at a count level halfway between the background mean and the nominal sourise mean.

[^3]: ${ }^{2}$ Entries under the column with UADD $=0.0$ are the calculated values for α; all other columns contain the calculated β values.
 bValues in parentheses are for the nominal single interval test; β values were obtained from standard statistical tables.

