-UR -86-878 n e .
LA-UR Recaived hy 5™
ARR O ' 12

(onfF-57509376——/

Los Atamoa National Laborstory is opersted by the Univaraity of Caltiornts for the United Staies Depariment o! Enargy under contract W-7405-ENG-38.

TITLE: FERMION DYNAMICAL SYMMETRY AND THE NUCLEAR SHELL MODEL
LA-UR--86-878
DES86 008723
AUTHOR(S): Joseph N. Ginocchio, T-5
SUBMITTED TO: Prozeredings of the International Symposium on Particle

ard Nuclear Physics, September 2-7, 1985, Peking Univ.,
Beijing, People's Republic of China

DISCLAIMER

This report was prepared as an account of work sponsored by sn egency of the United Ststes
Government. Nenher the United Stetes Government nor sny ugency the, ~of, ncr any of their
employees, makes any worranty, expreas or implied, or ssrusnes sny logal Lisbility or responsi-
bility for the accuracy, coiapletencas, or nsclulness of sny information, upp.ratus, product, or
procean disclosed, or repre :nts kst ita wae would not Infringe privately owm.d rights, Refer-
cnce herein to any specific commercisl product, process, or servic- by tracc name, trademark,
maunulscturer, or othetwise does not necessarily constitute or Iimply its endorsement, recom-
mendstion, or [avoring by the United Ststes Covernment or sny agency thereol. The views
and opinions uf suthors oxprear~d herein do not necomarily state or reflect those of the
United States Guvernment or sny agency thereof, ‘r

By ~ccaptancy of thig erticts, the pubtishar recognizas that the U 8 Governmant retaing s nonarclusive, roysity-tree ticense to publiah or reprodu
the publishad lorm ol this contribytion. or to atiow othars to do 80, lor U S Government p.rgoses

The Los mtamor Nationat Laborstory requaests tiet the publishar identily thia srticie ay work periorn'ad u'ider the guLpices ol tha ') 8 Depsrtment ol Energy

DISTRIBU FION DF THIS DOSUMENT IS UNLIMITED M
Los Alamos National Laborator
L@S A am©$ Los Alamos,New Mexico 8754

FOAM RO 034 R4
$T NO PR NN


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


FERHION DYNAMICAL SYMMETRY AND THE NUCLEAR SHELL MODEL

JOSEPH N. GINOCCHIO

Theoretical Diviaion, Los Alacos National Lsborastory
Loa Alamos, New Mexico 87545 U.S.A.

1. INTRODUCTION

The interscting ' 2son modcl‘j (IBM) has oeen very successful in giving s
unified sod simple description of the spectroscopic properties of s wide
range of nuclei, from vibrstionsl through rotationsl nr.clei. The three basic
sasurptions of the model asre that 1) the - -lence nucleons move sbout a doubly
closed core, 2) the collective low-lying states sre composed primarily of
coberent pai.s of neutrons snd psirs of protons coupled to sngular moizentum
zero and two and J) these coherent psirs sre spproximated as bosons.

In this review we shall show how it is possible to have fermion Hamii-
tonisns which have s clsss of collective eigenststes composed entirely of
wonopole snd quadrupole pairs of ferIionl."’) Hence there models satisfy
the sssumptions 1) snd 2) sbove but no bcson spproximat.ion need b- made!
Thus the Psuli principle is kept in tact.

Furthermore the fermion sheil model states excluded in the IBM can bu
clasaified by the nmber of fermion psirs which are nct coberent monopole or
quadrupole pairs. Hence the mixing of these states into the low-lying
spectrim cap be calculsted in s aystematic and tractable manner. Thus we can

introduce feastures which sre outaide the IBM.

2. MONOPQLE AND QUADRUPOLE PAIRING

Our gosl is to construct fermion shell model Hamiltonians which have a
class of eigenststes composed of monmopole, J"I0+, psira snd quadrupole,
J"-2+, pairs only. The way to do this is to sepsrst¢ the single-nucleon
sogulsr momentum ] into s pseudo-orbitsl sngulsr momsentum € snd s pseudo-spin
1."’) We call these "pseudo” becsuse k may not correspond to the real
orbital sngular scmentum ~f the suell snd the spin may be grester than §. An
example is the a-d shell whiclh of course hass orbitsl sagulsr momentum £=0,2
and spiu s=f. However we can span these aststes with kel snd iw3/2. After the
separation, tha specisl subapace is defined by summing over the pseudo-angu-
lsr momentum or spin thereby making those degrees of freedom insctive. Hence
this technique is s way of reducing the number of active degrees of freedom

in s ferwion shell model and sepsrsting the large fermion shell modal apace



into .wo parts. Another way of looking at thia aeparation is to think of it
as a generalization of psiring. In psiring the monopole pair is the only
special psir snd the single-nucleon sngular momenta in this pair sre com-
pletely coupled to totsl sngular momentum zero. In the prerent model the
single-nucleon sngular momentum is aplit into two parts. Most of the ringle-
nucleon sngulsar momentum is coupled to zer. .n the apecial pairs, but a amall
part of it is not.

To be more explicit we define s nucleon creation operator as IT(ki)jl
which creates s nucleon in an orbit with single-aucleon sngulsr momentum j,
projection m wiih pseudo-orbits' sngulsar momentum k snd paseudo-apin i which

sre coupled to j,

i-.‘-I:} . (2.1)

A psir of nucleons is then s linear combinstion of orbitsla coupled in k-i
coupling to s tutsl peeudo-orbitsl sngulsr momentun K, pseudo-spin I, with

these then coupled to totsl sogul-r momentum J znd projection M,

T X1, .t 1, (KI)J N

Pknm = I Okt Prakaly (2.2)
Becsuse of sntisymmetry, the sux of anguisr moments is evin:

K+I+J even ; (2.3)

For our purposes we vant to separate nut one specisl sngulsr somentum sero
pesir snd one specisl angulsr momentum two psir for vhich we can construct
shell model Hamiltonisns which will have s class of eigenstates compor i only

of these paivrs. There sre only two ways to do th's:

(XD)J L
A) Cll 6&,1 61'0 (2141) 2.4
B) csf‘)J =85 &g (2e1)Y (2.5)

In the first (second) case ss long ss the shell wodel Hamiltoaisn parserves
the pairing of the paeudo-spin (pseudo-orbitsl sngular momentum) the patirs
vith totsl pseudo-spin (pseudo-orbital sngular momentum) =mero will not mix
with other psirs. Further, since kal (1u§) and becsuse of the sotisymmetii-
zstion which leads to equation (2.3), oaly J"IO*,Z* sre sllowed for these
special psairs.



These two possibilities esch lesd tc Hamiltonisns with dynsmical symme-
tyies. The first option A leads to sn Sp6 dynanical symmetry; the second
option B leads to san SOa dynsricsl lynmetry.’) Each of theae models haa
interesting festures. The Sp6 model has an SU.3 subgroup which means that
sxislly symmetric rntstionsl nuclei emerge from this model when the Hamil-
tonian has this SU3 as 8 dynsmics]l symmetry. On he other hand the 808 model
has sn 506 subgroup which gives y-unstable rotationsl ruclei when the Hamil-
tonisn has an 806 dynswical symmetry. The IBM has both of these possibili-
ties.

However of thess two fermion models oaly the SO8 model has s one-to-one
correspondence between the space aspsnned by the fermion states composed of
the specisl monopole and quadrupole pairs of neutrons snd protons and the
space spanned by the monopole and qusdrupole bouonl.’) In the 8p6 sodel many
of the most colilective states vanish due to the Psull principle. For this
reason the SOB model has received the most sttention to date, and we shall
discuss that acdel in sections 3-5 in detail first. However many interesting
festures sppesr 1n the Sp6 model ss well, asnd there has been s revival of
iatereat of late in this -odel‘). We ahall repart recent developments in

this model in section 5.

3. The SOs Model
The total number of valenze shell molel orbits in the 80B model cac be ss

large as necesssry and is given hy

20 =41 (2k+1) , 3.1)
k

snd hence the tutsl number of posaible atates for n valence nucleons can be
lerge, (22 ), where o is the number of valence nucleons. A wonderful sspect
sbout the GOB 20del is that sll the ststes in th.s spece csn be classified
sccording to irreducible representstions of the S”B .roup.’) In particulsr
the atates in the space can be classified accordingy to the pumber of nucleons
io the states, u, not coupled to the specisl moncpole snd quadrupole psir.
This qusotum nuaber is & genarsiizstion of the seniority Qquantum nulbor')
which just counts the number ot nucleons not couplel to s monopole psir. The
states with um0 correspoud tev the collective subspace composed only of mono-
pole snd qusdrupole psirs, snd Lsn s one-to-one correspoudence with the IBM
spsce. The states with u=2 sre “hose with only o.s pair which is not »
monopole o) quadrupole pair and so on. Thie festuru meana that the atudy of
the coupling »f the collecti'e monopsle snd qusdrupule space to the other
states left o1t of \ae 1BM spa-e ran be sivdied in s syntematic way.



For odd nuclei u will be odd. The stste u=1 correspond to thLe states of
the interacting bozon-fermion nodels) in which sn odd fermion 1is coupled to
the even-even core described by the IBM. the sllowed quapntum numbers of u=l
in the S0, model have been worked out.’)

The monopole pair crestion operator, ST, snd quadrupole psir crestion

operator, D:, ¥=2,1,0,-1,-2, ure given by applying (2.2) and (2.5),

s = 2 (2k+1)Y [.|L3 k31(§°°)° (3.22)
2 2

ot . \ (02)2

Dy = 3 (2k+1) [.k3 B]u . (3.2b)

These pair creation operators ind their hermitisn conjugates, plus the multi-

pole operstcrs with totsl pseudo-orbitsl sngulsr momentum rank equal to zero,

) =3 et ! 5000 161,23 (3.2¢)
H " k3 *k3'p

NIw
[ %)

asre the gene-ator. of the SO8 group.’) In psrticulsr, the pseulo-spin gener-

ator 1is

1, =3 Rﬁ‘) . (3.24)

In sddition to these opsrators, the multipole operators

Téf) [-k3 0 ](‘ 0. . oad (3.3)

2

commute with ST, DT R\r). and genevate an 80(2k+)) group.
Hence any shell model nuclesr hsmiltonian which hss so 30 8 n yd,

A0t

psirs only. The most gioersl siell molel Hamiltonisn of this forw will have

dynssicnl symmetry will have s subapace >f eigenstates conlilting of £
ronopole snd quadrupole pairing snd multipole interactions:

H= cos*s + 02DT-D + 1 KPR RO 01.4)
r=1,2,3



b x o I®g) g GO0 L @) G0 L 40,

t Ldd K'k k" 'k r=1,3 k
vhere GO<G° and x(r), uir), snd vﬁ?a sre the strengths of the multipole inter-

sctions.

The eigenstates of this Hamiltonisn will be labeled by the quantum number
u. Those with u=0 will correspond to the IBM ststes snd those with u=1 will
correspond to the IBFM astates. However sll shell model atates will sppesr;
the remaining states will have s higher value of u.

The group SOB has three subgroups chsins which have the totsl pseudo-spin
ss sn SO3 subgroup. For vslues of the parameters of the Humiltonizn wiich
conserve the aymmetry of these subgroups, the eigenenergies of the Hamiltonian

can be given in closed form.

The first symmetry rurrespouds to aubgroup chain
S0, S0, @ SU,Ds0, . (3.5)

In this chain the SO5 group is the symmetry group of the quadrupole oacil-
lator, SU2 ia the well known quasi-spin group of pliring7), and 803 is the
pseudo-spin rotational group. For u=0 states the totsl pseudo-orbital sngular
momentum is zero and hence the totsl sngulsr momentum equals the totsl pseudo-
(2)

2

spin, J=1. This symmetry o<curs for « and the excited energy eigen-

values fo. u=0 are given by

Eq(v,1,3) = (Gz-bo)v(Zﬂ-v+2)+(x(a)-Gz)t(t+3)+%(x(l)-K(a))J(J+1) .
(3.6)
The quantum number v is the ususl leniurity,E)
v=n, 0-2, ..., 0, (3.7
1 1s the 505 qQuantum number,
T = hv, fv-2, ..., Oor 1l (3.8)

aud J is the sngular momentus with sllowed values determined by partitioning
T,
Te 3p +A (3.9

where p, A sre non-negstive integere, snd then

J= A, A*1, ..., 2A-2, 2A . (3.10)

This spectrum ic that of asn anharmonic quasdrupole oucillator with the energy



spacing bziLween levels slmoat linear in v with snhaurmonicity from the Psuli
principle coming in nsturslly. Thio symmetry ia the SOB model corresponds te

the SU. svametry in the IBM.

5

Another group chain is
50, S0, D S0, S0, (3.11)

and occurs for the psiring strength GO=GZ' The eiginspectrum for u=) is then

Ez (0,1,3) = (3. Go) (0-N) (o#isn) + ok D)y {(1e3)

+ % (x(l) -x(a))J(J+1) (3.12)

where N = §n is the number of psirs of valence rucleons, o0 is tChe SOb quantum

uumber,
g= N,N-2, ... 001 (3.13)
snd the asllowed values oi 1 are

t=0,0-1, ..., 0, (3.14)

snd the sllowed values of the angular momentum J are the ssm~ ss in (3.9) snd

(3.10). This symmetry corresponds to s y-unstable rotor snd alco correrpnnds
to the S°6 limit ot the IBM.
The finsl group chain is
S .
s0g O 9, D 50 D 50, (3.15)

sand occurs for K(‘) = Go. The eigenspectrum for u=0 is given by

Ey(9,7,d) = (6,-6;) 7 (20-2n%7+10) + (-6, t(1+3)
+ %(x(l) -x(3))J(J+1) ; (3.16)

This rymmetry corresponds to s repulsive quadrrpole pairing intersction. The

quantum number v has Lhe same sllowed values ss weniority v,

vean, 02, ... ,0 (2.17)

rnd the all~wed values of ¢ sre,



T =hv, §9-2, ..., Oor 1 (3.18)

and the sllowed values of J are the same as in (3.9, and (3.10). The spectrum
for a given valenrce numter is that .t a anharmonic quadrupole oscillator like
the pairing iimit, but unlike the pairing limit the spacing betwecen levels
decrcases #3 the number of valence nucleons incresses.®

Tor the general Humiltonino in which pon: ~f these three aymmetries prevail
the specirum will depend on the relstive ..rength of the pairing interaction
snd the quadrupole inteyacticn. Howevazr it 1s clear from theae soivable
limit- that s wide variety of spectrs can occur in thia model.

For the sllowed representstions of SOB and SO6 for st«tes with u>0, see
Reference 3.

An application to the Samarium isotopes in which neutrons and protons were

distinguished was successfully carried out in Reforence 8.
4. THE Sp6 MODEL

Just as in the case of the SOB model, sll the states in this space can be
clessified according to irreducible representations of the Sp6 group, and the
quantum number u which is the number of nucleons not in the specisl oonopole
or qurdrupole pair. However unlike the SOB model the aumber of atstes for
v=0 sre n¢' 1v one-to-one . rrespondence with the IBHS). The number of u=0
sta.es wil]l be less thsn the number of IBM ststes becsuse of the Psuli prin-
ciple. For this reason, which may be unjustified, this model wss not studied
st much ss the SOB model. However irhere hss been reccnt renewed interecat in
this wodel?)

The monopole psir creation operator, ST, and quadrupole pair creastion
operator, D:, p=2,1,0,-1,-2, crre given by spplying (2.2} snd (2.4)

st = sfla(ziﬂ)l" (a], 10000 4.20)
b: - rz(3(21+1)1* [.Ii .111£2°)2 | (4.7b)

These pair creation operstora and their hermitian conjugates, plus the multi-

pole operstors with totsl pseudo-apin zrank equasl to zmro,

](!'.0)1‘

14 ; r=0,1,2 (4.2c)

R -».f[a(zm)]~ (a), o

3)

are the - nerstors of the Sp6 group. In particulsr the pmoudo-orbitsl

angulny mopzat.m oporator i



K = -2(2/3)" ﬁp(” (4.24)

In sddition to these operators, the multipole operators
=(t) . LTI (0,t)t,
Tp;i = §[3(2i+1)) [ali 8y, ]p , t odd (4.3)

commute with ST, 5T, ﬁ(r) and generste an Sp2i+1 group.

Hence sany shell model Hamiltonian which has san Sp6 e iﬁpzﬁfl dynamical
symeetry will have a subspace of eigenstates consisting of S', D' pairs only.
The most general shell model Hamiltonian of this form will have momopole and

quidrupole pairing and multipole interscticns:

H = cosTs + czi*-f\ + 1 kMg, {0 (4.4)
r=1,2

(v) =0(t)  =(v) =(1)  =(1) , =(1) , =(1)
’ :iédg Vo S Tt f a, (T R™7 +R L

t)

N
(r,' a, auy Ui'i are the strergths of the multipole inter-

vhere GO<GZ snd K
actions.

The eigenstates of this Hamiltonian will be labeled by the quantum number
u. Those vith u=0 will correspond to s subset of the IBM atstes and those
with n=1 will correspond to a subset of the IBFM states. However sll shell
model states will sppear; the remaining states will have s highker value of u.

The group Sp6 has two subgroups chsins which have the total pseudo-orbital
sngulsr momentum as an 803 subgroup. For values of the parsmeters of the
Hamiltonisn which conserve the symmetry of these subgroups, the eigenenergies
of the Hsinltonian can be given in clused form.

The first symmctry corresponds tc¢ subgroup chain
Spg 2 50, @ SU,DS0, . (4.5)

), and SO3 i

the pseudo-orbital angulsr momentum group. For t=0 states the pacudo-spin 1is

In ti.is chain SU2 is the well known quasi-spin group of psiring’ [
equal to zero snd kence the totsl sngulsr momentum cqusls the totsl pseudo-
orbitsl sngulsr momentum. This aymmetry occurs for K(2)=Gz snd the excited

energy eigenvalues for u=0 sre given by

(G.-G,.)
E:(V,J) = —lL-°— v(20-v2) + g(x“) - 6,)3(I+1) . (4.6)



5)

The quantum number v is the usual seniority,

v=n, 02, ..., 0, (4.7)

sand J 1is the sngular momentum. This spectrum is that of an snhsrmonic oscil-
lator with the energy spacing between levels almost linesr in v with sn-
harmonicity from the Pauli principle comiuz in naturally. This symmetry in
the Sp6 model corresponds partially to the SU5 symmetry in the IBM. Since Sp6
hss nc SO5 subgroup, there Is no T quantum number as in the SOB oodel, The
IBM doea have an SO5 subgroup and it is for thia reason that there is no
one-to-one correspondence between the Sp6 model and the IBM.

Another group chaiu is

5?6 Jsu, 3503 (4.8)
and occurs for the pairing strength co=02. We use the fact that the SU3
Casimir operator is

Cy=2 I gD gD (4.9)

r=1,2
The eigenspectrum for u=0 is then
* . (2
Ey(A 1, J) = (K277=G,) [{A-2N) (A+2N+3) tu(A+p+3) ]
T2
+ 3o L @y0an (4.10)

whrre N = 4n is the number of pairs of vslence nucleons, and (A,H) are the
SU3 qQuantum numbers. The sllowed values of J for s given representation

follow the same rules as in the IBH.’) Thia symmetry corresponds to sn sxius’-

ly symmet=-ic rotor.

5.1 THE SU3 GROUND STATE BAND

All the status in the SU3 representstion (A,u) = (2N,0) which will corres-
poad to the ground stste basnd for ap sxislly symmetric rotor csm be projected
from sn intrinsic stste composed of N intrinsic psirs of nucleona. These
antrionic pairs creste tso nucleons with paeudo-orbitsl asngulsr moxentum

projection zero, but total paseudo-spin zero.



AT = '8 [3(2i+1)] A {'10;1'10;11(0) , (3.1

ol A
where tha {] coupling is for pseudo-spin only. Hence this pair does not have
s definite pseudo-orbital angular momentum,
For NS/2, i.e. the half-filled sheall, the SU, eigenstates will be

3
projected from this intrinsic pair condensate,

| (2N,0)K,M;1 = 0> = g%zﬁii [ dw Dég)(w)RK(w)(AT)N10> (5.2a)

vhere Déﬁ?(w) is the Wigner D~function°), w are the Euler angles, RK(w) is a

pseudo-orbitsl sngular momentum rotation, and Mk is the normalization

"k = BaxPx : (5.2b)

vhere BNK is the IEM normalization

- [ 2N) 1N 3 (5.2¢)
Byx INFK+1) 11 (2N-K) 1T ' '
PN is the Pauli correction factor
& 5
P = ———
SR KC DT ©-20
L 3 3

and |0> 1s the core.

For N > g the SU3 representation (2N,0) with N = 0-N will be lowest in
energy snd is projected from an intrinsic stste of N instrinsic pairs of
pucleon holes. The vacuum |0>+|5>, the closed shell, and N+N in the formulae
(5.2).

From (5.2d) we see that P, = 0 for N> 9. Hence in this case the (2N,0)

N 3
representation vanishes because of the Paulil priaciple. Likewise (2N,0)
vanishes for N > g. Thus these lowest SU3 representstions do not exist in
the Sp6 model for
Q0 20
3 <H <3 : (5.3)

This 1is an exsmple of states which do not exist in the Sp6 becauae of the
Pauli principle but do exist in the IBM. This msy not be « defect; only by
comparison with dats cun we judge whether thias is s vulid effect which exists
in nuclei.?0)



5.2 THE SU3 EXCITED BANDS

We can define sn excited u=2 band by replacing one of the pairs in (5.2a)
by an intrinsic pair with pseudc-spin I#0

to_ 1 [324+1) 7%, 1 t (D
Ay = 2f l a ] (8)0:5%10:i )y (5.4)

Because of antisymmetry, I must of course be even. The u=2 states with SU3

sympetry are projected from an intrinsic state with N-1 I=0 pairu (5.1) and
one pair with I#0:

) (2H,0)K, M1, > = _:@lfdw Dég)(w)ﬁx(w)(AT)N”A}ulm (5.5)
8r qNKI
where
g’" Y (1+§-1!IZ
S S I Sl L S ' (5.6
3

Hence we see that, as long as I is even but larger than zero, the normsliza-
tion is 1independent of I. TFurthermore we see tbhat this SU3 band does not

exigt for u=2 for

1] 20
3 SNS 3 (5.7)
which is more restrictive than for the u=0 states as shown by (5.3).
The SU3 representstion (2N,0) given in (5.5) occur. for msny bands,
1= Zinax -1, 2imlx -3, ...,z (5.8)

where imax is the maximum pseudc-spin in the system.
These excited bands are important in understanding backbending in nuclear

bigh " 7in states.10)
5.3 STRONGLY COUPLTD u=2 BAND

In the u=2 bands described by (5.5), the psendo-spin is not part of the

collective rotational moton. We can define s strongly coupled band by rots-



ting the pseudo-orbital sngular momentum and pseudo-spin together:

| (2N,0)1; > = —{g:EJ'dw 0P wrwat  whH¥ o (5.98)
8n My1y MO I,p=0 .

wvhere

S N S L .0

In the above the rotation R(fl) scts on both pseudo-orbital snguler momentum

snd paeudo-spin.
5.4 TRANSITION RATES

For the quadrupole trsnsitions bLetween u=0 states, the quadrupole operstor
will be proportionsl to the quudrupole operstor which is a wcalar with respect
to pseudo-spin; i.e. the opere*tor ﬁsz) given in (4.2¢). The matrix elementa
3 linit of the 1am1).

This must be so becsuse in both cases the quadrupole operstor is s generator

of these operators sre the ssme as tLuaose given by the SU

of the SU3 group snd hence the mstrix elements will depend only on the SU

quantum number.

3

5.5 PAIRING ENERGY

The psiring binding energy in the u=0 lowest SU, hand ia

3
<(28,0)K,M;1=018 151 (2§, 0)K 4; 1=0>

(§-N+1) (2N-K) (2N+K+1)
Z0GN-T) : (5.108)

As the sngulsr momentum, J=K, incresses, this binding energy decresses. For
the uvO band the pairing is lean which makea these bands higher in energy for
the same K:

<(28,0)K, ;100 p1878) (2§, 0),M;1n0, >

9]
(z-N)

N-1 ?nim_l; <(2N,0)K,4;1=018¥8 ] (28,0)K H; Tm0> . (5.10b)
¥



Rowever for s given total sngular momentum J, where of course J:cI+K,I“K-1,

, |I-K|, if more sngulsr momentum is put into the paeudo-apin, I, sad
leas ipto the paeudo-orbitsl sngular momentum K, the psiring binding energy
for tha: atste will incrasse. Henre for some J, the stzte with I#0 may become
lower in energy. Thus the Yras. level will be in snother band lesdiag to a
different moment of inertis for the Yrast blnd.‘°) Of courase this effect,
which occurs naturally ia this model, is outside the scope of the pure IBM
since it deals only with the u=0 band. Additionsl qussi-particle states muat
be introdured into the IBM.11)
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