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DSD TECHNOLOGY:

A DETONATION REACTIVE HUYGENS CODE

by

John Bdzil and Wildon Fickett

ABSTRACT

The length of the reaction zone strongly influences the speed of
propagation of detonation in multi-dimensional explosive pieces.
Detonation Shock Dynamics (DSD) properly accounts for these effects
in detonation wave-spreading problems when the radius of curvature
of the multi-dimensional detonation shock is large compared to the
explosive’s reaction-zone length. This report is a user manual for
our two-dimensional implementation of this method; a FORTRAN
subroutine called DSD Technology.

I. INTRODUCTION

Modeling detonation propagation in complex shaped explosive pieces is an important
problem in the design process for explosively powered devices. The computational
problems that arise are difficult, because the physics import ant to the problem occurs
on many disparate length scales. For example, the device size is typically many orders
of magnitude larger than the size of the explosive’s detonation reaction zone. One of
the principal shortcomings of the computer models that are presently used for multi-
dimensional explosive engineering design is their inadequate treatment of the explosive’s
detonation reaction zone. Current uniform-grid methods lack the resolution to calculate
both the broad gas expansion region and simultaneously the thin reaction zone with
reasonable detail. Consequent ly, detailed calculations that resolve the reaction zone are
seldom performed. Typically, the reaction zone is assumed to be inihitesimally thin and its
dynamics is modeled by a scale independent detonation Huygens construction. This model
assumes that detonation propagation is purely a geometric problem; the multi-dimensional
detonation wave is a shock that expands normal to itself at the constant Chapman-Jouguet
detonation speed, DCJ. When the detonation reaction zone is exceedingly short compared
to a representative dimension of the explosive piece, this simple model yields good results.

In recent years, concerns about accidental initiation of detonation have led to the use of
insensitive explosives; explosives with reaction zones orders of magnitude longer. Because
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of the increased length of their reaction zones, the detonation speed departs significantly
from .DCJ. For example, for these explosives the detonation speed is slower for expanding
waves than for plane ones, and near edges the detonation speed can be significantly
reduced; this reduction causes the detonation wave to become curved. Drawing on recent
theoretical research on multi-dimensional detonation, we have developed a theory called
DSD that incorporates the explosive’s scale dependency; this theory allows us to model
finite reaction zone effects. DSD is the acronym for the “Detonation Shock Dynamics”
theoryl’2 developed by John Bdzil and Scott Stewart. This theory provides a recipe for
propagating a detonation wave front without calculating the flow behind it. A central result
of the theory is that the normal velocity D of the wave front at any point depends only
on the wave curvature K at that point. This has the effect of reducing the dimensionalit y
of the det onat ion propagation problem by one. Thus a problem with either a plane or
axis of symmetry (a two-dimensional p,roblem) becomes a one-dimensional problem. A
function D(K) characterizes each explosive and is considered to be a material property.
This function can be calculated theoretically if the equation of state and reaction rates are
known but is obtained in practice from simple calibration experiments.

DSD is a low-frequency (long transverse wavelength) asymptotic theory. The
governing equation is a parabolic partial-differential equation (PDE), similar in form to
Burgers’ equation (see Ref. 3, ch. 4), but with a complicated coefficient involving integrals
over the solution. For the theory to apply, the radius of curvature of the front must be
much larger than the length of the reaction zone.

The theory is analogous to Whitham’s “Geometrical Shock Dynamics” theory, Ref.
i3, ch. 8), but applies to detonation waves instead of inert shocks. The mathematical orm

of “Geometrical Shock Dynamics” (a hyperbolic theory) is different from DSD (a parabolic
theory . This difference in form follows from the fact that inert shocks decelerate as they

iexpan whereas det onat ions accelerate.

As D(K) drops below DCJ, the thermodynamic state point from which the explosive
products undergo expansion changes. The Chapman-Jouguet state is not the proper
starting state. Given D(K) and a compatible equation of state for the products, the
proper starting state for the numerical computation of the products region (the working
fluid) can be calculated. Since D typically varies along the shock, the starting state for
the explosive products is different at the center and edge of the explosive piece. Thus by
incorporating the reaction zone effects into the detonation propagation model, DSD also
yields the proper starting point for the expansion of each parcel of explosive product.

Brian Lambourn and Damian Swift4 at the Atomic Weapons Establishment (AWE)
in England have developed a theory similar to DSD. They call their implementation of the
theory the Whitham-Bdzil-Lambourn (WBL) detonation model.

The plan of this report is as follows. The problem geometry and intrinsic coordinate
representation that we use are presented in Chap. II. The evolution equation for the shock,
the boundary conditions and D(K) functions are discussed in Chap. III. In Chap. IV we
describe the structure of the input deck that is used to set up problems. Selected output
from seven sample problems is presented and discussed in Chap. V. Chapter VI is a brief
tutorial on the DSD method. The structure of the code is described in Chap. VII. The
scaled variables used in the code are described in Ap endix A. The detonation failure

fmodels currently implemented in the code are describe in Appendix B.
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11. GEOMETRY AND NOTATION

The detonation is assumed to have the usual Zeldovich-von Neumann-Doering (ZND)
structure, that is, a shock followed by a reaction zone. The theory tracks the leading shock,
which we will refer to as the shock— .

The governing equations are written in the intrinsic coordinates shown in Fig. 2.1.
This is a key step in constructing a tractable and transparent theory. The independent
variables are ~, the dist ante (arclengt h) along the shock, and the time t. The dependent
variable is ~, the ~ of the shock, defined as the angle between the vertical and the
out ward (i. e., drawn in the direction of propagat ion) normal to the shock, with # positive
for clockwise rotation of the normal from the vertical.

The laboratory coordinates x and y of the shock (cartesian coordinates in the frame
with the undisturbed explosive at rest) at a given time t are related to the intrinsic
coordinates ~ and # by

(2.la)

Y(() t) = ‘Ye(t) -J<sin 4((’, t)de . (2.lb)

The integration begins at an edge point z.(t), ye(t) where ~ is assigned the value zero.

We use the term body to denote the piece of explosive in which the wave propagates.
For our purposes we regard the body as bounded by a specified initial shock and two edges,
as shown in Fig. 2.2. The edges are the two physical edges of the explosive between which
the shock propagates.

We treat only the (mathematically) “one-dimensional” case, that is, with one space
and one time variable. There are two possible symmetries which we refer to by the names
~ and cvlinder. These are defined as follows:

. (1)

(2)

Slab

Fig. 2.2 is a cross section of a body of infinite extent in the direction normal to the
paper; all curves (edges and shock) are cylindrical surfaces with generators normal to
the paper.

Cylinder

Fig. 2.2 is a cross section of a figure of revolution about the centerline x = O.

For either of these geometries, the terms we use to describe the shape of the shock or
an edge will refer to the section in the plane of the paper. Thus, for example, a shock
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Fig. 2.1 Intrinsic coordinates.
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Fig. 2.3 The
the edge and

Shock

1:
Edge

x

edge and associated angles. The directions ? and ii are the tangent to
the normal to the shock.

described as an arc of a circle would be in reality a cylindrical shock in the slab case and
a spherical shock in the cylinder case.

The left edge is the reference edge; along it the shock arclength f is assigned the value
zero. We use subscript e to denote an edge; in the absence of qualification, this refers to
the reference edge. Figure 2.3 shows an edge and some associated angles. We denote by
6 the inclination of the edge, defined as the angle between the vertical and the tarment to
the edge, with @ positive for clockwise rotation of the tangent from the normal. At the
edge we have the shock inclination q$~and the normal shock velocity De. It is useful to .
define another angle a, which measures the deviation from normal incidence. It is the
angle between the wave normal at the edge and the tangent to the edge, that is

so that a = O for normal incidence. The phase velocity Dph of the intersection point with

the edge is given by

(2.3)

where C= is arclength along the edge, increasing in the direction of propagation. The
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solution of Eq.
55
2.3), e(t) and the prescribed edge shape, tl(~e) combine to yield the edge

~coordinates z, (t , ye (t

111(

(1)

Xc(t) = (2.4a)ze(0) + Jte sin ~(t~)d~~ ,

ye(~)= y.(o)+ Jt= COSO(~)d~J . (2.4b)

EQUATIONS

~uations of Motion

The governing equations for ~(~, t) are

$,+ B+( = -De = -D’(/c)(#<< + kSt) (3.la)

J
(

BZ Dt$ed[ + D, tanc (3.lb)
o

K=$l++s (3.lC)

S E sin ~/x (3.ld)
k = 0/1 for slab/cylinder symmetry . (3.le)

The shock kinematics is described by Eq. (3.la), which resembles Burgers’ equation

Ut+ Uuz = vu== , (3.2)

with the coefficient lil the propagation speed and –D’( K) s –dD( ~)/d~ the “viscosity” v.
The first (integral) term in B represents the change in shock surface from wave spreading,
and the second term the change from the intersection at the edge (note that the second
term is zero for normal incidence). For slab symmetry, the curvature K is just the reciprocal
of the local radius of curvature of the shock.

The function D(K) characterizes the explosive dynamics and must be specified by
the user. Typically, it is determined by experiments in a standard geometry, the
most common being the so-called “diameter-effect” experiment, which measures steady
detonation velocity as a function of charge diameter in a “rate stick”-a long cylinder of
explosive. The determination of D(K) from these data is discussed in Ref. 5. We consider
only -D’(K) >0.
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The governing equations above are writ ten in scaled variables; see Appendix A.
~In these variables, the Chapman-Jouguet (CJ) detonation velocity is unity, and the CJ
reaction time is unity or at least O(l).

For computation, the integral term in the coefficient 1? is split into two parts. We
write it as

(3.3)

This has the advantage that the integral, which must be done numerically, is a small term,
because (D – 1) is the deviation of the (scaled) wave velocity from the

Another form of these equations is useful both for computation
define a new angle variable u

u=~-e ,

CJ value of unity.”

and analysis. We

(3.4)

which has the nice property that u = O at an edge to which the wave is normal. In this
variable the governing equation is

ut + But = -D’(/c)(uct + kSC) - 8’(t) . (3.5)

The added source term 0’ is ~he time derivative of the left edge angle 0 at the point at
which the shock intersects the edge.

(2) Boundary Conditions

For a free edge (vacuum) we ask whether the flow is supersonic or subsonic in the
frame attached to the moving intersection point of the shock and the edge, i.e., whether

the quantity (l ~ 12–Cz) at the shock, where ~ is the vector particle velocity in this frame
and C is the sound speed, is greater than or less than zero. If the flow is supersonic, signals
from the edge do not enter the explosive, and we apply no boundary condition. If the flow
is subsonic, we force it to be sonic by setting the edge angle rY to the critical value, the
value for which the flow is sonic. In effect, overall we bound a from below by the critical
value, a=. For the polytropic fluid equation-of-state (EOS) with finite, single-step reaction
rate, the critical value of u is given by

(3.6)

For instantaneous reaction (a Huygens wave), the critical value is a = O.
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In general, the total arclength & of the shock between the two edges is changing with
~time. For our numerical method we need this total arclength along the shock and its rate
of change with time. This derivative is given by

(3.7)

where the subscript 2 denotes values at the right edge.

(3) mans verse Acoust ic wave SDeed

It is of some interest to know how fast an acoustic signal, for example, the head of an
edge rarefact ion, propagates into the explosive along the shock. The speed of a transversc
wave along the shock is given by

(3.8)

where (W is the location of the wave head, +/- denotes a rarefaction originating at the
left/right edge, C is the sounds eed and U is the component of the particle velocity normal

{to the shock in the shock attac ed frame. The right-hand side (RHS) is evaluated on the
explosive shock. For the polytropic fluid EOS, the first term is

(3.9)

The high frequencies associated with the acoustic wave head are not strictly
compatible with a low-frequency theory like DSD. This is particularly an issue at early
times. Consequently, there is some ambiguity associated with identifyin a proper origin

!for the acoustic source, ~Wo. Generally, select ~Woto be a short distance in rom the physical
edge. This protects the acoustic source from early-time, high-curvature DSD transients.

(4) D(K) Functions

Qualitative changes in the shock propagation can occur for different D(K) that satisfy
-D’(K) z O. When D = 1 – LYK with Q = constant for all 0< K < m, then the shock passes
over every point in the explosive. We use this simple model for the sample problems.. . . -. --
described in Chap. V.

Detonation in real explosives cannot be sustained in regions

where Kf, the curvature at which detonation fails, is different for

where K > nf and

different explosives.
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For example, not all the explosive detonates in the vicinity of a sharp corner. Near such
features, the detonation shock does not extend into the corner but terminates at an interior
point defined by K = Kf. The locus of all such points defines a virtual edge (interior to

the physical edge). The explosive between the physical edge and the virtual edge fails to
detonate; it does not undergo significant reaction on a relevant time scale. An example of
a D(K) function that can m-odel-this behavior is

D = Df + (1 – Df)~m

where K ~ K~ and the failure velocity, D ~, satisfies O < Df <

with these properties is described in Appendix B.

IV. INPUT AND OUTPUT

(1)

A sample input file is

‘run’
‘fluid’
‘Dkap’
‘geout

l=VP1
‘@!3er’
‘xnet’
‘tnet’
‘it’
‘bcl’
‘bcr’

‘Onion’
3.0 0.0
1 0.1
1.0
1 -1.0 0.0 -1.57
3 0.0 1.0 0.0
0.0 128 8.0
1.0 4 3.75
2 -1.57 1.0 +1.0
3
1

7 (3.10)

1. A detonation failure model

!alpha = 0.1

! gonic

!no bc
‘bcrt’ 2 ! soft right
‘tvav’ 1 0.125 !twave (left bndry)
‘ref 1’ 5 0.1 !Cyl . w/ linear D-kappa
‘dials’ 1.0 0.001 0.001

The general structure of the input line is keyword, option flag, data.

The run line is special. Not all lines have the option flag. For example, in the second
line, fluid is the keyword; there is no option flag, and 3.0 and 0.0 are data items. In the
third line, Dkap is the keyword; 1 is the option flag; and 0.1 is a data item. An exclamation
mark designates the rest of the line as a comment. A line with an exclamation mark in
column one is a comment line.

The only restriction on the order of the lines is that the run line must be present and
must be the first line. Its string (Onion in the example) appears in headings on the output.
The remaining lines can appear in any order; only those required for the problem at hand
need be present.
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TABLE 4.1. INPUT DATA

fluid Fluid properties
‘y, 62

7–pOlytrOpic-ga exponent
t$z-fraction of resolved heat

4

release

Dkap
1 cl!,@

2

3

geom

xnet

tnet

CY–linear coefficient
/3-bounding coefficient

~f, Df, of
Kf - failure curvature

Df - failure velocity
a f – failure wave spreading angle

k
k – (O=slab/l=cylinder)

to, n, tn
co - initial (left) ~
n - number of intervals
~n - final (right) ~

D(Ic) function
Linear: D= 1 – ~

Failure:

D= Df+(l-llf)(l-~)

Problem symmetry

Arclength net

Time net
to, n, tn

to – initial i
n- number of &play intervals
tn - final t



TABLE 4.1. INPUT DATA (continued)

ic Initial Condition

1 fP Line

~ - angle

2 ~, r, s Circle

# - initial angle
r – radius
s – sign (q$~)

3

edgel, edger
1

#, r, s, fle dp10 Data file

dp10 - contains (, d, #It

Edge

x> Y767 tern Line

X,y - initial point
6 – angle
~ern- edge arclength

maximum

& Y7 67ry % tern Circle

r – radius
s – sign of d8/d&

x> Y, e, (em, fles dp8/dp9 Data iile

dp8/dp9 – contain list of
(e and 6. for
(left/right) edge

bcl, bcr Boundary conditions

1 No b.c.

2 “o Fixed angle ci

CT– angle

3 ~cj Letl> Cet2~ g Sonic, <e ~ ~e~l

o= - critical sonic angle NO b.c., ~et2 s (e < fetl

(eti - edge arclength at Fixed angle cr,

b.c. transition points (e< ~efz

11
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TABLE 4.1. INPUT DATA (continued)

bcrt
i

2

twav
o

1

2

ref 1, ref2
1

2

3

4

5

range
1

dials

Right-boundary type
Hard

soft

Transverse wave
none

two, two from left edge

two, two from right edge

CWo- source location
tWO– initiation time

Reference solution
c1 D(K) circle
a – linear D(K) form

Huygens circle

I-Iuygens ramp corner

Huygens circ. corner

D(K) circle

Plot ranges
Wave plot

Q’
a – linear D(K) form

Zl, Z2, ~1, yz
zl, zz – plot range of x

Y1, Y2 – plot range of y

Dials
At/A~, delt, tol
At/A~ - step ratio
At - integration time step
delt - initial DPDES step
t ol – DPDES tolerance

12



v

The input data specifications are summarized in Table 4.1. Detailed specifications for each
line follow.

RUN- Run Label

The run label is the second string on the line. It appears in the output headings.

FLUID – Fluid Parameters

‘)f,&
;2= polytropic-gas exponent

= fraction of resolved
energy release

The fluid equation-of-state is used in two places. It is used in calculating the sonic character
of the flow at the edge in the sonic boundary condition, option 3 under bcl, bcr. It is
also used in the separate calculation of the (transverse) speed of the head of the edge
rarefact ion wave along the shocks under t wav.

The parameter 62 applies to the SRHR model (see Ref. 6). For this model, the sonic
boundary condition depends on 82 and ~.

DKAP – D(K) Relation

1 a, /9 Linear
a, @ – coefficients in

D = 1 -aK/(1 +PK)

The D(K) relation is linear, with coefficient a for [Kl small, and D(K) approaches 1 – a//3
for K large.

2 ~f> Df> ~j . Failure Model A
af – spreading angle
Dj, tcf – coefficients in

D = Df + (1 - Df)+ – tcf~f

For Model A, detonation propagates onlyin regions Where K < ~f. The detonation fails

at~= ~f, with D’( ~f ) -+ W. The spreading angle, af of the failure wave ~ong the ShOCk
is measured relative to the shock normal. See Appendix B for details.

3 ~f~ Df> of Failure Model B
Df, ~f – coefficients in

D =Df +(l-Df)(L~/tcf)

Model B is similar to Model A above except that D(K) is linear and ~’(~f) = -(1 -Df )/~f.

13
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GEOM– System Symmetry

k
k- ((1 = slab /1 = cylinder)

For slab symmetry, the body is infinite in extent in the direction normal to the paper.
For cylinder symmetry, the body is a figure of revolution about the x = O centerline.

IC – Initial Condition

1 4 Line
$- angle

The initial shock is a straight line, which has inclination ~ at the left edge.

2 +, r, s Circle
~ - angle
r – radius
s – sign of @t

See Fig. 4.1. The initial shock is an arc of a circle of radius r and has inclination ~ at the
left edge. The parameter s (+1.0) gives the sign of the curvature.

3 ~, r, s Data File

The input file is dp10. Its fist three lines contain four data fields each. Of these, all but
the first field in the first line (which contains the # points in the initial data) are dummy
numeric fields. Lines 4 thru (3 + # points) contain the triplets (~, ~, ~<) that describe
the initial shock shape. The file dp10 is written by the code at the final output time. It
is used as initial data to solve problems with complex boundaries as a sequence of simpler
problems.

# points xx xx xx
xx xx xx xx
xx Xxxxxx

t 4 46

EDGEL, EDGER- Left, Right Edge

Line

9- angle
&m - edge arclength

maximum

The edge is a straight line at angle O through (x,y), the intersection of the edge with the
initial shock.

2 x> YY$Yry % tern Circle
r – radius
s – sign of d#/d~e

15



See Fig. 4.2. The edge is a circular arc of radius r, total edge arclength &~, initial angle 6,
~through (x,y), the point of intersection of the edge with the initial shock. The parameter
s (+1.0) gives the sign of the curvature. A default value of & is used when no value (i.e.,
zero) is e-ntered. -

3 xf Yt 6Y[em
~e, 6.
(C - edge arclength
t9. – angle of

edge tangent

The input file is dp8/dp9 for the left/right

# points

Ce, 0.

Data File

edge. Its format is

BCL, BCR – Left, Right Boundary Condition (b.c.)

1 No b.c.

No boundary condition is to be applied. This is used at a supersonic edge.

2 c Fixed angle a
a – angle

The intersection angle a between the shock’s normal and edge tangent is to be fixed at the
given value.

3 ~cy Cetlj~et29o sonic,& ~ (etl
aC – critical sonic angle NO b.c., ~ctz s C. c cetl

&eti- edge arclength at Fixed angle a,
b.c. transition points & < &t2

The condition to be applied when fe z ~.tl is

If ~cr > a., no b.c. (supersonic)
If* fY<ac, o=clc= constant (subsonic),

where ac >0 is the angle at which the flow at the edge is sonic, the (-) sign applies at the
left boundary and the (+) sign at the right. If the flow at the edge issonicor subsonic,
make it sonic. No boundary condition is applied when &t2 < & < ~etl. When & < &t2, the

16
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intersection angle bet ween the shock’s normal and edge tangent is fixed at a. The default
value for aC is the polytropic gas expression,

ra. = arctan g .

4 Huygens, ~. z ~etl
NO b.c., <etz s <e < ~etl
Fixed angle a,

(~ < ~et2

This is the prescription for the Huygen’s solution, which is normal incidence. The algorithm
is that desribed in 3 above, with UC= O.

BCRT– Right Boundary Type

1 Hard
2 soft

The “hard” right boundary applies the given right boundary condition (from the bcr line)
at the right edge, lengthening or shortening the comput ation’s ~-length as required. For
the “soft” right boundary the computational {-length is fixed; its right end does not in
general coincide with the right edge, See Chap, VII in this report.

TWAV– ‘lh.nsverse Wave Flag

This option tracks the head of an acoustic wave along the DSD generated shock. The source
of the disturbance is an edge rarefact ion. For early times the head oft his acoustic wave can
lag the DSD calculation o~the disturbed shock. This is because
theory.

o
1 two, two
2 two, two

two - source location
two – initiation time

Note: do not start the wave precisely at the

“ REF1, REF2 – Wference Solutions

edge.

DSD is a long-wavelength

No wave
Left-edge wave
Right-edge wave

The reference solutions are displayed on the wave plot for comparison with the calculation;
that specified by ref 1 (linear D(K)) with a dashed line, and that specified by ref 2
(Huygens) with a chain line.

lor5 a D(K) circle
a – from linear D(K)

2, 3, 4 Huygens D = 1 circle

17



The reference solution refl is the exact solution for an expanding circular wave with
D = 1 – QK (see Chap, VI). The solution ref 2 is a Huygens wave.

DIALS - Integration Control

Equations (2.3), (3.la), (3.lb), (3.7) and (3.8) control the evolution of the shock. The
International Mathematical Software Library (IMSL) method of lines subroutine DPDES
is used to integrate Eq. (3. la). Equation (2.3) is integrated with a centered-difference
scheme, while Eqs. (3.7) and (3.8) are integrated with a forward-difference scheme. The
xnet line gives the initial mesh spacing along the shock (At = (~~ – to )/n). The time step,
At is entered indirectly through At/Af. Delt k the initial DPDES time step and t ol is
the DPDES error tolerance.

2“Q@@

Terminal output is designed to monitor the progress of the calculations. A line is
printed after each calculation step. Here kt is the number of the step, and nxr is the
number of mesh points between the edges. For each edge the sonic character son (0/1
for sub/super), the boundary condition type bdry (1/2/3 for no b.c./fixed a/K= ICj), the

detonation state fail (1/2 for detonating/failing) and the angle CTare shown. If the time
is a display time, the letter “d” appears after the time. If this step involved a new DPDES
start, the let ter “n” appears after the value of nxr. The current DPDES time step dph
and the total shock arclength xi2 I are also shown.

The printed output at each display time consists of one line containing the loop index
kt, the time t, and edge quantities, and then the mesh print, consisting of one line for each

mesh point, containing c, d, 4;, D, B, z, y, and x and y for each reference solution. This
output is written to file do. In addition, the z, y coordinates of the wavefront are written
to dpl and the ~, @ coordinates of the fronts are written to dp5.

The graphical output at the end consists of four plots: (1) the Fronts, showing the
body, any failure Ioci, and successive shock shapes, (2) the wave angle ~ vs. arclemzth ~,
(3) the Phase Velocity D vs. time at the ends of the shock, and (4) the coefficient

Vs. arclen~th ~. Plots 1, 2, and 4 show one curve for each display time.

V. SAMPLE PROBLEMS

We give the input data and results for several sample problems. The input files are
given in Table 5.2. The output represents a selection; the complete output is not given for
each problem. Data decks for a wide variety of sample problems are included at the end
of the code. Instructions for running them can be found in Chap. VII of this report.

Problem 1 (data file di Ih and Figures 5.1) is the Huygens solution for an expanding
circle. The shock shapes at three times are shown in Fig. 5.la. The left edge is a vertical
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straight line, the right edge is a horizontal straight line, and the initial shock is a circle of
unit radus. As specified by the ‘Dkap’ line of the input, linear II(K) with a = Ogives D = 1
for the Huygens’ solution. The left b.c. is that the wave be normal to the edge (the flow
will always be sonic in this problem). The right boundary is a soft boundary, i.e., the right
edge is the terminal locus for the display. The computation arclength remains ilxed at its
initial value of 4 (’xnet’ line). Initially, the end point ~~ = 4 of the computation arc lies
well beyond the right edge (which is at ~ = 1 x (7r/2) at the initial time t = 1). TO have the
computation arc extend to the right edge up to time 4, we would have set & >4 x (z/2)
(with a corresponding increase in computation time). The jagged line originating at the
left boundary in Fig. 5.la is the track of the acoustic wave head along the shock. It marks
the leading edge along the shock of the rarefaction advancing from the left boundary. The
roughness of the track gives a measure of the calculat ional mesh size. A total of 64 mesh
points span the shock from & = O to ~ = 4 x (7r/2). The angle # vs. & for three times is
shown in Fig. 5.lb. Table 5.1 shows the output written to the screen by this run.

Problem 2 (data file dil and Figures 5.2) is the expanding circle for D = 1 – aK,
a = 0.1. The geometry is the same as Problem 1. The left b.c. is a = O (normal incidence).
The right b.c. is a soft boundary identical to the right boundary in Problem 1. The two
reference solutions appear on the wave. plot for comparison: (1) Huygens solution (chain
dot line) Wd (2) exact solution (dashed line) (see Chap. VI of this report). The total
number of mesh points is 64.

Problem 3 (data file dilp and Figures 5.3) is identical to Problem 2 with the exception
that the number of mesh points is increased to 128. Comparing the results of these
problems gives a measure of the sensitivityy of our numerical algorithm to mesh size. The
dependence on mesh size is weak. Also shown are the Huygens solution (chain dot line)
and exact solution (dashed line).

Problem 4 (data file di2 and Figures 5.4) is similar to Problem 2 except that the sonic
boundary condition is enforced along the left edge. It is a simple model of the onionskin
experiment with the symmetry axis along y = O. Note that along the left edge, the shocks
shown in Fig. 5.4a curl back. The sonic boundary condition provides a model for an
unconfined edge. A plot of the phase velocities in Figure 5.4c shows the velocity along the
left edge (lower curve) is well below the velocity along the right edge (upper curve).

Problem 5 (data file di4c and Figures 5.5) considers a detonation with D = 1 – a~,
~ = 0.1 propagating in a c~ed channel (WC shot). The geometry is cylindrical (k = 1),

with x = Othe axis of symmetry. The sonic boundary condition is applied along both edges.
Figure 5.5b shows that the total shock arclength increases with time. As the right edge
advances along the shock, Fig. 5.5c shows that the phase velocity increases there. Although
the flow is originally sonic along this edge, after t = 3.5 the flow becomes supersonic. The
left edge pulls away from the shock. This leads to a phase velocity near 0,85 along this
edge until late time when the convergence toward the symmetry axis accelerates the wave.

In problems 6 and 7 we consider an initially circular detonation propagating in an
explosive whose geometry is shown in Fig. 5.6. These two problems (data files di6cbl,
dp9 and di6cb2 and Figures 5.7-5.8) are designed to be solved sequentially. The sonic

19



boundary condition is applied along edges I and 3. Boundary 2 is a symmetry plane. In
Problem 6 we consider the evolution of the shock up to the point when it just begins to
encounter boundary 3. Using the final output from Problem 6 as initial data, in Problem
7 we follow the evolution of the shock as it advances along boundary 3. Figures 5.7 and
5.8a,b show the calculated shocks and the last portion of the shock phase velocity along
edges I and 3. Problems with edge boundaries along which the boundary conditions change
can be solved by either this sequential run strategy or by the segmented boundary option
in bcl, bcr.

Appendix B. contains the solutions to some more complex problems.

TABLE 5.1. OUTPUT FROM FILE dil

21:59:05 05/27/92
dx di=dil
++ kt t nxr son bdry
++ 1 1.0000d 26n 1 1 2 1
++ 2 1.0625 271121
++ 3 1.1250 281121
++ 4 1.1875 301121
++ 5 1.2500 31 11 2 1
++ 6 1.3125 33 11 2 1
++ 7 1.3750 341121
++ 8 1.4375 361121
++ 9 1.5000d 37 1 1 2 1
++ 10 1.5625 39 11 2 1
++ 11 1.6250 40 11 2 1
++ 12 1.6875 41 11 2 1
++ 13 1.7500 43 11 2 1
++ 14 1.8125 44 11 2 1
++ 15 1.8750 461121
++ 16 1.9375 47 11 2 1
++ 17 2.0000d 49 1 1 2 1

fail
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

sigl sig2
0.0000 -0.0083
0.0000 -0.0911
0.0000 -0.1096
,0.0000-0.1270
0.0000 -0.0921
0.0000 -0.1092
0.0000 -0.0784
0.0000 -0.0951
0.0000 -0.0677
0.0000 -0.0841
0.0000 -0.0595
0.0000 -0.0753
0.0000 -0.0901
0.0000 -0.0683
0.0000 -0.0825
0.0000 -0.0624
0.0000 -0.0762

dph
0.0010
0.0135
0.0028
0.0023
0.0043
0.0040
0.0043
0.0034
0.0071
0.0039
0.0025
0.0119
0.0071
0.0059
0.0112
0.0072
0.0030

plot done. pages = 5. words = 3527
graphics cl = u
END OF DISSPLA 10.0 -- 6756 VECTORS IN 4 PLOTS.
RUN ON 5/27/92 USING SERIAL NUMBER 433 AT LOS ALAMOS NATIONAL
LABORATORY
PROPRIETARY SOFTWARE PRODUCT OF ISSCO, SAN DIEGO, CALIF.
2737 VIRTUAL STORAGE REFERENCES; 6 READS; O WRITES.
end cft
dx ctss time 16.960 seconds
Cpu= 4.205 i/0= 8.285 mem= 4.471
prpp title=”diln

xi21
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
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Expanding circle, Hu;~:ns n= 64 DSDFL

Wed 27 MoY92 21:59:2

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

x

Fig. 5.la Shock fronts for Problem 1 (file dilh). A circularly expanding I-Iuygens
wave with D = 1. The output times are t = 1 (initial), 2 and 3. The jagged dashed
line is the track of an acoustic wave along the shock (a radius vector for a Huygens
wave).

Expending circle, Huygens n= 64 DSDFL
phi vs. ksi

Wed 27 MoY92 21:59:2

4.0 1 ,

3.0

.-
C
n 2.0

1.0

0.0
0.0 1.0 2.0 3.0 4.0

ksi

Fig. 5.lb ~ vs. t for Problem 1 (file dilh). The domain of interest is O s ~ s 7r/2.
The upper line corresponds to t = 1 and the lower line tot= 3.
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Expanding Circle, D(kappa) n= 64 DSDFL
Fronts

Wed 271day92 21:59:0

2.0

1.5

> 1.0

0.5

0.0
0.0 0.5 1.0 1.5 2.0

x

Fig. 5.2a Shock fronts for Problem 2 (file dii). A circularly expanding DSD wave
with D = 1- O.lK. The output times are t = 1 (initial) 2 and 3. The solid line is the
DSD wave, the chain dot line is the reference Huygens wave. The exact DSD wave
(dash line) is just visable. Since the flow is subsonic along the shock, the acoustic
wave head (jagged line) progresses inwards. The calculation uses 64 mesh points.

0.0 1.0 2.0 3.0 4.0

ksl

Fig. 5.2b @ vs. f for Problem 2 (file dil).
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Expanding Circle, D(kappa) n= 64 DSDFL
Phose Veloclt

Wed 27 May92 21:5 :0

0“” ~

0.95

0.94

0.93

0.92

0.91

0.90
1.0 1.2 1.4 1.’ 1.8 2.”

t

Fig. 5.2c Phase velocity at edges for Problem 2 (file dil). The jaggedness of the phase
velocity along the right edge is a property of the soft right boundary (the right edge
corresponds to y = O and is not coincident with a mesh boundary).

Expanding &rcle,D(kappa) n= 64 DSDFL
= “sound s eed”

?Wed 27 Moy92 2 :S9:0

4“0 ~

m

3.0

2.0

1.0

0.0
0.0 1.0 2.0 3.0 4.0

ksi

Fig. 5.2d The l?-integral for Problem 2 (file dil). 13 corresponds to the speed with
which a constant + feature moves along the shock when D is constant. By analogy
with ID gasdynamics, we call 1?= “sound speed.”
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Expanding Circle,,~$~k::o) n=128 DSD,FL

Wed 271Aay92 21:59:1
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0.0
0.0 0.5 1,0 1.5 2.0

x

Fig. 5.3a Shock fronts for Problem 3 (file dilp). This problem is identical to Problem
2 except that 128 mesh points are used. The exact solution can no longer be seen,

and the track of the transverse wave is smoother.

Expanding Circle, D(kappa) n=128 DSDFL
Phase Velocit

tWed 27 Moy92 21:S :1

0.95 1 1 1 1

0.94

0.93

n

0.92

0.91

0.90
1.0 1.2 1.4 1.6 1.8 2.o

t

Fig. 5.3b Phase velocity at edges for Problem 3 (file dilp). The difference shown in
Problem 2 between the phase velocity at the two edges is diminished.
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0.5

0.0

Onionskin n=128 DSDFL
Fronts

Thur 28 May92 14:09:0
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Fig. 5.4a Shock fronts for Problem 4 (file di2). A circularly expanding DSD wave
with D = 1- O.lK. The sonic boundary condition is applied along the left edge and
y = O is the symmetry axis. The output times and reference solutions are identical to
those in Problem 2. The number of mesh points is 128 and the location of the acoustic
source is 5 mesh points from the left edge. The dashed line corresponds to the exact
solution when no disturbance enters at z = O.

Onionskin n=128 DSDFL

4.0

3.0

2.0
.—
c
Q

1.0

0.0

–1.0

phi vs. ksi
Thur 28 May92 14:09:0

1 I I

I 1 1 I

0.0 1.0 2.0 3.0 4.0

ksi
Fig. 5.4b ~ vs. ~ for Problem 4 (file d.i2).
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Onionskin n=128 DSDFL

1.0

0.8

0.6

n

0.4
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0.0

Phase Velocit
rThur 28 May92 14:0 :0

1 1 I !

I I I I

1.0 1.2 1.4 1.6 1.8 2.0

t

Fig. 5.4c Phase velocity at edges for Problem 4 (file di2). The phase velocity at
the left edge (lower curve) shows the strong influence of the free edge. The proper
short time transient is not captured by D = 1- WC, since K ~ co at the edge at t = O.

However, the integrated effect of this artifact is small.

AxiSym Channel (arc shot) n=128 DSDFL
Fronts

Wed 27hl.ay92 22:01:5

6.0

4.0

A

2,0

0.0
0.0 2.0 4.0 6.0

x

Fig. 5.5a Shock fronts for Problem 5 (file di4c). A DSD wave with D = 1 – O.ltc
propagates towards the axis in a spherical shell of explosive. The axis of symmetry is

26 z = O and the output times are separated by At= 0.75. The dashed line is the track
of an acoustic wave that originates at the left edge.



AxiSym Channel (arc shot) n=128DSDFL. .
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0.0

.—
c
Q
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phi vs. ksi
Wed 27 May92 22:01;5

1 I 1 I
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ksj

Fig. 5.5b + vs. f for Problem 5 (file di4c). As the shock propagates (lower curves
are later in time) its total arclength increases.

I I
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AxiSym Channel (arc shot) n=128 DSDFL
Phase Velocit YWed27 May92 22:0 :5
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Fig. 5.5c Phase velocity at edges for Problem 5 (file di4c). The lower curve is the
phase velocity along the left edge.
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x

Fig. 5.6 The explosive geometry for Problems 6 and 7.

Complex Bndry (s[ab onion n=128 DSDFL
Fronts

Wed 27 Uay92 22:03:2

4“0 ~
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1.0

0.0
–4.0 -3.0 -2.0 -1,0 0.0

e
x

Fig. 5.7 Shock fronts for Problem6 (files di6cbl and dp9). A DSD wave with
D = 1- O.lK and a sonic boundary condition along the lower edge expands from a
circular initial state. The symmetry line is z = O and the dashed line corresponds to
no edge effect along y = O. The output times are separated by At= 0.6875.
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Complex Bndry (restart) n= 65 DSDFL
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Wed 27 MIay92 22:03:3
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Fig. 5.8a Shock fronts for Problem 7 (file di.6cb2). The output times are equally
spaced except for the last shock.

Complex Bndry (restart) n= 65 DSDFI_
Phase Velocit

1Wed 27 May92 22:0 :3
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t

Fig. 5.8b Phase velocity at edges for Problem 7 (file di6cb2). Note how the phase
velocity along the upper surface of the explosive (initially the upper curve) falls below
1 as the wave expands into the shadow zone.
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TABLE 5.2. INPUT FILES
cat > dilh << “endcopytext”
grun’ ‘Expanding circle, Huygen3*
! Initial circle, soft right
‘ Dkap’ 1 0.0 ! CJ

t fluid’ 3.0 0.0
‘edgel’ 1 0.0 1.0 0.0 !vert. line
‘edger’ 1 1.0 0.0 1.5708 !horiz. line
~xnetv 0.0 64 4.0
‘tnet* 1.0 2 2.00
‘it’ 2 0.0 1.0 +1.0
‘bcl’ 4 !Huygens
~bcr’ 1 !n~ b-c.
‘bcrt’ 2 !soft right
ttwav~ 1 0.125 !twave(leftbndry)
~range’ 1 0.0 2.0, 0.0 2.0 !plot range
trefl’ 2 !HuygensD=l
‘dials’ 1.0 0.001 0.001

cat > dil << “endcopytext”
trunr ‘Expanding Circle,D(kappa)’
! Initial circle, soft right
‘fluid’ 3.0, 0.0
‘Dkap’ 1 0.1 !alpha = 0.1
‘edgel’ 1 0.0 1.0 0.0
‘edger’ 1 1.0 0.0 1.5708
‘xnet~ 0.0 64 4.0
*tnet’ 1.0 2 2.00
?ic* 2 0.0 1.0 +1.0
‘bcl~ 2 0.0 !normal
‘bcr’ 1 !no bc

cbcrt’ 2 !soft right
ttwav’ 1 0.125 !twave(leftbndry)
trefl’ 1 0.1 !Cyl. w/ linear D-kappa
‘ref2’ 2 !HuygenS D-l
‘dials’ 1.0 0.001 0.001

cat > dilp << “endcopytext”
trun’ ‘Expanding Circle,D(kappa)’
! Initial circle, soft right
Cfluid’ 3.0, 0.0
cDkapt 1 0.1 !alpha = 0.1
‘edgel’ 1 0.0 1.0 0.0
‘edger’ 1 1.0 0.0 1.5708
‘xnett 0.0 128 4.0
‘tnet’ 1.0 2 2.00
‘icf 2 0.0 1.0 +1.0
‘bcl’ 2 0.0 !no~al
‘bcr’ 1 !no bc
‘bcrt’ 2 !soft right
*twav’ 1 0.0625 !twave(leftbndry)
● refl~ 1 0.1 !Cyl. w/ linear D-kappa
*ref2’ 2 !HuygensD=l
tdials’ 1.0 0.001 0.001
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TABLE 5.2. INPUT FILES (continued)

cat > di2 << “endcopytext”
‘run’ ‘Onionskin’
! One free edge, initial circ., soft right
‘fluid* 3.0, 0.0
‘Dkap’ 1 0.1 !alpha = 0.1
‘edge1~ 1 0.0 1.0 0.0
‘edger’ 1 1.0 0.0 1.5708
‘xnet~ 0.0 128 4.0
‘tnet’ 1.0 2 2.00
*it’ 2 0.0 1.0 +1.0
‘bcl’ 3 !sonic
‘bcr’ 1 !n~ b.c.

‘bcrt’ 2 !soft right
~twav’ 1 0.0625 !twave(leftbndry)
‘refl’ 1 0.1 !Cyl. w/ linear D-kappa
‘ref2’ 2 !Huygens D=l
‘dials’ 1.0 0.001 0.001

cat > di4c << “endcopytext”
‘ runt ‘AxiSym Channel (arc shot)*
! Plane initial, hard right
‘fluid’ 3.0, 0.0
‘Dkap’ 1 0.05 !cj
‘geom’
‘edgel’
‘edger’
‘xnet*
‘tnet’
Vict
‘bcl~
‘bcr’
‘bcrt’
‘twav’
!’refl’
‘dials’

1.0
2 4.0 0.0 0.0
2 6.0 0.0 0.0
0.0 128 2.0
0.0 8 6.00
1 0.0
3
3
1
1 0.03125
3
1.0 0.001 0.001

4.0 -1.0 !circle
6.0 -1.0 !circle

line, theta = 0.0
sonic
sonic
hard
twave(left bndry)
!Cyl. diffract
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TABLE 5.2. INPUT FILES (continued)

! --------------------- --------- Complex Bndry 1
oat > di6cbl << ‘endcopytext’”
rrun’ ‘Complex Bndry (slab onion)‘
! Circular initial data, soft right
‘fluid’ 3.0, 0.0
‘Dkap’ 1 0.1 ! alpha = 0.1
‘edgel’ 1 -1.0 0.0 -1.5708
‘edger’ 3 0.0 ‘1.0 0.0
‘xnet* 0.0 128 8.0
‘tnet’ 1.0 4 3.75
‘it’ 2 -1.5708 1.0 +1.0
‘bcl’ 3 ! sonic
‘bcr’ 1 ! no bc
‘bcrtt 2 ! soft right
‘twav’ 1 0.125 ! twave(left bndry)
‘refl’ 5 0.1 ! Cyl. w/ linear D-kappa
!’ref2’ 2 ! Huygens D-l
‘dials’ 1.0 0.001 0.001

! -------------------------- file DP9 for D16CB1
cat > dp9 << “endcopytextw
4
0.0, 0.0
1.999, 0.0
2.001, -1.5708
8.284, 0.0

endcopytext

! ------------------------------Complex Bndry 2
cat > di6cb2 << “endcopytext”
‘run* ‘Complex Bndry (restart)‘
! D16CB1 output initial data, hard right
‘fluid’ 3.0, 0.0
‘Dkap’ 1 0.1 ! alpha = 0.1
‘edgel* 1 -3.349 0.0 -1.5708 !1ine
‘edger’ 2 -1.564 3.326 -1.173 4.0 +1.0 !circle
‘xnet~ 0.0 65 4.0625
*tnet* 3.75 8 9.00
‘ic’ 3 -1.5708 3.675 +1.0
‘bclf 3 !sonic
‘bcrr 3 !sonic
‘bcrt~ 1 !hard
‘twav’ 1 0.125 !twave(leftbndry)
‘range’ 1 -10.0 0.0 0.0 10.0 !plot range
‘dials’ 1.0 0.001 0.001
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VI. EXACT SOLUTIONS

We give here a collection of exact solutions. There are several complete (time-
dependent) solutions, mostly Huygens constructions, and some steady solutions.

(1) Ex~anding Circle

For the expanding circular shock, the shock radius r(t) depends only on the time and
the angle # (for a vertical reference edge) and is just q$(~,t) = ~/r(t). For the curvature K

we have K = 4< = l/T(t). For linear D(K), i.e. ~ = 1 – crK, we have

D = 1 – cv/?-(t) .

The kinematic equation, Eq. (3. la) reduces to

ch-/dt = D = 1- a/r(t) .

The solution is

()t(r)= r+alog = ,
?- O-a

where To(t. ) = to is the initial shock radius. For a given t,r(t) may be found by iteration.

(2) Huyvens Construction

For Huygens construction, the DSD theory takes on an especially simple form. For
the reader unfamiliar with the physics of our theory, a study of the following results will be
well repaid. The equation for # is a simple kinemat it-wave equation with a source term.
If one is familiar with the type of hydrodynamics represented by this type of equation7,
the nattie of the solutions will be immediately apparent. The edge here plays the role of
the “piston” of the usual formulation, and the solutions are simple waves.

The definition of a Huygens construction is

D=l, a~o.

That is, the shock velocity is everywhere the CJ velocity, and the shock makes an angle
greater than or equal to m/2 with the edge.
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The D = 1 condition makes the integral term in Eq. (3.3) and the RHS of the
governing equation, Eq. (3.la), vanish. When a = O (which we assume to be the case in
these examples) the edge term D. tan a in J3 is zero. It is most convenient to write the
equations in the u variable of Chap. III of this report,

In this variable, the governing equations are particularly simple:

u~+ Uu( = –4’(t)

b.c. : U= Oat~=O.

The initial condition depends on the particular problem. In characteristic form we
have

We consider three problems: (2a) circular expanding wave, (2b) channel with ramp edge,
and (2c) channel with circular edge.

In 2a, the initialshock isa circle;in 2b and 2c, the initial shock is a straight line. The
geometries are shown in Figs. 6.1,6.2, and 6.3. For all three problems, there is no boundary
condition at the right.

(2a) Circular Expanding Wave

The left edge is a vertical line, that is 0 = O. We have

ut+uu(=o

i.e. : u= (/r, r=to at t=to .

The initial shock is a circle of radius r = to, the ~sumption being that the WaVe began zw
a point at the origin at t = O. The solution is analogous to the simple centered rarefact ion
of ID gasdynamics
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Fig. 6.1 Circular expanding Huygens
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with a ramp edge. Note the different zandy
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Fig. 6.3 Huygens wave forachannel with a circular edge.

The laboratory coordinates are

x =tsinu

Y =tcosu .

(2b) Channel with Ramp Edge

We have O = constant, (Y(t) = O, 0 negative. The flat initial wave is the step function

U=o, (=0,

u = -e , f>o;

we must have u =Oat( = O to match the edge. Again the solution is analogous to a
simple centered rarefaction wave
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The laboratory coordinates are

(2c) Channel with Circular Edge

We take a flat initial wave, with the left boundary a circle of radius r. The center of
the circle is at x = –r, y = O, so that 00 = O. The angle O is a linear function of time

6 = –t/r ,

@’(t)= –l/r .

The governing equation is
ut + Uuc = I/r ,

i. e.: u =0 at t=O .

As in Problem 2b, we have the analog of a ID rarefaction wave moving into a constant
state,thistime noncenteredbecause of the gradualpullingaway of the boundary. The
characteristicsareparabolas.The characteristicf = _t2/2rthrough the originisthe head
oftherarefactionwave. The solutionis

u=~, 4=&--t/r, t5t2/2r ,

u= t/r , fp=o , ~>t2/2r .

The laboratory coordinates of the wave front are

z=r[(su+c) cosu+(cu-s)sinu –1] ,

Y = r[(cu–s) cosu –(su+c) sinu] ,

CGCOS8, sssind, O= –t/r .
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VII. CODE STRUCTURE

In this chapter, we describe the internal structure of the code itself. We begin by
outlining the main features of the numerical solution of the governing equations cent ained
in the FORTRAN source code. Next we describe the FCL control ille, the main loop of the
program, and finally various pieces and subsystems of the program.

(1) The Numerical Solution

The governing equation, Eq. (3.1) is in general a parabolic PDE. To solve it, we
use the International Mathematical Software Library (IMSL) routine DPDES. For a c-
net with n intervals, DPDES converts the PDE into a set of ODE’s, which it solves with
a version of the Geara method. In each interval, the function ~(~) is fit with a cubic
Hermite polynomial with time-dependent coefficients. The coefficients are constrained by
the requirement that the function and its first derivative must be continuous at the ends
of the interval (i.e., at the knots). These coefficients are the solution of the ODE’S. If n is
the specified number of intervals in ~ (as given in our ‘xnet’ line), there are 2n + 2 ODE’s,
two between each knot and one at each boundary. The DPDES recipe evaluates the PDE
at two Gaussian points per ~ interval to get the two collocation ODE’s for each interval.
The boundary conditions replace the PDE at the two edges of the domain.

Let us first define some terms. We use the term time step to mean the time step
covered by one call of DPDES. For each call, one specifies two times (tl and t2), and asks
DPDES to integrate from tl to t2. In doing so, DPDES usually chooses several smaller
internal time steps of its own to satisfy the specified error tolerance. Ordinarily, we are
not concerned with these, but when we are, we will refer to them as DPDES internal time
steps. The time step At is calculated from the space step At. Its value is such that the
ratio At/A~ is approximately equal to the value of the fist item, xtrat, on the dials
line, for which we ordinarily take the value one. Decreasing xt rat improves the solution
quality for problems with curved boundaries and/or large changes in total shock arclength.
The penalty incurred in increased computation time is modest. For some problems the
DPDES time integration error tolerance, tol, needs to be decreased in order to maintain
solution symmetry. These improvements can be costly.

For our application, the two main shortcomings of DPDES are: (1) it has no way of
evaluating the integral over ~ in the B term of Eq. (3.1), and (2) it can apply a boundary
condition only at fixed ~.

We handle the l?-coefficient integral as follows: Before each time step we have # and
~f at each ~, supplied by DPDES from the previous step. We calculate D(c); we now
have all we need for the integrand. We then use a spline integration routine to calculate
the value of the integral at each (. It remains constant at this value throughout the next
DPDES step.

For most problems that we do, the total arclength along the shock changes with time.
In order to use DPDES efficiently at any instant of time, we transform to a constant length
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coordinate

z=(f–(o)(&(o) -&)/(&(t)-(o) ,

in place of ~, where (2(t) is the total arclength along the shock given by Eq. (3.7). Using
t, z as the independent variables, Eq. (3. la) becomes

+,+ ((2(0)- b) ( ) (MO)- to)~z ,(f(Z(t) #z = – ((2(~) – ( )
((dt) -b) B- ((2(0;-(.) dt

(7.1)
o

while the B-integral, Eq. (3. lb) maintains the same form with dz replacing d~. In these
coordinates, both edge boundaries are at fixed z locations: z = O and z = $2(0) – to.

(2) FCL Control

The source file DSD is an FCL control file. Both CTSS and UNICOS versions are
available.

Typing

fcl dsd

will cause the file to compile itself and produce an executable file dx.

In outline, the DSDfle has the following form

FCL prologue

HISTORIAN call

DSD– program source code

Documental ion

Input files

Compile and load

Many of the variables of the code are in common; we use HISTORIAN to place a copy of the
“ common blocks in each routine. The documental ion and input-file sec~ions are described

below. The compile and load commands are the standard ones.

At the end of the file is a documentation section, enclosed in copytext nul

/endcOpytext fines.This contains the conventions used for choosing variable and routine
names and lists of all the variable and routine names and their meanings. Following the
documentation section is a collection of input files, each enclosed in a pair of lines like
copyt ext di 1 /endcopyt ext. Thus execution of DSD under FCL produces a number of
input files di.1, di2, . . .. To execute dx with input file dil, type
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dx di = dil

The DSD code uses the following libraries:

SUBL – private library containing utilities and

CLAMS - LANL math library

DISSPLA – proprietary graphics package.

DPDES

(3) Main LooR

The main loop is in routine dsd. Before the loop begins, init and ic are called. The
subroutine init calculates derived constants and initializes counts. The initial shock and
the edges are set up in ic.

The loop index kt goes horn 1 to nt, the number of computation steps. Computation
routines step and st epf are called in the loop. The subroutine step advances from the
current time to the next by calling DPDES and then advances other things, such as the
edge 0’s, by centered forward difference. The coefficients needed by Eq. (7.1) for the
next time step are calculated in step and any intersection of the real and virtual edges
is determined there. The subroutine st epf sets the boundary conditions and calculates
things after the step, such as the shock velocity and the ~-integral. The fist time through
the 100P, with kt=l, step is skipped; thus stepf does its c~c~ation on the initial data.

The main output routines are out and outf. The subroutine out is called in the
loop at display times. It prints the mesh, and then writes quantities from it on files for
graphical display at the end. The subroutine outf, called after the loop is complete, does
all the graphical display, getting the mesh quantities from the files written by out. The
small routine outp, called at each computation step, saves quantities from each “path,”
such as the transverse-wave tracks, for display at the end by out f.

(4) Edves

The edge quantities are stored in two-dimensional
left and right. The edge calculations are done in loops

arrays, with index j x 1,2 for the

j = 1,2.

Fimctionroutinesedge(&, j) furnishesthe angleO foredge ~ from the currentedge
arclength&. In ic,equallyspacedarclengths& alongtheedge aregeneratedand stored
in an array.The functionedge isthen calledforeach entryto generatea corresponding
t9(&).Then lab iscalledto calculatearraysoflaboratoryedge coordinatesx and y from
0 and &, from Eqs. (2.4).(Intheoutput wave diagram,theedgesareplottedfrom these
arrays.) Spline-fitcoefficientsforz(&) and ~(fe)arethen obtainedfrom spfit forlater
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use in st epf.

In step the current edge arclength ~. is advanced using the mean phase velocity DP~

(e=[e+DP/t*dt ,

where DPh is the mean phase velocity from the old and new times. The current shock

arclength, (2(t), is advanced using the current value of the B-integral

(2 =gz+(~(tz)-Dztma2)*dt .

In st epf, the spline routine spval is used to calculate the current edge laboratory
coordinates x and y from the edge arrays Z( (e ) and y( fe ), using the spline coefficients
generated in ic. These values of x and y at the left are needed to get the shock z and y
from Eq. (2.1). The boundary conditions for the next time step are set in st epf.

(5) Time Ste~

The tnet input data are tO, nd, t., the initial and final times tO and t. and the
number of display times nd. In init, the computation time step At is set to the step-ratio
parameter (nominally unity) item from the dial input line times the space step At. The
number of time steps is the next larger integer of (t. – t~)/At. An integer compute-display
ratio, the next larger integer of (Ai/nd), is used in the main loop to decide when to call
the output routine out.
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Appendix A. SCALING

Outside of this appendix we use scaled variables for which the CJ detonation velocity
is unity and the CJ reaction time and length are unity or at least 0(1). In this appendix
only, we use plain symbols for physical (dimensional) quantities and barred symbols for
scaled variables. Then we drop the bars for the rest of the report. To most simply illustrate
the scaling, we take the k = O case (slab symmetry).

The governing equation, Eq. (3.1) is

(Al)

where ~ = +(. A typical D(K) relation is the linear form

D = DC~(l - cm) . (A.2)

Letting L and t be length and time, and using square brackets to denote “dimension of,”
we have for the main dimensioned quantities

[D] = C/t ,
[K= (#C]= l/c ,

[B] = c/t ,
[a]=z .

(A.3)

For time, velocity, and distance scales, we take

t* = l/z , (A.4)

D* = DCJ ,
~“ = D“t* ,

where Z is the reaction-rate multiplier. We assume that Z is such that the CJ reaction
time is Z-l or at least O(Z-l ). We define scaled variables
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Applying these transformations, and dropping the bars gives Eq. (3.1) and

D=l–au

for the linear D(K) relation.

(A.5)

Appendix B. DETONATION FAILURE MODELS

A limited amount of theoretical work”!g exists to support the idea that D(K) is the
propagation law for weakly curved, diverging detonation shocks. The object of these
studies was to examine how simple detonation models respond to weakly two-dimensional
perturbations of wavelength much longer than the reaction-zone lengthl”. They show that
if K is sufficiently small, D(K) describes the response of the shock to such perturbations.
This is true even for explosives whose heat-release rates are moderately sensitive to the
local state. These calculations do not show detonation extinction. Our development of the
DSD model of detonation propagation was motivated by these results.

All real explosives exhibit detonation failure. For a number of important explosives

[

e.g., ammonium nitrate and fuel oil emulsion explosives and the triamino-trinitrobenzene
TATB) explosive PBX9502), it is observed that det&ation is extinguished when the

radius of curvature of the shock exceeds a critical value5. For these important materials,
the detonation shock is smooth and broadly curved up to the onset of extinction. We
interpret these observations as showing that D is a function of tc for these materials even
when the interaction between K and the state-dependence of the explosives’ heat-release
rate becomes large enough to produce extinction. Based largely on these experimental
observations and with no theoretical support, we have extended our numerical algorithm
to treat extinction.

(1) The Failure Model

The detonation failure model has two additional parameters: (1) a critical or failure
curvature, 6$ and (2) the spreading angle, af measured relative to the shock normal, of
the failure wave along the shock. Consult Fig. 2.3 for a definition of the various angles.
Our extinction model consists of the following six components:
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(1)

(2)

(3)

(4)

(5)

(6)

detonation is stainable only where K < Kf,

K fit exceeds ~f on the physical boundary (edge), in response to abrupt changes
in either b.c. type or edge shape,

the current b.c. on ~e (i.e., one of the standard set of b.c.) is replaced by a b.c.
on the curvature, K = ~f when ss described in (2) K z ~f,

9

if at the onset of failure a < af, then the failure wave propagates into
the explosive and generates a virtual edge separating “dead” explosive from
detonating explosive. This boundary is defined by O = #, – of, where K = Kf
is the boundary condition that is applied,

if at the onset of failure a z of, then the failure wave follows the physical boundary
and o is not constrained, and

when an internal failure-wave boundary crosses the physical boundary, the failure
calculation is ended after K < ~f.

The defauli value of af is o= (i.e., the sonic angle). ~ f has no default value and always
needs to be entered. We will demonstrate the properties oft his model by considering some
examples.

(2) Examdes

All the calculations that we describe use D = 0.8+ 0.2(1 – ~/tcf). We give the input

file for the first example only (Table B. I).

TABLE B.1. INPUT FILE di4a2fl

‘mm~ *Corner Turning (plane sym)‘
! Plane ini.tial, hard right, two-side
‘fluidt 3.0, 0.0
‘Dkapt 3 1.00 0.80 0.50 !failure
*edgel ●

~edger‘
‘met*
‘tnett
‘tnet ~
~ict

‘belt
‘bcr’
‘bcrt C
*twav’

3 0.0 0.0 0.0
3 2.0 0.0 0.0
0.0 64 2.0
0.0 4 2.00
0.0 8 16.0
1 0.0 !line
3 0.50
3 0.50
1
1 0.0625

7.00 !file dp8crn
7.00 !file dp9crn

sonic
sonic
hard
twave (left bndry)

edials’ 0.25 0.001 0.000001
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Example 1 (data file di4a2fl and Fig. B.1) shows detonation extinction in slab
geometry. The detonated explosive occupies the roughly “triangular” region whose corners
are at: (Z = O,y = O), (Z = 2,y = O), and (z = l,y = 6). Initially the shock is flat
(O<z<2, y= O)andrunningat D=l. The failure waves that enter the system at
(z = 0,~ = O) and (z = 2, y = O), continually erode the detonation until at t = 6.7 the
detonation is totally quenched. The chaindot lines are the failure-wave loci. The shock
loci are shown at i = 0,2,4,6. The dashed line is the track of a right-facing acoustic
wave coming from the corner at (z = O,y = O). This problem used the parameter values
Kf = 1.0, Of = 0.5, and a= = 0.5.

Example 2 (Fig. B.2) retains the parameters of Example 1 with the exception that
~f is increased to Kf = 2.0. Now the failure waves can propagate into the explosive only a
limited distance. They are turned out at t = 1.14 and are flushed from the system at t = 3.0.
Two small “dead” regions remain as the detonation proceeds up the slab. This calculation
ends at t = 7.0, at which time the detonation is about to enter the large piece of explosive
occupying the region above y = 6.66. The shock loci are shown at t = 0,1,2,3,4,5,6,7.

Example 3 (Fig. B.3) uses the same parameters as Example 2. The plotting scale is
compressed. As the detonation emerges from the thin slab (see Fig. B.2 for a detailed
picture of the slab) into the large piece of explosive, it has great difficulty turning the
90° corner. The detonation drives forward, spreading sideways only slowly. Most of the
explosive remains undetonated. This contrasts sharply with the perfect corner turning of
a Huygens wave. The shock loci are shown at t = 0,2,4,6,8,10,12,14,16.

Example 4 (Fig. B.4) uses the parameter values ~f = 2.0, of = 0.2, and a. = 0.2.
These differ from the parameters in Example 2 in that both a and a. are reduced. The

{principal effect of this change is to decrease the speed of the fai ure waves along the shock.
Now as the detonation enters the large piece of explosive occupying y ~ 6.66, the detonation
spreads reasonably well. Two “dead” semi-elliptical zones remain at the corners. As
observed experiment ally, the first arrival of the detonation along lines of constant x occurs
for y >6.66, where the horizontal boundary is at y = 6.66. The shock loci are shown at
t = 0,2,4,6,8,10,12,14,16, 18.

Example 5 (Fig. B.5) uses the same parameters as does Example 2, except that the
geometry is axisymmetric. The most notable difference is the size of the “dead” zone: a
cylindrical shell of explosive remains undetonated.

‘ (3) Parameter Calibration

Our detonation-failure model qualitatively reproduces some of the well known features
of extinction. Since no theoretical support exists for its use, it should be viewed as a
phenomenological model. Nonetheless, when properly calibrated it can be a useful tool
to help us predict when undesirable features such as “dead” zones will appear. We now
consider a possible calibration strategy.
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Of the two new parameters (K~ and of) that we require,Kj can be obtained from

“rate stick” data taken near the “failure diarnet cr.” This is obtained as part of the D(K)
calibration to steady-state data. The failure-wave spreading parameter, crf can only be
inferred from a time-dependent experiment. The corner-turning experiment shown in
Fig. B.4 can be used to estimate af. A highly-resolved numerical simulation of failing
detonation would also yield some insights. Clearly we expect that crf < a., because the
speed of the failure wave should not exceed the acoustic speed.

Corner Turning(pl;;oen;:m) n= 64 DSDFL
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Fig. B.1 The shock fronts for Example 1, showing detonation extinctioninan explosive
slab.Only the central“triangular”region detonates.
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Corner Turning(plane sym) n= 64 DSDFL
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Fig. B.2 The shock fronts for Example 2. Small “dead” zones are found near the
input face y = O. Most of the explosive slab detonates.
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Fig. B.3 The shock fronts for Example 3. As the detonation emerges into large piece
of explosive above y = 6.66, it is unable to turn the corner. Much of the material
remains undetonated. The parameters are those of Example 2.
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Fig. B.4Theshoclc fronts for Example 4. Whenaf ada~ me decre~ed from the

values used in Example 2 (i.e., setting of = a= = 0.2), the detonation turns the comer.
Only small regions of “dead” explosive are left behind.
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Fig. B.5 The shock fronts for Example 5. This is an axisymmetric problem that uses
the parameters of Example 2. A cylindrical shell of explosive remains undetonated.

49

*U.S. Government printing Of fic-: 1992-673-036/67024



Thisreporthasbeenreproduceddirectlyfromthe
bestavailablecopy.

Itk availabletoDOE andDOE contractorsfromthe
OftlceofScientificandTechnicalInformation,
P.O.BOX 62,
OakRidge,TN 37831.
Pricesareavailablefrom
(615)576-8401,F13626-8401.

Itk availabletothepublicfromthe
NationalTechnicalInformationService,
U.S.DepartmentofCommerce,
5285port Royid Rd.,
Springfield,VA 22161.



Los Allamm Los Alamos National Laboratory
Los Alamos,New Mexico 87545


