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CALCULJWION OF A SHAPED CHARGE J= USING
MESA-2D AND MESA 3-D HYDRODYNAMIC COMPUTER CODES

by

John Bolstad and David Mandell

ABSTRACT

The purpose of this project was three-fold

1) To study the effectiveness of the MESA 2D and the MESA 3D hydrodynamic com-
puter codes for calculating the formation and penetration of a typical shaped
charge jet.

2) To provide guidance to code users regarding mesh sizes and other code model sen-
sitivities for calculating the formation and penetration of shaped charge jek.

3) To investigate the feasibility of a method for i.nte~ating both 2D and 3D code re-
sults for problems that are actually three-dimensional

This report summarizes some of the results obtained using the MESA 2D and 3D com-
puter codes applied to a shaped charge jet formation and enetration problem for

(fwhich there is e erimental data The accuracy of the co e is investigated by com ar-
“Y c?ing the code resu ts with experimental data. Furthermore, the accuracy is assesse as a

function of cell size in order to gain an insight into the approximations involved when
performing a 3D calculation where mesh convergence is not practicable.

The feasibility of performing calculations such as these is explored by modelin the ex-

E
eriment usin various a

F w’
roximations and determining how the accuracy is & ected

y these simp dications. really, the results of calculations performed with a 3D Carte-
sian geometry model are compared with calculations performed with a 2D cylindrical
geometry modeL

INTRODUCITON

Two- and three-dimensional numerical simulations of weapons systems and targets area vital supplement
to testing and perhaps even essential to use in the design/testing process. ~ical applications and the
uses for these codes in the design process for weapons or anti- weapons systems are described by Irnmele
et. al.’. There are two basic typs of codes for these applications, Eulerian and Lagrangian. Them are
many advantages and disadvantages to each type of code (these are summarized nicely by Anderson*).
For problems with large material distortion, the users am generally led to analyze the event with Eulerian
codes.

In the Eulerian description, the computation cells are fixed in space and the code calculates the flow of
mass, momentum, and energy across the cell boundaries. Eulerian codes generally require much more
computer time and resources to solve a problem to which they maybe applied. Therefore with these
codes, a gn?ater emphasis is placed on numerical and modeling techniques that speed the computation.
MESA is an Eukrian code, and this report concerns our experiences with it.

Most problems of interest require the use of a thr#irnensional(3D) mode], and Id to Id zones are usu-
ally used to model such a problem with an Eulerian code. Even this large number of zones sometimes xt?p-
resents a compmmise between accuracy and cost (computer time). It does not appear possible to model
and calculate a typical design problem with a zone size small enough such that mesh convergence is ob-
tained with a 3D model.



Because of the cost constraints, it behooves the analyst to develop a strategy that will make use of the capa-
bility of a 2-D model in conjunction with a 3D model. The 2D model could, for example, be used to per-
form a cell size sensitivity study and examine details of feahms in the problem using a zoning so fine that
mesh convergence is achieved. The 3D model is essential to gain an understanding of 3D features in the
process being simulated and may be used to study e.g., overall trends and 3-D geometry effects.

When such simulations am performed them are many questions that may remain unanswered. ~ical
questions that are often asked of the code developers by new code users when applying the code to a prob-
lem are the following.

1)

2)

3)

4)

5)

6)

How accurate is the answer? What cell size is xequimd to obtain a given answer? How does the
answer change with respect to the discretization cell size chosen for the simulation? How do the
answers change when a variable grid is used rather than a uniform grid? How do the answers
change when a moving mesh is imposed on the problem?

How do the computer code field length and computer charges vary with the number of cells in the
problem?

How do results from two-dimensioml and three-dimensional simulations compare?

How do the answers change when different material models am used to describe the materials in
the simulation?

What physical dimensions/effects am so important that they must be modeled in order to achieve
a meaningful answer? What dimensions/effects maybe neglected or approximated without sig-
nificantly compromising the answer?

What should be the role of two- and three-dimensional simulations in the desigrdanalysis pro-
cess?

These am just a sampling of questions that are asked by typical users. As the user’s experience grows a
feeling is acquired for how to best model a problem. Unfortunately the answers to these questions can
never by answered definitively by simulation of a single problem and more often than not, these questions
are not answered in the code manuals or in papers describing the simulations that have been performed.
This paper does not definitely answer these questiom but will address many of them on a single typical
application.

This paper describes our experienm with modeling one particular experiment with the MESA-2D and
MESA-3D computer codes. We have cho~n to model a device that can be accurately modeled with the 2D
code so that cell size and other parametric studies could be easily carried out. Experimental data exist for
the device so that we may compare the calculations against actual data. We have also modeled the prob-
lem and simulated it with the 3D code in order to gain an understanding of the relationship between the
results of the two codes and how they maybe used together to solve a problem.

DESCRIPTION OF THE STANDARD CHARGE

We used as a basis for this calculation a shaped chaxge designed and used by the Ballistic Reseamh Labora-
tory (BRL) in many of its experiments. This shaped Chaxgewas picked because it is described in unclassi-
fied reports and because Wme jet characteristics and penetration characteristics am reported for it in Refs.
3 and 4. This charge is shown in Fig. 1 and is de~bed in Ref. 3. ‘i’’hemappear to be many variations on
this chaqge, some am described by DiPersio et. al.4. The particular charge that we UA as a basis for our
calculations, described in Ref. 3, UA a 42° angle cone with a mpper liner and it was charged with octal
explosive and surrounded by an aluminum housing. The copper liner thickness is 0.20574 cm (0.081 in)
and the cone outside diameter is 8.382 cm (3.3 in). The stated mass of the liner, explosive, and housing is
277,875, and 517 grams.
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Fig. 1. The basic geometry and dimensions of the 3.3” dia. “precision” standard charge.

This particular charge is called the “precision” standard charge because its manufacture was carefully con-
trolled so as to construct a charge with tolerances as small as possible on the wall thickness and concentric-
ity of the liner. Experiments showed that the penetration of the pwision charge was far superior to that of
the non-precision charge. Experimental data am available for the jet tip velocity, the jet break-up time, and
the location of the virtual origin. In addition, them is some penetration data available for the jet penetrat-
ing into 15.24 cm (6 in) diameter targets of Bnnell hardness number 320 steel armor.

THE MESA CODE

MESA-3D is a three-dimensional, Cartesian, explicit, finite-difference Eulerian code with hydrodynamics,
high explosives, and material stnmgth models. A companion 2-D code, which has lmth Cartesian and cy-
lindrical geometries, is available for scoping studies befo~ detailed 3-D calculations, which take much
mom computer time, are run. The two- dimensional algorithms U* have been described by Youngs5.
The hydrodynamics is divided into two phasw. The first phase is a pum Lagrangian calculation, and the
second phase is a mrnapping back to the original Eulerian mesh. Since the advection (second phase) re-
quires much mom computer time than the first phase, the Lagrangian phase is sub-cycled. Typically we
do four Lagrangia.n calculations for each rempping. operator splitting is used. That is, the calculations
are done in the x, y, and z-di~tions during one time cycle, and then in the Z,y,and x-directions during the
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next cycIe. Van Lee# limiting is used in the advection phase in order to maintain steep gradients without
introduang non-physical oscillations.

A unique feature of MESA is the interface reconstruction algorithm, which was developed by David
7 This model allows fewer cells to be used for the same accuracy than wem used in older codesYoungs .

since mixd-cell material interfaces are calculated accurately. The interface reconstruction method assures
that materials are advected in the coned order.

Plasticity models include the Steinberg-Cochran-Guinan8 model with work hardening and thermal soft-
enins and the Steinbe~-Lund9 and Johnson-Cook*” models with strain-rate hatiening as well. The Me-

11 The von Mises yieldchatical ‘Ilmshold Stress (MTS) model has also been implemented in MESA .
criteria is used. Two fracture models have been implemented into the code. These include the Johnson
(Jim) ductile span mode112and the Johnson (Gofion)-Cook fracture mode113.

We use the standard JWL14 equation of state (EOS) for the high explosive (HE) and currently treat detona-
tions with a programmed bum model in which the bum time for each cell is calculated a priori using the
high explosive detomtion velocity. A dynamic bum model is implemented in MESA but was not used in
thiS study.

In addition to the JWL EOS for the HE detonation products, a number of amlytical EOS equations are
available for other materials. The Los Alamos tabular equations-f-state, SESAME15, are also available in
MESA.

Basic Two-Dimensional Model

Two types of the fixed Eulerian mesh am typically used with the MESA 2-D and 3-D codes; uniform or
variable. The uniform mesh consists of a mesh description that uses 041s that all have the same dimension
in a given direction. The variable mesh contains cells whose dimensions in a given direction vary with po-
sition. The variable mesh is typically used in laxge problems because it allows a smaller mesh size in sig-
nificant regions and a larger mesh size in regions that are relatively unimportant. The variable mesh
technique is almost always needed for large 3-D problems because of the large number of mesh cells in-
volved (a 3-D problem will typically require 10-100 times more cells than the number of cells required for
a 2-D simulation).

For 2-D simulations, we may use either Cartesian or cylindrical geometry. Cartesian geomet~ is appm-
pnate for problems that are plane strain, whereas cylindrical geometry is appropriate for problems that
have an axis of symmetry. For the 2D simulations described here, cylindrical geometry was used. A large
part of this study involves the sensitivity of the computed answers to the mesh size (this is typically called
a cell size or noding study). Because the variable mesh description introduces another parameter into the
test matrix, we have decided to use the simplest possible mesh description for our base case; i.e. the uni-
form mesh. For the base case calculation we used a mesh spacing of 0.05 cm in cylindrical r-z geometry.
This represents a relatively coarse mesh size for the simulation considering that the copper liner thickness
is only --0.2 cm.

The computation grid for the base case is a uniform cylindrical geometry grid in both the r and z dire-
ctions. The grid specifications for the base case axe shown in Table I.

Table I

Computational Grid for the Base Case 2-D Calculation

coordinate Direction Number of Cells Cell Size (cm] Coordinate Limits (cm)

r 120 0.05 0- 6.0
z 840 0.05 -17.0 -25.0
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Fig. 2. Basic MESA-2D computer model for the shaped cha~e calculation showing the material
interfaces for the MESA-2D computer mode~along w~ththe calculated bum-times for
the Octol HE. All the HE is burned by -17 W.

This calculation contains 120 x 840. loom cells for a 2-D simulation. The computer model for this base
case is shown on Fig. 2. The figure shows all the material interfaces between adjacent materials in a plane
through the centerline of the model.

The calculation is initiated by igniting the programmed burn HE on the back surface centerline; this is at
Z = -15.4 cm and r = 0. The HE bum is simulated with the ~ burn fiel ~ the c~e; this model calm-
lates the HE detomtion assuming a constant detonation veloaty from the ignition point. For this calcula-
tion we used the standard detomtion velocity of 0.848 cm/~ for the Octol provided by Mader*6. The
resulting bum times are shown in Fig. 2. The HE is burned in -17 p.s. The HE bum is simulated by insert-
ing a given amount of internal energy,&, into the cell being burned. For the OctOl HE in this device we
used the standard value of&. 0.0527 Mbar-crn3/gm found in the matsdafaEOS data base.

The equation of state and strength models for the various parts of the device am listed in Table II. Addi-
tional details, along with the constants, are shown in Appendix I. The nominal yield strength for the cop-
per is taken as Yo= 1.2 kbar. It is allowed to harden to 6.4 kbar in the Steinberg-Guimn model.

Table II

EOS and Strength Models for the Base Case 2D Model

~ MiMi@21 ~ %rerwth Model

Liner Copper Sesame Table Lookup
case

Steinberg<uinan
Aluminum Gruneisen

HE
none

Octol JWL none
Background Void Void none



The code calculates the masses of all the materials in the problem based on the dimensions and densities.
The MESA-2D cakmlatwi mass of the three main components is compared to those reported by DiPersio et.
al.4 in Table III. The liner mass is matched quite closely but them are large discrepancies in the HE and
case. The reason for the differences between the masses calculated from the dimensions and the actual re-
ported mass is unknown.

‘Ihble HI

Calculated vs. Reported Mass for the Standard Charge Components

~ Calculated Mass (mamsl Reuorted Mass Gzrares)

Liner 279 277.
573 517

HE 912 875

Three-Dimensional Model

The MESA-3D code utilizes the Cartesian geometry; therefore the cell shapes are rectangular parallelepi-
peds. In o!rier to save computer time and resources, many of the 3-D models utilize a mesh that is differ-
ent in the axis and off-axis coordinate directions and also the cell sizes may vary along a single direction.
In the 3-D code, the problem geometry and mesh spxifications am specified in the FRAC-IN-THE-BOX in-

17 This input is shown in Appendix B for a uniform mesh size of 0.2 cm. This very coarse model utiliz-put .
es 210x30x30= 189,(XI0cells. For practical reasons (cost), finer mesh models require a variable mesh,
and some of these have been utilized in this study; they will be discussed along with their results.

In oxder to provide a simple comparison between the 2-D and 3-D codes, the EOS and material models am
kept the same. This is shown in a typical GENERA’lT)R input deck for a 3-D simulation in Appendix B.
The calculated mass for each component is the same in the 3D model as it was in the 2-D model shown in
Table III. The HE detonation model and ignition point are the same as those for the 2-D model and code.

RESULTS OF JET FORMATION CALCULATIONS IN 2D AND 3D

The following sections describe in some detail the results of the numerical simulations with both the 2D
and 3D MESA codes. We report on the effecb of cell size, variable mesh, material strength models, con-
tained vs. bare charge, forming the jet in air VS.void, sensitivity to a Galilean transformation on the mesh,
sensitivity to the HE bum EOS parameters, and 2D VS.3D simulations regarding the jet tip velocity. Final-
ly we examine a simulation of the jet penetrating into a steel slab.

Jet Tip Velocity for MESA-2D Simulations

‘:be key experimental data that we have to compare the calculation a~inst is the jet tip velocity of
s I cm/M obtained by flash radiography. We first show how the jet tip velocity is determined from the.. .

computer simulations. T~ical results for the base case 2-D simulation (0.5-rnm mesh size) are shown in
Fig. 3 where the interfaces between adjacent materials am shown at 20,40,60 and 70 W. We are inten%ed
in obtaining the jet tip velocity m a function of time. This maybe done by looking at the z-coordinate di-
rection particle velocity along the r = Oaxis (i.e. for all z-values). The initial geometry and the coordinates
for the computational grid am shown in Fig. 2. A profile plot of the particle velocity at r = Oand t = 70 M is
shown in Fig. 4a. The velocity profile is almost linear with a peak (tip) velocity of 0.797 cm/w. Finally, the
tip velocity as a function of time is obtained by plotting the maximum velocity obtained fmm the profile
plots for each dump time that was specified in the simulation. The axial profile maximum velocity is the
tip velocity after -40 p.s. Before that time the maximum axial velocity in the jet is not at the tip but farther
back in the jet. For example, the axial veloci~ profile at 20 M is shown in Fig. 4b; at this time the maxi-
mum velocity is -13 cm behind the tip.
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Fig. 4a. Profile plot of the centerline z-velocity Fig 4b. Profile plot of the centerline z-velocity
com nent at 70 W. The tip velocity

F
component at 20 p.s. The maximum

is O. 97 cm/~.
?

veloa is 0.85 cm/ps. The tip velocity
is less -0.68 cm/ps).

Additional calculations were performed for uniform mesh S*S of 1/4, 1, and 2 mm. The results for the
maximum axial velocity as a function of time for the different mesh sizes are shown in Fig. 5. There area
number of interesting features of the calculation that can be observed from the figure. 1) The maximum
axial jet velocity does not necessarily tend to an asymptotic limit with increasing time (or distance). 2) The
calculation with the 1/4 mm cell size converges to a v~ue of ().814 cm/W by 45ps; the simulations with
larger cell sizes do not converge to a steady-state value during the simulation time. 3) As the cell size in-
creases, the predicted jet tip velocity tends to a smaller value. It appears as though the calculated tip veloc-
ity might converge to the experimental measurement of 0.83 crn/~. 4) For the larger mesh size
simulations, the jet tip velocity continues to drop off with time rather than converging to a limit value. 5)
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Fig. 5. The MESA-2D predicted maximum axial velocity as a function of time for calculations using
mesh sizes of 1/4, 1/2,1, and 2 mm. The measumd jet tip velocity is 0.83 cm/W.

Quite small mesh sizes (-1/4 mm for this device) must be used in the simulation in otier to obtain conver-
gence to the correct tip velocity. The fact that the jet tip velocity drops off with distance is in accordance
with experiments and the findings of DiPersio (Ref. 3, pg. 179, Ref. 4, pg. 26): “the decreasein jet purticle ve-
kxify its proportional to the dktance fnmekd huugh the air and is independentof ifs initial oekm”hJ’.DiPersio
suggests that the jet-tip velocity dwrease maybe due to air dras but these results suggest that there may
be other hydrodymmic factors since air drag is not included in this calculation and we see the equivalent
result.

The jet tip velocities at 50 M, obtained from Fig. 5, are plotted as a function of cell size in Fig. 6. This figure
demonstrates that the jet tip velocity tends to converge to the experimental value as the cell size is de-
creasecl. Unfortunately, it also shows that within the range of cell sizes investigated here, the tip velocity
does not converge and it appears as though the experimental value will be predicted only when the cell
size tends to zero. Especially interesting is the result obtained for a 2-mm cell size. The reason for this ap-
parently good prediction using this relatively coarse mesh size is not understood. One possible cause for
this anomalous behavior may be that the cell size is too large compared to the other important dimensions
in the problem. Remember that the liner thickness is -2-mm and thus the cell size is basically the same as
the liner thickness. We know that in order to produce good results in these kinds of hydrodynamic simu-
lations, we need a number of cells through the thickness of the structure. Furthermore, this is the only sim-
ulation conducted where the jet radius is smaller than the cell size. It maybe that them is some difference
in the material transport algorithm under this cimnnstance. Based on these considerations, it could be
that the appanmtly good prediction with the 2-mm cell size is just fortuitous. Because of this anomalous
behavior, we decided to perform a complete cdl size study of this problem using the MESA-2D code and
the 2D model described above.

Cell Size Study for the Mesa-2D Simulations

A cell size study of the 2D model and code was conducted because of the unexplained behavior of the m-
resultobtained from the 2 mm cell size sinudation shown in Fig. 6. Additional simulations were performed
at cell sizes of 0.75,1.25,1.50,1.625, 1.875, and 2.5 mm. These sizes wem chosen to confirm or eliminate the
possibility that the 2-mm cell size point in Fig. 6 was due to an input specification error during the 2D sim-
ulation. The jet tip velocities at 50 w for all cell sizes are shown in Fig. 7.

8
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Fig. 7. Cell size study focusing on the calculated jet tip veloaty at 50 P.

The figure shows a break point at -1.25-mm cell size. The data points in this iigum are tit using a quadrat-
ic in each of the two different regions. It is obvious that something significant changes in the model at
-1.25-mrn. The behavior of this curve is not well understood but it does illustrate the hazards involved in
making predictions from a single simulation especially when the focus is on a single parameter not direct-
ly pmciicted by the partial differential equations contained in the code model. It is quite interesting to note
that as far as the jet tip velocity is concerned, the crudest model (2.5 mm) gives a better prediction than the

9
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best model. Looking closer at the details of the calculation would probably show that the simulations with
a cell size greater than 1.25 mm have dirninishd validity.

One clue about the behavior of the larger cell size simulations is demonstrated in Fig. 8. This figwe shows
the liner interfaces overlaid on a cross section of the computational mesh for the 1.25 mm mesh size model.
The figure shows that, at this mesh size, there are only a few pure cells in the liner. At cell sizes larger than
this, there will be very few if any pum cells in the liner; they will be essentially all mixed cells. It would
not be expected that the code could simulate the plastic strain and material flow processes when it has
such a coarse mesh description.

a
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0
-Ios

Fig. 8. A closeup vie~~f the com utations 31s with the liner inte-~aces superimposed
-s.!5

fon the computatioml grid or the simulation with uniform 1.25-mm cell sizes.

Effect of Variable Mesh Spacing

For many problems, it is not feasible or prudent to use a uniform grid in the computer model. In 3D simu-
lations, for example, it is almost never practical to use a uniform grid with a sufficiently small cell size.
Even in 2D simulations, it is often desirable to use a variable grid to decrease the number of cells in a prob-
lem. The main goal when specifying a variable grid is to use sufficiently small size cells where they are
needed (e.g. at an interaction zone) and allow the cell sizes to grow in regions where their large size is not
an important contributor to the desiti answer. It is generally thought that large aspect ratio cells decrease
the accuracy of the calculation. Generally experience and judgement axe used to specify a variable grid,
and the effect of the grid design on the answer is not known.

In order to examine how a typical variable grid design would affect the accuracy of the Standard Charge
simulation, we have performed a 2D simulation using a variable grid design that a typical user might em-
ploy, The base case uniform 0.5 mm grid is used as a basis for the variable grid. In this scheme, we have
kept the cell width in the axial direction at a uniform 0,5-mm and used a uniform expansion of the cell
widths in the radial direction. In the radial direction we started with a 0.5-rnm cell size at the origin and
increased each succeeding cell thickness by a factor of 1.05. This scheme ended up using only 40 cells in
the radial direction (from ~0 to r=6 cm) compati with 120 cells for the base case simulation shown in ‘1%-
ble I. This means that this model uses only 1/3 the number of cells as does the base case and will need
only -1 /3 the computer resources. ‘l”hecell shapes for part of the problem are shown in Fig. 9. The cells
near the origin have a size and shape nearly the same as for the uniform @d case, whereas those near the

10
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outer radius of the problem have a large aspect ratio. The worst cell at r=6 cm has a &of 3.3-mm and an

aspect ratio of + = 6.6.
.

This model was run with the MESA-2D code keeping all other parameters the same as the base case. The
simulation with the variable mesh produced a calculated jet tip velocity of 0.793 cm/ps at 50 p.s. This is
within 1?40 of V = 0.800 cm/ps at 50 M obtained from the base case calculation. For this experiment, we are
able to obtain essentially equivalent results for the tip velocity using only 1/3 the computer resources. For
this simulation, use of the variable mesh was a very productive tool, and its effect on the predicted jet ve-
locity was negligible.

Sensitivity to Relative Velocity

For many problems of interest, it is desirable to keep a certain portien of the simulated space relatively sta-
tionary with respect to the Eulerian grid. This approach maybe taken, e.g., to decrease the amount of ad-
vection between cells and therefore increase accuracy in the region of interest. Another mason for this
approach is to decrease the number of cells requinxi to model the problem by keeping a moving obj=t rel-
atively stationary in the grid. This is accomplished in MESA-2D and MESA-3D by imposing a Galilean
transformation of the problem. This isaccomplished in MESA by modifying all velocity components in a
given direction acceding to the rule v’ = v- u, where v is the original velocity component, v’ is the trans-
formed velocity component, and u is the Galilean transformation velocity. The Galilean transformation
may be performed in one or mom directions.

It is known that the Galilean transformation will affect the problem results but it is difficult to quantify the
exact effect. It is generally thought that the accuracy of the simulation will be increased in the region
where the material velocities are made smaller with respect to the grid and less accuracy in regions where
the material velocities am increased.

In order to investigate the effect of a Galilean transformation on this problem, we have modified the base
case to simulate it with a Galilean transformation where the jet tip is held relatively stationary in the Eule-
rian grid. This was accomplished by restarting the base case simulation at 2(I w and at that time introduc-
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ing a Galilean transformation of 0.8 CIOS into the grid. since the tip velocity is known to be -0.8 cm/Ps,
this has the effect of keeping the jet tip stationary in the grid at later times. The predicted jet tip velocity in
the transformed system is compmd with that of the base case at 50 W.

The base case tip velocity was 0.8CXIcm/ps at 50 W, and the simulation with the mesh moving at 0.8 cm ps
predicts a tip velocity of 0.805 cm/ps at 50 W. The results compare almost exactly (c 1% difference) with
the moving grid simulation giving slightly better agreement with experiment.

Effect of Material Strength Models

Early theories of jet formation from conical shaped charges made the simplifying assumption that strength
effects in the liner could be ignored because the pressures at the stagnation point are much higher than the
material strength of the liner (Ref. 3, pg. 72). In the same refenmce (pg. 96), a simple hand calculation is
performed that shows that pressuxes of the order of 0.7 Mbar could be expected at the stagnation point for
a shaped charge with a copper liner. Examination of our base case calculation shows that pressures exist
near that value (-0.78 Mbar) at 20 ps. Aqyments such as these lead to the conclusion that the liner materi-
al strength maybe neglected in the calculation, i.e. the calculation maybe performed using the hydrody-
mmic assumption whereby the materials are treated as fluids.

We performed three calculations to investigate the sensitivity of the predicted jet velocity to the type of
yield (strength) model for the liner used in the calculation. 1) We used the Steinberg-Cochran-Guinan
(K-G) modelg with the default constants for OFHC copper given in Ref. 8. This model is our base case
calculation previously described; the strength constants are shown in Appendix A, MESA-2D Generator
input. 2) We used the base case model except we changed the plastiaty model for the liner from the Stein-
berg-(hinan to the Johnson-k strength model 10. We used the constants for OFHC copper given in Ref.
10. 3) We perforrmxl a simulation using the hydrodynamic assumption, no material strength. A summary
of the yield strengths used in these models along with the calculated jet tip velocity at 50 p,sis summarized
in Table IV. Since strain hardening and thermal softening am included in the models, two values of the
yield strength am given: the nominal value and the maximum allowed value.

Table IV
.

Strength Models, Yield Strengths, Calculated and Experimental Results

~trcnzth Model Initial Yield Stren~h Max. Yield Strentih Jet lb Velocitv

S-C-G 1.2 kbar 6.4 kbar 0.800 cm/y.s @ 50 w
Johnson-Cook 0.9 kbar 6.4 kbar 0.813 cm/~ @50 w
Hydrodynamic o 0 0864 cm/ps @ 50 W
Experiment 0.830 cm/W

The results of this study show that the jet tip velocity is over-predicted if strength is neglected. We see that
the S-C= model, the model with the highest initial yield stnmgth predicts the lowest jet velocity whereas
the Johnscm<ook model predicts an intermediate result. The conclusion reached horn this small paramet-
ric study is that it is necessary to include material strength in the calculation as it is an important contrib-
utorto the calculated jet velocity. The bends indicate that higher strengths in the model produce lower
predicted jet velocities.

Effect of Contained vs. Bare Charge

We now turn to the sensitivity of the answer to various modeling approximations that could reasonably be
made to simplify the actual experiment. The first is the effect of the case on the jet tip velocity. If we can
model just the bare charge and neglect the case, the setup time will be shorter, and the computation will be
simplified because there is one leSS material in the problem In addition the computation should be sped-
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ed up since them will be fewer mixed cells in the simulation. The question is, how much is the tip velocity
affected if we neglect the case?

In order to examine the effect of containment on this shaped charge configuration, we reran the base case
(i.e. 1/2-mm cell size) with the casing eliminated fmm the simulation. For this simulation, the predicted
jet velocity is lower as would be expected. The ptiicted jet tip velocity at 50 w is 0.788 cm/ps compared
with 0.800 cm/ps for the base case (i.e. with confinement). This is a difference of 1.5’%0.For many applica-
tions such as scoping studies, this error would be acceptable considenngihe savings in modeling and
computer time. This run used -109’0 less CPU charges than the base case simulation.

Effect of Forming Jet in Air Instead of Void

The motivation for forming the jet into a void rather than an air background is similar to that of neglecting
the caw. The EOS for a void material is much simpler than that for air, and this leads to a computational
simplification in the many mixed rolls containing the background material. By simulating the background
material with void rather than air, the computation should be faster. However it is speculated that air drag
on the jet particles offers a significant retarding force on the jet and could significantly affect its predicted
velocity in the simulation.

In order to examine the effect of forming the jet in an air background rather than a void, we reran the base
case with air as the background material. For this simulation, the predicted jet tip velocity at 50 w is 0.798
cm/p.scompared with 0.800 cm/ps for the base case. This is a difference of only 0.2570 and indicates that it
is not necessary to form the jet into an air media. The running time for the two computations was similar
so that there is very little incentive to replace air with void in these types of calculations.

Sensitivity to HE Burn EOS Parameters

The JWL equation of state’4 for high explosive detonation producb is used in the MESA codes along with
the programmed bum model. The pressure, P, for detonated HE products is calculated from the relative
specific volume of the products (V = po/p)and their specific internal energy per unit initial volume
E [Mbar].

P= A(l–
;V)’-R’V+B ‘1 -;) ’-’2”+%, where

Rl, R2, and (Oam dimensionless Constanb, and A and B are adjustable constants with units of pressure.

The initial energy of the detonation products, eO[Mbar-cm3/gm] is also specified.

The basic programmed bum model assumes that the detonation wave travels in all directions at a constant
velocity equal to the Chaprnan-Jouguet (CJ) detonation velocity, D. The times at which the wave arrives
and leaves a particular cell are calculated, and the HE energy is deposited linearly in that cell during the
time interval that the detomtion wave is within the cell*8.

Since the constants for the JWL EOS are usually obtained from Cylinder tests*9 and may not be correct for
other simulations, we performed a parametric study to determine the sensitivity of the tip speed to varia-
tions in the input constants. In order to determine the effect of the JWL constants on the standard charge
tip speed we varied several of the constants and repeated the base mesh calculation. The JWL constants
must be changed in a consistent manner. This involves the solution of three simultaneous equations20.

The CJ pressure, Pa, is a sensitive parameter in tie ptiiction of HE waves. The reported experimental
16 We varied this value +10 Kbar. Near the CJ point the high pressure behaviorPa for octal is 0.343 Mbar .

is domimted by the coefficient Rl in the first exponential term of the JWL equation (Ref. 14). We varied RI
+10 percent and -5 percent (The -10 pe~ent ca~ resulted in B2 being negative. and we decided not to use
this case). The largest expansion obtained in the cylinder tests is a sevenfold increase in the volume of the
detonation products and the corresponding energy is EP ~S energy is taken as a measure of the available
energy for driving the cylinder walk?”” We varied this energy +10 percent in order to determine its effect
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on the jet tip speed. A consistent set of constants was obtained in each case by varying Co,A, B and R1 PO;D,
po,and R2 p. were held constant. The constants used am shown in Table V. Physically all of the JWL con-
stants should be positive, but in thee cases lb (l’a = 0.353 Mbar), ld (R1 = 1.1 x base), and If
(E7 = 0.9 x base), the constant C in the JWL equation for the isentmpe14, P,

was slightly negative. The isentmpe was positive over the range of interest.

Table V

Input and Other Constants

Simulation

Base Case
Input P(-J = Pa= PCJ = RI = RI =

Constants# 0.343 0.333 0.353 1.10 x 0.95 x
E7 = E7 =

Mbar Mbar Mbar base base 0.90 x base 1.10x base

edMbar-cm3] 0.0527 0.06161 0.0440 0.03575 0.06216 0.039302 0.066215

A 7.486 7.747 7.240 9.441 6.698 7.5967 7.3747

B 0.1338 0.06359 0.20246 0.2874 0.0460 0.17218 0.095189

RI 4.50 4.50 4.50 4.95 4.27 4.50 4.50

Calculated
Values

Pc~ (Mbar) 0.343 0.333 0.353 0.343 0.343 0.343 0.343

# In additionwe usedthe constantsD = 0.848, p. = 1.821, R2 = 1.2, and@ = 0.38 for all runs.

The iet tiDvelocitv results are shown in Table VI for the base case and for the JWL constant variations dis-
cu~ abve. Si~ce the base case calculation resulted in a jet tip velocity tha~was a little low, the calcula-
tion with a CJ pressure lower than the reported 0.343 Mbar would be expected to be too low also, and this
trend is seen in Table VI. The tip velocity for a PC, of 0.353 Mbar is 0.817 cm/p.s which is higher than the
base case 0.800 cm/ps but still below the measunxl 0.83 cm/ps. The maximum observed pressures are
well below Pa, which is a well known characteristic with pro~ammed bum and coarse meshes and is
thought to be due to the large cell sizes relative to the detomtion reaction zone and the time step size 21.
The velocity is 0.827 cm/w for the higherRl calculation and 0.785 for the lower RJ case. The case with RI
1.1 times the base case value results in a jettip speed very close to the measumd value, but the maximum
calculated pressure still does not reach a value near PCJ A 10 percent change in R1 results in a 3.4 percent
change in the jet tip speed. The E7 variation resulted in only small changes in the jet tip speed.

Changes in the JWL constants result in small changes in the shaped charge final jet tip speed and it ap
pears that the uncertainty in the JWL constants is not a serious problem in this case, It also appears as
though it is not a requirement for the calculated pressure to be the C.1pressure in order to obtain a good
simulation.
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Table VI

Resulk of JWL Sensitivity Study

Run Description

Base Case Pq = 0343 Mbar

Pa= 0333 Mbar

Pa= 0353 Mbar

RI = 1.1 Xbase

RI = 0.95X base

E7 = 0.9 Xbase

E7= 1.1 xbase

2D Jet lip Detonation
Velocity at 50 ps Pressure at 10 ~

(cm/@ (Mbar)

0.800 0.286

0.782 0.272

0.817 0.292

0.827 0.287

0.785 0.285

0.798 0.284

0.803 0.284

Comparison of 2D and 3D Calculation

One of the goals of this study was to relate 2D calculations to 3D calculations to determine the consistency
in predictions between the two codes. There are two reasons for this part of the study. First, since 3D cal-
culations are much more costly in computer time than 2D calculations, we typically would like the majori-
ty of design studies to be 2D and then run only a small numtwr of 3D runs in order to study the 3D effects.
Second, it is not generally practical to mn a sufficiently fine mesh in 3D to achieve mesh convergence. In
order for this method (combing the results of 2D and 3D calculations) to work, them must be agreement
between the codes. The models are the same in the two codes, but them are some differences in defaults
and coding. In order to check on this, three problems were run with both the 2D and 3D codes; in princ-
ipalthe results should be the same since it is really a 2D (axially symmetric) problem that is being simulat-
ed.

It did not seem productive to run 3D simulations of the existing 2D models because the number of mesh
cells required for a meaningful run would be prohibitive. We decided to run simulations with the 3D code
that are typical of those usually employed by the amlyst.

A variable mesh spacing is usually employed in 3D calculations. T~ically we allow the cell sizes to vary
with a ratio between adjacent cells of 1.1 or less, depending on the maximum number of cells we are will-
ing to use. We used a constant mesh size in the majority of this study to eliminate the uncertainty of this
process from our consideration. TIuee problems wem devised to compam 2D and 3D results. They were
designed so that they could be easily Calculatd with the 3D code but still use a small enough cell size to be
meaningful. The models consist of a uniform l-mm cell size in the axial (z) direction and a variable cell
size in the radial (x,y in 3D or r in 2D) direction. The variable mesh in the radial direction started with a
l-mm radial cell size at the ongin and then expanded this size by a ratio of -1.05 or 1.1 for adjacent cells.
Two of the simulations were performed in the hydm (no strength) mode and one was run with the Stein-
berg-Cochran-Guinan stnmgth model in the liner. The detailed input for the model with strength and a 1.1
expansion ratio is shown in Appendix B.

The calculated results for the three simulations are shown in Table VII. For the hydro run with a 1.05 ex-
pansion factor, the calculated jet tip velocity at 50 w was the same fmm both the 2D and 3D codes. The re-
sults agree to within 0.470 for both the runs with the 1.1 mesh expansion factor. This good agreement
indicates that for the same geometrical setup, the 2D and 3D codes give comparable results. Furthermore,
comparing the last run with a 2D simulation with uniform l-mm cell sizes shows that the variable mesh
simulation gives good accuracy (-lYo) while significantly reducing computer costs by a factor of -2.5.
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Table VII

Comparison of 2D and 3D Calculations

2D Jet Tip 3D Jet ‘IIp
Strength or Hydro Velocity at 50 W Velocity at 50 W

Mesh Description Calculation (cm/ps) (cm/@

1.05 expansion in x & y hydro 0.822 0.822
1 mm mnstant in z-direction

1.1 expansion in x & y hydro 0.810 0.807
1 mm constant in zdimction

1.1 expansion in x & y strength 0.774 0.771
1 mm constant in zdinxtion

Table VIII

CPU and Field Length for Selected Simulations

r by Z (2D) Total CRAY CPU
~ of Run Cell Size xxyxz(3D) Number Field Length

(2D or 3D)
at 40 W

(mm) No. of Cells of Cells (MWords) (rein)

2D 2 30X485 14550 1 2

3D 2 3OX3OX21O 189,000 10 91

2D 1 60X770 46~00 2 7

2D 1/2 120X840 100200 4 35

2D 1/4 240 X 1480 355200 13 207

3D (hydro) variable y & z lx 20X 20X 420 168,000 7 153

3D variable y & z lx 20X 20X 420 168,000 12 177

2D variable r -1 z 20x 570 11,400 1 3

Summary of Run Parameters - Field Length and CPU Tiie Required

The CPU time (at 40 p.ssimulation time) and CRAY Field Length are shown in Table VIII for a number of
selected simulations. All of these simulations include stren@h in the comtmter model exccmt for the one
3D run labeled “hydm”. The field length is important beca~se it determi~es the computer ~sources need-
ed to run the simulation. At the time of this study, e.g., 16 Mwords was the limit for MESA simulations at
Los Alamos (this restriction has since been relaxed). The table shows the large increase in both field length
and CPU requi~ as the cell size is decreased. For example, a uniform 1/4-mm cell size was about the
smallest that could be easily simulated with MESA-2D, and it takes -100 times more CPU to simulate the
problem with l/4-mm cells than with 2-mm cells. While the field length is roughly proportional to the
number of cells, the CPU increases by a factor of 4-7 when the mll size is decma~ by a factor of two.
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The comparison between 2D and 3D calculations shows that the 3D code takes -45-60 times the CPU as
does the 2D code (but them are 13-15 times as many cells in the 3D model). This shows the efficacy of do-
ing as much of the simulation as po~ible in 2D. Finally, the two 3D runs that are identical except for the
strength models shows that the field length increases by -70’%0in the 3D code when strength is modeled
but the CPU only increasd by -16%. Since strength is so important in the simulation, it does not appear
that the small savings in CPU offsets the 10S5of accuracy in the calculation.

JET PENETRATION INTO STEEL

The following sections describe a calculation performed to predict the penetration of the jet (from the
“standard charge”) into a steel billet. There is some penetration data available, and we will compam the
predicted penetration with that measumd at a standoff of 2 charge diameters. The experiments
showed that the penetration of the jet varied by a large amount, espaially at Iaqy standoffs. It was found
that jets from charges made with a higher degree of precision penetrated much deeper than those made to
a lower precision standard. Examination of radiographs showed that this was due to jet waver (departmw
from straight-line travel). SinW the MESA models assume that the jet is perfectly aligned, the computer
simulations predict penetration from an “ideal” jet, i.e., one manufactured with perfect precision (symme-
try), we expect that the MESA simulations will overpmdict penetration.

The Experiment

The copper jet from the “standard charge” was fired into a 15.24-cm dia. steel billet of Brinell hardness
4. The experiment was repeated many times atnumber 320 (BHN 320) in order to obtain penetration data

standoffs of 2, 5, 8, 12, and 25 CD. Two different types of charges were made with respect to the manufac-
turing tolerances of the case and liner dimensions. A charge manufactured with tolerances as tight as pos-
sible is called a “precision charge,” and one with rather loose tolerances is called a “non-precision charge”.
Because of the repeated experiments, an idea of the variability of the penetration was obtained. The re-
sults of the experiments are shown in Fig. 10. The figure shows that them is a higher degree of reproduc-
ibility in the experimen~ at the lower standoffs with much mom xatter in the data at high standoffs. It
also shows that the performance of the “non-precision” charges am degraded with respect to that for the
“precision” charges. We decided to simulate the experiment at 2 CD standoff partially because of the m-
repeatabilityof the experiment at this standoff and partly because the simulation becomes much more costly
at the larger standoffs.

The Mesa-2D Model For The Penetration Calculation

Jet penetration was calculated by inserting a steel target into the calculational grid at a location two charge
diameters from the base of the liner. This was accomplished by using the MESA WINDOW operation on
the dump taken at 40 w during the base case jet formation calculation (0.5 mm cell size). A Galilean trans-
formation was performed on the system so that the reference frame was moving at 0.25 cm/ps in the z-di-
rection. This has the effect of having the billet move at 0.25 cm/p,sto the left in Fig. 11. The calculation was
resumed at this time and the jet first strikes the target at -44 W. The initial geometry for this calculation is
shown on Fig. 11.

We used a SESAME EOS (number 4270) for the target material and an elastic-plastic strength model. We
used a yield strength of 11.1 kbar for the steel target material.

Results of the Jet Penetration Calculation

We simulated the experiment for 320 ps; this is -276 ps after the initial jet impact. Typical results from the
simulation am shown in Fig. 12 where the interfaces between materials are shown for times of 60,140,220,
and 320 W. The billet is moving to the left at 0.25 cm/psin the coordinate system shown in Fig. 12. The
predicted penetration for the simulation was obtained from results such as those shown in Fig. 12 and
plotted as a function of time; these xesults am shown in Fig. 13.
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The computer prediction appears to overpredict the penetration by -10% since it predicts a penetration of
-5.5 CD, and the largest penetration in the experiments was -5 CD. We performed another simulation
with the taxget yield strength lowered -1770 (Y = 9.2 kbar). The penetration for this case was nearly the
same as that for the base case (< 370 change in penetration for 17% change in strength). It appears as
though the predicted penetration is not very sensitive to the target yield strength. This result led us to be-
lieve that them is another mom important mechanism controlling the penetration.

Analysis of the Jet Penetration Calculation

In the early stage of the penetration the jet is continuous whereas in the fiml stage (>-200w) of the pene-
tration process the jet has broken up into individual particles. Each succeeding particle that strikes the
target has a smaller velocity than the one before it. The experiments’ showed that the penetration is terrni-
mted while the jet particles am still striking the taxget. The minimum velocity particle (vti) that causes
additional penetration was measumd, and it was found to be a function of both the target hardness and the
standoff (vti increases with both standoff and target hardness). For shots at 2 CD into 320 BHN armor,
the measumd value was Vmh= ().24 crn/ps. Dipersio et. al! speculate that after the time that the particle
velocity drops below Vti, the jet material starts sticking in the bottom of the crater rather than being car-
ried out along the surface of the crater. This means that the succeeding particles strike jet material rather
than target material and do not contribute to further penetration. Sectioned targets show that there is
much jet material that has xefilled the target hole.

We calculated the velocity of the particle striking the bottom of the crater at each dump time in the calcula-
tion, and this correlation is shown in Fig. 14. It indicates that indeed there is a change in the penetration
mechanism at -260 ps when V* = 0.24 cm/M and that particles that arrive later have a lower than ex-
pected velocity.

Detaild plots of the interfaces in the simulation wem made to find the mechanism for the anomalous be-
havior of the particle velocity near 260 ps. Plots of the interfaces at each available dump time from 200 PS
to 300 w are shown in Fig. 15. With the aid of these plots we can easily seethe sequence of events that lead
to the sudden particle velocity decrease and eventually to the end of penetration. In Fig. 15, the jet parti-
cles are traveling to the right and impinging on the bottom of the crater. The following events are shown
on the figure

0.7

“~ 0.4
>

0.2

0.1

0 100 200 300 400

Time (ps)

Fig. 14. Particle velocity for particle striking the bottom of the crater at each penetration.
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Fig. 15. Computer penetration prediction by a sequence of jet particles. The point
where the crater first necks down and inches off the jet particles is indicated
by the arrow. The jet particles are nur$e red for identification betw~n frames.



● At 200 ~, the crater is cylindrical and has a nearly uniform diameter near the bottom of the crater
(the bottom 10 cm are shown on the figure). The jet is stretching and particulating. The jet materi-
al that has reached the bottom of the crater has coated the wall of the crater and is moving to the
left and thus is not adding any debris to the bottom of the crater.

● At 220 W, the front of the jet has particulate into slugs -2-3 cm long. Slug-2 will math the bottom
of the crater and impact into fresh ta~et material because slug-1 will be eroded by the time it ar-
rives. An constriction in the crater surface is developing -1 cm fmm the bottom of the crater. This
point is indicated by an arrow on the figure.

. At 240 W, the deaease in diameter of the crater wall leads to interfenmce between the crater wall
and slug-3. Its speed is slowing due to the contact with the crater wall. Jet material from the bot-
tom of the crater does not erode onto the crater wall.

● At 260 W, slug-3 has struck the bottom of the crater (but at a reduced velocity). The crater wall is
severely interfering with slug-4. The back end of slug-4 will break off.

. At 280 W, slug-4 is reaching the bottom of the crater before the remains of slug-3 could exit. De-
bris is starting to pile up in the bottom of the crater. Slug-5 has been broken off the tail of slug-4
and is slow moving with respect to those ahead and behind it. The crater surface is now interfer-
ing with slug-6.

. At 300 W, slug-6 is running into debris left from those nearer the tip. Mom debris is piling up in
the bottom of the crater, and the depth of the crater has almost stopped increasing.

The calculation predicts that the penetration will be stopped long before the jet material is used up. The
mechanism is as speculated by DiPersio et. al.4; the penetration is stopped because jet material is not able
to exit the crater, and succeeding particles impact the jet material debris rather than target material. The
calculation provides some insight into the mechanism that terminates penetration. It pmciicts that the par-
ticulate material is interfered with by the crater walls so that the jet material cannot escape from the cra-
ter, and following particles math the bottom of the crater at a reduced velocity from that expected if the
interference had not occurred. This termination process may be sensitive to the stnmgth of the jet and tar-
get.

The penetration mechanism is much mom complicated than a one-dimensional eroding rod and appears
to be at least twodimensional in nature. The end of penetration is the result of a number of complicated
mechanisms including the crater pinching off the jet, the jet particles breaking apart and slowin& and jet
material not being able to exit fmm the crater. The total penetration as a function of the particle velocity
impinging on the bottom of the crater is shown in Fig. 16. This figure shows the change in the penetration
mechanism at Vmh -0.24 cm p.s.We note that at this time, the predicted penetration is at the upper end of
that measured experimentally (-4.74.9 CD) for “precision charges”. This is as good as we can expect with
the code calculation because the code is calculating the performance of a perfect jet and the actual jet can
only achieve this as an upper limit.

SUMMARY

Our initial goal was to use the data from a standard shaped charge experiment as part of our QA of the
MESA code. As our work progressed, we saw that a mesh and model sensitivity study would be useful in
order to guide MESA users in modeling their own problems. We have thus provided this type of informa-
tion in this report. It should be kept in mind that our conclusions may differ for other types of problems.

Then? were two different facets involved in this study 1) jet formation fmm a shaped charge, and 2) jet
penetration into a thick target. The code was assessed by its ability to perform and its accuracy in per-
forming these types of calculations by comparing the code predictions with experimental data.
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Fig. 16. Velocity of particle striking the bottom of the mater at each
penetration depth.

Summary of Jet Formation Results

We used the jet tip speed as the figure of merit for comparisons of the calculations against experimental
data. We found that both the MESA-2D and MESA-3D codes can accurately predict the jet tip speed. We
found that the accuracy increases as the cell size decreases and that the predicted jet speed converges to
the expximental measurement as the cell size decreases to zero.

We found that a variable mesh maybe used in order to obtain results essentially equivalent to those from a
uniform mesh simulation but using only 1/3 the computer resources. Likewise, we found that the use of a
moving mesh in the simulation can decrease computer nxx.wces and increase accuracy.

We found it necessary to include material strength in the liner and that it is an important contributor to the
calculated jet speed. The differences between the various strength models is small compared to the effect
of neglecting stnmgth in the liner. On the other hand, we found that it is not crucial to model either the
charge case or the surrounding air for this particular charge. ~s charge has an Aluminum case; charges
with steel cases may be more sensitive to confinement). We found that small uncertainties in the JWL EOS
constants have only a small effect on the predicted jet tip speed and thus; in this case, exact JWL constants
are not critical to the pnxiictions.

For the same noding configuration, we found that the 2D and 3D versions of the MESA code predict
equivalent results and thus can be effectively combined in a design study. In this study, we were not able
to run the 3D code with the small uniform sized cells used in the 2D simulations because of the large num-
ber of cells required, but when we employed a variable mesh which provides a cost effective calculation,
the 3D code predicts approximately the corned jet tip speed. The 3D code needs -10-15 times the number
of cells and takes -45-60 times the CPU for the same simulation as the 2D code. It does not appear practi-
cable to model this problem with a cell size small enough to achieve mesh convergence with a 3D model.
Because of this, we recommend a strategy that will make use of the capability of a 2-D model in conjunc-
tion with a 3D model. The 2D model could, for example, be used to perform a cell size sensitivity study
and examine details of features in the problem using a zoning so fine that mesh convergence is achieved.



The 3D model is essential to gain an understanding of 3D features in the process being simulated and may
be used to study e.g., overall trends and 3-D geometry effects.

For all the parametric variations that we performed, the cell size effect is the most important consideration
in setting up and modeling this problem The size of the mesh cells should be given can?ful consideration
when setting up a new ~metry. A balance must be achieved between a large cell size that will give mis-
leading information, and a cell size that will result in unreasonable computer costs. In this study we have
shown how the user can employ a Galilean transformation and a variable mesh to increase accuracy and
decrease computer costs.

Summary of Jet Penetration Resulk

The MESA codes are a valuable tool in explaining the penetration of a shaped charge into a target. The
penetration of an “ideal” shaped cha~e was predicted to be about 10 percent greater than the measured
value and the differences am explained by the variability of the experiments and by the penetration mecha-
nism. It appears as though the predicted penetration is not only sensitive to the target yield strength but
that there is some other important mechanism controlling the penetration depth.

The penetration mechanism is much more complicated than a onedimensioml eroding rod and appears
to be at least two-dimensional in nature. The end of penetration is the result of a number of complicated
mechanisms including the crater pinching off the jet, the jet particles breaking apart and slowin& and jet
material not being able to erode onto the crater wall.
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Appendix A

INPUT FTLES FOR MESA-2D SIMULATION WITH STRENGTH AND
A CONSTANT 0.5 mm UNIFORM CELL SIZE

GENERATOR Input

rnesa2d (g)

Standard Charge Base Case-- Sesame EOS -- S-G Strength -- 1/2 mm mesh

$probsize
mcr = 120, mcz = 840,

mmats = 4, mix = 2700, mcomp = 3,

strength = true., heburn = true.,

$end

$options

idgeom = 2, idq = 1,

ibcrl = O, ibcr2 = 1, ibczl = 1, ibcz2 = 1,

coordfac = 1.Oe-4,

Send

$mesh

ncellr = 120,

ratior = 1.0,

coordr = 0.0, 6.0,

ncellz = 840,

ratioz = 1.0,

coordz = -17.0, 25.0,

Send

$mats

mpri = 3, 1, 2, 4,

matbak = 4,

matname(l) = 4h3336, eosform(l) = 6hsesame,

dO(l) = 8.93, eO(l) = 1.1622867732971e-3, pmin(l) = -0.1,

strform(l) = 3hs-g, yldO(l) = 0.0012, yldmax(l) = 0.0064,

smO(l) = 0.477, smmax(l) = 2.54,

strcon(l,l) = 36.0, 0.0, 0.45, 0.0, 100., 2.8, 2.8,

matname(2) = 8hAl Case, eosform(2) = 4husup,

dO(2) = 2.714, eO(2) = 0.0, pmin(2) = -0.1,

eoscon(l,2) = 0.5392, 1.341, 0.0, 2.00,

strcon(l,2) = 125., 0.0, 0.10, 0.0, 100., 6.5, 6.5,

matname(3) = 8hOctol HE, eosform(3) = 3hjwl,

dO(3) = 1.821, eO(3) = 0.0527, detvel(3) = 0.848,

eoscon(l,3) = 0.38, 7.486, 8.19, 0.1338, 2.19,

matname

dO

$end

Sdets

4) = 8h void, eosform(4) = 4hvoid,

4) = 0.0,

detz = -15.4, detr .= 0.0, dett = 0.0,

$end

outer liner
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Spoints

rz =

1, 4.36880, -1.06426,
2, 4.36880, -1.27000,

3, 4.19100, -1.27000,

4, 1.022027836, -9.525454732,

5, 0.00000, -10.227875003,

$end

inner liner

$points

rz =

6, 0.00000, -10.022135003,

7, 0.829952999, -9.451724110,

8, 4.049598816, -1.06426,

Send

outer case

$points

rz =

9, 4.54660, 0.0000,

10, 4.54660, -12.3190,

11, 2.93370, -16.5100,

12, 0.00000, -16.5100,

Send

inner case

$points

rz =

13, 0.00000, -15.4262,

14, 2.54000, -15.4262,

15, 4.19100, -11.1252,

16, 4.36880, -1.2700,

17, 4.36880, 0.0000,

$end

center of sphere

p poinLs

rz =

18, 0.00000, -9.133135003,

$end

$curves

circle = 4, 5, 7, 6,

center = 18, 18,

subdiv = 50, 50,

Send

liner

Sregion

mat = 1,

pts = 1, 2, 3, 4, 5, 6, 7, 8,

Send

case

$region
mat - 2,

pts = 9, 10, 11, 12, 13, 14, 15, 3, 16, 17,

$end

he

Sregion

mat = 3,

pts = 3, 15, 14, 13, 5, 4,

28



Send

MESA Input

mesa2d (m)

o, 0.0, 0.0

$probsize

mcomp = 4,

remix == 3000,
strength = true.,

heburn = true.,

Send

$options

actgrid = true.,

ibcrl - 0, ibcr2 = 1, ibczl = 1, ibcz2 = 1,

idq = 1,

dtO = 5.e-1, dtmin = 1.e-4, dtmax = 5.e-1, dth = 5.e-1,
growdth = 1.25, growdtO = 1.o5,

safdtc = .5, safdtur = .5, safdtuz = .5, safdtd = .5,

cutacc E 1.Oe-9, cutvolf = 1.Oe-5, cutd = 1.Oe-6, cutpf = .001,

Cql = 0.0, cq2 = 2.0,

mlagcyc = 4,

zap = true.,

$end

sops

ropt = 0.0, 50.0, ropdt = 10.0,
mropsp = 1, 1, mroplp = O, 0, mropdmp = 1, 1

$end
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Appendix B

INPUT FILES FOR MESA-3D SIMULATION WITH STRENGTH AND
A 1.1 FACTOR VARIABLE MESH SIZE

FRAC-IN-THE-BOX Input

1 outer liner

tabsf 1 c x 0.0 0.0 0.0

-10.227875003,

-10.227557482,

-10.226605102,

-10.225018416,

-10.222798345,

-10.219946176,

-10.216463563,

-10.212352528,

-10.207615454,

-10.202255090,

-10.196274545,

-10.189677288,

-10.182467146,

-10.174648303,

-10.166225292,

-10.157203001,

-10.147586664,

-10.137381857,

-10.126594502,

-10.115230855,

-10.103297509,

-10.090801386,

-10.077749735,

-10.064150126,

-10.050010450,

-10.035338907,

-10.020144009,

-10.004434570,

-9.988219703,

-9.971508813,

-9.954311596,

-9.936638025,

-9.918498355,

-9.899903106,

-9.880863067,

-9.861389282,

-9.841493047,

-9.821185903,

-9.800479632,

-9.779386244,

-9.757917974,

-9.736087278,

-9.713906817,

-9.691389459,

-9.668548266,

-9.645396488,

-9.621947554,

-9.598215068,

-9.574212795,

-9.549954659,

-9.525454732,

-1.27

-1.27

0.0
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0.000000000
0.026364858

0.052714423
0.079033410
0.105306549

0.131518603

0.157654364
0.183698672

0.209636419

0.235452559

0.261132117
0.286660196

0.312021987
0.337202779

0.362187965

0.386963050
0.411513664

0.435825565

0.459884650
0.483676963

0.507188701

0.530406227
0.553316072

0.575904947

0.598159747
0.620067564

0.641615688
0.662791621
0.683583078
0.703977998

0.723964551

0.743531143

0.762666423

0.781359292
0.799598906

0.817374684

0.834676314

0.851493762

0.867817270

0.883637370

0.898944885
0.913730935

0.927986944
0.941704640

0.954876068

0.967493586
0.979549875

0.991037941

1.001951121
1.012283084

1.022027836

4.191
4.3688

4.3688



end
! inner liner

tabsf 2 c x 0.0 0.0 0.0

-10.022135003,

-10.021877155,

-10.021103761,

-10.019815269,

-10.018012427,

-10.015696280,

-10.012868172,

-10.009529745,

-10.005682933,

-10.001329969,

-9.996473378,

-9.991115977,

-9.985260874,

-9.978911464,

-9.972071433,

-9.964744746,

-9.956935655,

-9.948648690,

-9.939888657,

-9.930660637,

-9.920969985,

-9.910822321,

-9.900223532,

-9.889179767,
-9.877697431,

-9.865783185,

-9.853443940,

-9.840686855,

-9.827519330,

-9.813949002,

-9.799983744,

-9.785631657,

-9.770901066,

-9.755800516,

-9.740338767,

-9.724524788,

-9.708367753,

-9.691877033,

-9.675062196,

-9.657932994,

-9.640499365,

-9.622771421,

-9.604759446,

-9.586473889,

-9.567925356,

-9.549124608,

-9.530082550,

-9.510810229,

-9.491318825,

-9.471619642,

-9.451724110,

-1.06426

-1.06426

0.0
end

0,000000000
0,021409978

0.042807536 .

0,064180263

0.085515759

0.106801649

0,128025585

0.149175256

0.170238391

0.191202774

0,212056244

0.232786702

0.253382124

0.273830563

0.294120157

0.314239136

0.334175829

0.353918672

0.373456212

0.392777116

0.411870175

0.430724314

0,449328597

0,467672230

0.485744574

0,503535144

0.521033621

0.538229854

0.555113868

0,571675869

0.587906248

0.603795592

0.619334683

0.634514506

0.649326257

0.663761344

0.677811392

0.691468252

0.704724001

0.717570950

0.730001647

0.742008880

0.753585685

0.764725346

0.775421401

0.785667645

0.795458135

0.804787191

0.813649402

0.822039627

0.829952999

4.049598816

4.3688

4.3688

! outer case
tabsf 3 c x 0.0 0.0 0.0

0.000, 4.5466
-12.319, 4.5466

-16.510, 2.9337
-16.510, 0.0000

end
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! inner

tabsf ~ C X

-15.4262,

-15.4262,

-11.1252,

-1.2700,

-1.2700,

0.0000,

case

0.0 0.0 0.0
0.0000
2.5400

4.1910
4.1910
4.3688
4.3688

end
!

qcell 1 1 1.0 1 liner 1 -2

qcell 2 2 1.0 1 case 3 -4

qcell 3 3 1.0 1 he 4 -1
!

mesh x 1 -1.70000e+Ol

420 2.50000e+Ol 1.0000OOOOe+OO

mesh y 1 0.0000Oe+OO

20 6.0000Oe+OO 1.10408364e+O0

mesh z 1 0.0000Oe+OO

20 6.0000Oe+OO 1.10408364e+O0

I accuracy

ver .005

GENERATORInput

mesa (g)

Std Chrg -- 0.081” Liner -- Sesame -- S-G -- Var mesh

p$probsize
heburn = true.,

strength = true.

$end
$options

ibc - 1, 1, 0, 1, 0, 1,
$end
$eos

mpri = 3, 1, 2, 4,

matnam(l) = 8hliner-Cu, eosform(l) = 8hsesame ,

rhoO (1) = 8.93, sieO(l) - 1.1622867732971e-3, prsmin(l) = -0.1,

ieoscon(l, l) = 3336,

strmodel(l) = 8hs-g ,yldO (l) = 0.0012, yldmax(l) = 0.0064,

smO (1) - 0.477, smmax(l) = 2.54,

strcon(l,l) = 36.0, 0.0, 0.45, 0.0, 100., 2.8, 2.8,

matnam(2) = 8hAl Case, eosform(2) = 8husup

rhoO (2) = 2.714, sieO(2) = 0.0, prsmin(2) = -:.1,

eoscon(l,2) - 0.5392, 1.341 , 0.0, 2.00,

strcon(l,2) = 125., 0.0, 0.10, 0.0, 100., 6.5, 6.5,

matnam(3) - 8hOctol HE, eosform(3) = 8hjwl ,

rhoO(3) - 1.821, sieO(3) = 0.0527, detvel(3) = 0.848,

eoscon(l,3) = 0.38, 7.486, 8.19, 0.1338, 2.19,

matnam(4) = 8h void, eosform(4) = 8hvoid ,

rhoO(4) = 0.0,

Send

$dets
hex = -15.4, hey = 0.0, hez = 0.0, het = 0.0

$end
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MESA-3D Input

mesa (m)

o, 0.0, 0.0

Std Chrg - 0.081” Liner - Sesame - Variable Mesh

p$probsize
remix = 50000,

strength = true., heburn=.tme.,

iris = false.,
Send

$options

ibc = 1, 1, 0, 1, 0, 1,

initsp = true., initgd = true., initlp = true.,

dtinit = .1, dtmin = .001, dtmax = 1.0,

mlag = 4, idartvis = 2, cutvof = 1.Oe-4, clean=.true.,

$end

$eos

mpri = 2, 3, 1, 4, cfrho(l)=.8, cfrho(2)=.8,

Send

!$Ops

ropt = 0.0, 50.0, ropdt = 5.0,

mropsp = 1, mroplp = 1, mropdmp = 1,

Send
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