A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

LA-UR--85-3984

DE86 003677

TITLE. PROSPECTS FOR FUSION APPLICATIONS OF REVERSED-FIELD PINCHES

C. G. Bathke

AUTHOR(S) R. A. Krakowski

K. L. Hagenson, Phillips Petroleum Company

SUBMITTED TO 11th Symposium on Fusion Engineering Austin, Texas

November 18-22, 1985

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal illability or responsibility for the accuracy, completeness, or usefulness of any information, appears us, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or ruflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a honoactusive reyally-free license to publish or reproduce the published form of this contribution, or to office others to the set for U.S. Government purposes.

The Los Alamos National Laborators requests that the publisher islantify this article as werk performed under the autoress of the U.S. Department of Energy

LOS Alamos National Laboratory Los Alamos, New Mexico 87545

FORM NO 836 R4

PROSPECTS FOR FUSION APPLICATIONS OF REVERSED-FIELD PINCHES

C. G. Bathke, R. A. Krekowski, end R. L. Hagenson Los Alemos National Laboratory, Los Alemos, NM 87545

Abstract: The applicability of the Reversed-Field Finch (RFF) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Pacifity (FTF) would emphasize high neutron wall loading, small plasma volume. low fusion and driver powers, and steady-atted operation. Both persentric tradeoffs based on present-day physics understanding and a conceptual design based on an ~ 1-MW/m² (neutron) driven operation are reported.

Introduction

The toroidel, exisymmetric Reversed-Field Pinch (RFP) confines high-beta pleama in a configuration with etrong ohmic heating and low-field coils. On the basis of good experimental results and promising reactor projections, 2,3 a multi-mega-empere device, ZT-H, has been proposed. Intermediate between the ZT-H (r = 0.4-m pleams redius, I = 4-MA toroidel pleams current) and the compett reactor embodiments (r = 0./1 u, I = 18.4 MA) ere e number of RFP devices that can serve technology [Fusion Technology Facility (FTF)⁵, I = 7-8 MA], DT-ignition (I = 8-10 MA), and reactor-demonstration (I > 15 MA) functions. In order to define better key steps in the RFP development path and in support of a broader assessment of fusion technology, conceptual design studies of an RFP davice technology, conceptual design studies of an RFP device with FTP-like qualities are being conducted. The RFT/FTF would be a high-current extension of ZT-H,4 utilizing current drive and active ispurity/seh control. Guided by systems atudies, a conceptual design of the RFP/FTF is performed using coupled models for e) ohmic-heeting and equilibrium-field coile; b) time-dependent pleama/circuit simulations using experimental scalings; c) oscillating-field (F-0 pumping) current-drive simulations; d) edge-pleama eimulation and first-well thermal-mechanical/ thermal-chemical enalyses; and a) magnetic-divertor impurity control. An RFP/FTF design and required physics/technology detabase resulting from this study ere described.

Revereed-Field Pinch Concept

The primary confining field, B_0 . in an RFP is poloidel and is generated by a toroidel plasma current, I_0 . The RFP plasma supports a toroidel plasma current, I_0 . The RFP plasma supports a toroidel bise field, B_{\perp} , to atabilize sausage (m=0) and alliptical (m=2) distortions. Grosely unstable MHD modes with avalengths longer than the minor radius of an electrically conducting shall are stabilized by the shall on a short time scale and by feedback coils for longer times. If the toroidel bise field is elightly reversed near the plasma edge, the resulting magnetic shear in the plasma—edge region is sufficient to estabilize local pressure—driven and current—driven instabilities. This stabilization occurs at relatively high values of the normalized plasma pressure, $\beta=2nk_BT/(B^2/2\mu_0)$.

The key descriptive persenters in the minimum-energy RFP theory are the pinch persenter, θ , and the reversel persenter, F, which are defined to $\theta=B_0(r_p)/\langle B_0\rangle$ and $F=B_0(r_p)/\langle B_0\rangle$, where $\langle B_0\rangle$ is the sverage toroidal field within the sero-temperature plasma radius, r_p , which is elso taken here as the conducting shell. The locus of minimum-energy states, as described in an $F-\theta$ phase space confirmed by

experimental P- θ traces, shows the plasma residing within a region of F- θ space where P < 0 and 1.2 < θ < 1.6. For the purposes of ignition/burn, RFP/FTF, 5 and reactor 2.4 studies, the F- θ constraint is enforced both during startup and burn.

Evidence for nearly classical resistivity in RFP plasmas exists, giving a strong indication of an efficient plasma dynamo to maintain the RFP field configuration. Unlike the tokamak, a close electrical coupling exists between the poloidal and toroidal circuits through the RFP plasma. This coupling also provides in principle a means to drive toroidal current noninductively2,6 at low frequency (50 Hz for the reactor2). Preliminary experimental evidence in support of these ideas recently was reported. This oscillating-field (F-0 pumping) current drive serves as the basis for a steady-state RFP/FTF design reported herein.

A potential problem of anhanced plasma transport caused by the RFP dynamo remains. Generally, the field-line breaking and reconnecting that may be at the base of the RFP dynamo is expected to reduce energy confinement within internal regions of the plasma. An empirical expression for the scaling of global confinement time from small, ohmically heated experiments is used. The from small, ohmically heated experiments is used. The first small, plasma-energy belonce (nT/ $\tau_{\rm E} = \eta j_{\rm e}^2$), and classical resistivity ($\eta = 1/T^{3/2}$) predicts that $\tau_{\rm E}/r_{\rm e}^2 = \beta_{\rm e}^{5/2}(1_{\rm e}/N)^{3/2}1_{\rm e}^{3/2}$ or $\eta_{\rm E} = 1/T^{5/2}$. The RFP plasma burn simulations utilize an empirical accling of the form, $\tau_{\rm E}/r_{\rm e}^2 = C_{\rm e} V_{\rm e}^{\rm e}(\beta_{\rm e})$. The parameters $C_{\rm e}$ and $\nu_{\rm e}$ have been calibrated with existing experimental results, $r_{\rm e}$ and $r_{\rm e}$ accling remains to be generated.

In autmary, a strong experimental database is avolving from a number of small RFP devices. This database has provided the foundation for the next major, mega-sepere RFPe presently under consideration by the US³ and BEC. 10 This database is summarized below.

- robust dynamo initiation and sustainment
- alow current ramp after low-energy RFP formation
- constant-bets scaling (nk_nT = I₄²)
- temperature increases with current
- current density sufficient for atrong obmic heating
- confinement time increases with current $(\tau_E = I_{\Phi}^V, \nu = 1.0 1.5)$
- dynamo coupling of poloidal and toroidal circuite to auggest low-technology current drive

^{*} Work performed under the auspices of US Department of Energy

^{**}Phillips Petroleum Co., Bartlesville, OK

Parametric Design

Design Models

Plssma Model. An optimum RFP/FTF design generally establishes a ceiling on total capital (core size, support power) and operating (support power, fuel requirementa) costs for a system that maximizes neutron first-wall loading, device availabil(ty, and experimental volume (and first-wall area) and minimizes plasms volume and total fusion power. Since the means and constraints by which to optimize the RFP/FTF are not well established, the reactor equations described in Appendix A of Ref 2 were first solved parametrically in ateady state aimply to establish the main physics parameters for small RFPs. A simplified model of the coils was used to obtain an initial estimate of core mass, power consumption, and possible startup senarios: detailed circuit and magnet analyses were then performed on the basis of design points suggested by these steady-state analyses.

A driven, small RFP operating with both high particle density and current density was judged as most appropriate for the FTF application. A DT-ignited RFP generally would generate fusion powers above the $P_{\rm F}=100{\rm -MW}$ upper limit for an FTF5, although the exact limit depends on the plasma beta and transport scaling assumed. The average first-wall hest flux, $I_{\rm OW}$, the ohmic power delivered to the plasma, $P_{\rm Op}$, and the ohmic power consumed by the coil set, $P_{\rm QC}$, were monitored in steady state along with the neutron first-wall loading, $I_{\rm W}$, and the total fusion power, $P_{\rm F}$, for a given plasma beta. Although $Z_{\rm eff}$, plasma aspect ratio, $A=R_{\rm T}/r_{\rm p}$, the transport scaling parameter, ν , the pinch parameter, θ , and the anomalous ion heating were varied, the basecase selected $Z_{\rm eff}=1$, A=6, $\nu=1.0{\rm -}1.25$, F=-0.1 (corresponding θ determined from plasma equilibrium and a sodified Taylor theory for a given beta), and no anomalous ion heating. Both F- θ pumping current drive and active impurity control (either poloidal pumped limitera or toroidsl-field magnetic divertors) were investigated.

Results from the steady-state plasma simulations are displayed on plots of plasma current versus plasms minor radius where either I_{QW} , I_{W} , P_{F} , or P_{Qp} were held fixed. Figure 1 illustrates a design plot for basecase parameters with v=1.25 and $\beta_{\theta}=0.06$ or 0.10. Given the constraints of $I_{W}>1$ MW/m², $P_{F}<100$ MW, and $I_{QW}<5$ MW/m², a design "window" is defined in Fig. 1. On the basis of present experiments¹ ($I_{\phi}<0.5$ MA, $r_{p}=0.15-0.2$ m) and projected near-term experiments³ ($I_{\phi}=2-4$ MA, $r_{p}=0.3-0.4$ m), it was judged that $I_{\phi}=2-4$ MA and $I_{\phi}=0.3-0.4$ m represents a region of reasonable extrapolation from the next generation RFPs. A representative design point is also indicated on Fig. 1 for more detailed exploration of the $E_{\theta}=0.1$ case. This $I_{\phi}=1-MW/m^2$ design is not ignited although increasing the current from the $I_{\phi}=7.6$ MA value to > 9 MA would give $I_{\phi}=4-5$ MW/m² and DT ignition. Before preliminary engineering parameters for the RFP/FTF design point can be tabulated, however, an estimate of the steady-state power consumption in and size of the confining poloidal-field coils (PFCs) and toroidal-field coils (TFCa) is needed.

Magnet Model. Reduced to the simplest terms, the RFP converts large currents in external poloidal-field coils, I $_{\Phi}$ c, to nearly equally large currents, I $_{\Phi}$, in a toroidal plasms. This plasms current both -onfines and heats the high- β DT plasms. Rather than minimizing the cost of energy, as is done for a power reactor design, 2 , the RFP/FTF would maximize I $_{\Phi}$ while minimizing the power delivered to the coils and plasms as well as total plasms size, fusion power, and tritium requirement. On the basis of the designs suggested on Fig. 1, the RFP/FTF design task then becomes one of current and power management in a ZT-40M/ZT-H class of devices.

A simplified model is used to estimate the mass of and power discipated in the coils. A more detailed circuit and plasma equilibrium analyses is then performed to give better estimates of startup acenarios, coil stresses, and volt-second requirements. Past analyses using this simplified approach, which

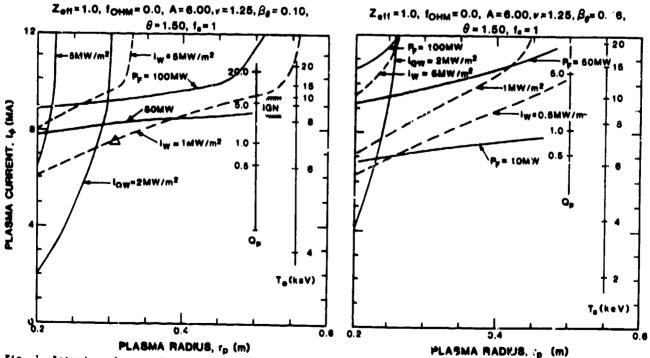


Fig. 1. Interdependence of plasma current, I. on plesma radius, rp, for s range of average first-well hest fluxes, I. meutron first-well loadings, I. and total fusion power, Pp. For all cases, the plasma bets, is taken as 0.06 and 0.10, respectively, the transport parameter, v = 1.25, and no anomolous ion heating assumed. A design window is defined by I. > 1 MW/m², Pp. < 100 MW, and I. O. S. MW/m².

treats both TFCs and PFCs as homogeneous shells, have proven to be adequate and verifiable. The ratio of ohmic power dissipated in the idealized PFC:TFC set to that delivered to the plasma is given in Fig. 2., where $x = r_p/r_p$ is a minor radial filling fraction for the plasma, the plasma and coil resi tivities are n and plasma, the plasma and coil real tivities are n and n, respectively, some is a plasma profile frator for ofmic heating, have in the coil conductor filling fraction ($\lambda = 0.7$), and L is a geometric factor. The coil-to-plasma current ratio for an ideal closelycoupled plasma coil system initiated with a bipolar current awing is used. The tradeoff between normalized PFC thickness, $\delta_{\rm CO}/r_{\rm U}$, and plasma aspect ratio is given on Pig. 2 for the case where the TFC standoff distance from the plasma, Ab. equals the first-wall radius, and $x = r_p/r_s = 1$; the condition $\Delta b = r_p$ gives an experimental volume equal to three times the plana volume. Selecting a value of A = 5 based on nearoptimal coupling of coil currents with plasma current allows the dependence of H_c/r₃ and j_{-c}/j₀ on 5_{C6}/r_w also to be displayed, where H_c is the coil mass and j_{-c}, are the plasma and coil current density, respectively. The coil atandoff distance from the first-wall. Ab = r., provides space both for tests and shielding to be located between the first wall and the TPC act. The impact of an ideally coupled PFC for A = 5 is also shown by the $A = 5(\Delta b = 0)$ curve. RFP:FTF is not designed to breed tritium.

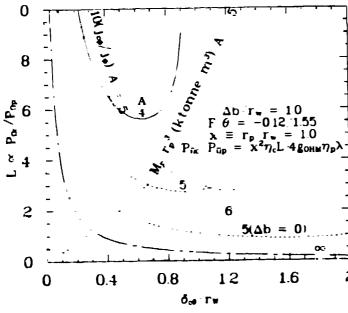


Fig. 2. Dependence of ohmic power losses in coils, P_{Qc} relative to that in the plasma, P_{Qp} , for a homoginized coil model, showing the dependence on plasma aspect retio, $A = R_p/r$, poloidal coil thickness, $\delta_{C\theta}$, for a TFC standbff $\Delta b = r_0$ and a minor radiel plasma filling fraction x = 1. Shown also is the mass of the coil set, M_c , and the ratio of PFC to plasma current denaity, $J_{C\theta}/J_{\theta}$.

The coil power requirements given on Fig. 2 are based on a bipolar inductive awing and pask corrent conditions. An inductive pulse for this small system at most would last for only $\sim 10-20$ s. Application of F-0 pumping²····³ to drive the plasma current, either before or after peak current, would allow the obmicheating-coil (OHC) current to be driven to sero. Generally, the OHC power requirements should be adequate to supply current-drive losses if transferred to the F-0 pumping current-drive system.

Interim Design Point

The combination of plasma and coil results given, respectively, on Figs. 1 and 2 are used to develop a first estimate of the RFP/FTF design point(s) for subsequent, more-detailed plasma simulation and engineering analysis. Table I aummarizes geometric. plasma, and magnet characteristics for a single device that would generate a neutron current over the range I = 1-5 MW m2 while assuring that the fusion power is held below ~ 100 MW. These designs are also identified on the θ_0 = 0.1 plot in Fig. 1. The ohmic power delivered to the plasma is held below 30 MW, and the average physical heat flux on in-vacuum components is below $I_{Gu}=2~{\rm MW/m^2}$. A summary of the computational basis of this example is given in the list of footnotes accompanying Table I. Although this design is subignited $(Q_p = 1.0)$, an increase of $\sim 25\%$ in the 7.6-MA design furrent $(I_p = I \text{ MV/m}^2)$ would result in ignition and an increase in I_p to $\sim 5 \text{ MV/m}^2$ (Fig. 1). Generally, the $I_{\rm w}=1-MV\cdot m^2$ driven design serves here as the basecase. This basecase design is for a transport parameter v = 1.25 and a poloidal beta of $\beta_g=0.1$. Higher or lower transport and or beta would shift the design window; Fig. 3 gives this sensitivity of this physics design to variations in ν and β_{R} .

Conceptual Engineering Design

Startup

The small size of the RFP/FTF designs listed on Table I gives L/R times for both the plasma and coil sets that are sufficiently short to make desirable some form of current suctainment. A bipolar startup is envisaged, with the PFCs serving as an energy store used to initiate a low-current, low-energy (~ 0.5--1.0 keV) RFP; a purely inductive startup through a resistive transfer is sufficiently stressing and inefficient to preclude its use for attaining the final plasma conditions listed in Table I. Instead, the PFIs would be charged in a reversed-bias condition to \boldsymbol{s} state not unlike that of the final, full-plasma-current condition. A resistive transfer in time $\tau_{\rm p} = 1-2$ a would form an RFP that is subsequently ramped in a longer time to schieve the final steady-state plasma. This slow current ramp would initially be driven directly from the power grid, with F-6 pumping possibly being applied prior to current flat-top if the plasma resistance becomes aufficiently low. The plasms would then be taken to the final conditions, and the F-6 2 pumping current drive would thereafter austain the plasma. The OHC current et this point decays to zero. Optimization of this startup and sustainment scensrio to minimize power, magnetic flux consumption, and technology requirements is required. The crucial tradsoff between coil cost and technology (i.e., voltage, power, and volt-second requirements) and the overall approach to the F-O pumping drive coils is examined with a time-dependent plasma/circuit simulation of the design auggested in Table I.

Magnetics

Equilibrium. The PFC design follows the procedure outlined in Ref. 2. The PFCe are subdivided into two functional sets: a) equilibrium-field coils (EF7e) to provide a vertical magnetic field of the appropriate magnitude, B_{ν} , and index, n, to ensure horizontal end vertical equilibrium, respectively, and b) CDEs to provide the bulk of the inductive flux swing, $\Gamma_{\rm LO}$ without introducing magnetic field into the labels region. For the 1-MW/m² neutron-wall-loading case given on Table I, $b_{\nu}=1.25$ T, $0 \le n \le 0.65$, and $L_{\rm LO} I_0=44.0$ Wb are required. The coil design in further constrained to maintain the peak car exidensity below 10 MA/m², to minimize the total π

loraes, and to evoid coil overlap. A coil design which fire enuggly about the TFCe and is representative of the shall model used in the parametrics model (Figs. I and 2) is shown in the lower half of Fig. 4. This lenug" coil design consumes 14.3 MW in the (6.3 MA/m² average current density) and 20.4 MW in tha OHCa (6.8 MA/m² average current density). The "enug" deaign gives the minimum ohmic loss (34.7 MW) and rapresente a 58% increase over that predicted by the parametrica model. Maintenance of an experimental access to the region inside the PFCs would require the removal of a portion of the 207-tonne PFC eet. A more maintainable and accasaible design is shown in the upper half of Fig. 4. This design provides un opening on the outboard eide through which quadrants of the torus, inclusive of the TFCs or divertore, could be moved. This "open" design consumes 14% more obmic power (38.0 MW) and is 9.5% more massive (236.0 tonnes) compered to the "enug" design.

The TFCs shown in Fig. 4 have a thicker redial build (0.08 m) then predicted by the parametrics model in order to eccosmodate discreet coils with a uniform current density of 6.7 MA/m² and uniform cross-sectional area. The resulting TFCs occupy less volume and, hence, consume less ohmic power (1.7 MW). The minimum number of TFCs is estimated to be ~ 24 in order to maintein acceptably small ripple ($\Delta B_{\rm p}/B_{\rm p} < 0.001$, where $\Delta B_{\rm p}$ is the amplitude of the radial helical magnetic-field perturbation) and sufficiently small magnetic falends at the pleasa edge $\{\Delta r/(r_{\rm p}-r_{\rm p}) < 1$, where $r_{\rm p}$ is the reversel surface radius and Δr is the island width).

Circuit/Burn Simulation. The coil inductances and realstances associated with the "open" design were used in a time-dapendent plasma/circuit simulation? of the startup of the 1-MW/m² neutron-wall-loading design. This simulation indicates an initial OHC back bias of 1-25 MAmp-turns is required to provide the necessary flux awing and the associated resistive losses in the plasma. This back-bissed condition creates an initial

(peak) Von Mises stress of 143 MPa, which is within the design constraint (200 MPa). The peak inductive power during ramp-up of current is estimated to be 270 MW draw from the grid and the consumption of ~ 45 Wb; the ZT-40M experiment requires = 20 MW and = 1 Wb, and the ZT-R experiment sectimated to require 100 MW and 20-30 Wb. All coils together require 270 MW (peak) from the power grid just before current flettop (at 3,3 %), at which point the power required drops to the previously quoted 38 MW.

Current Drive

The ateady-state conditions suggested by the parametrica code and pleama/circuit aimulations are assumed to be maintained by F-0 pumping current drive-2 The current-drive enalysis is performed with a timedependent simulation of the plasma response to sinusoidel fluctuation, in the poloidal-field and toroidal-field circuits. A 90 degree phase difference between the two circuite is imposed to maximize current-drive efficiency. For the design values of F and θ and other pleams persectors, a frequency > 200 Hz is needed in order to maintain toroidal-field reversal during the current-drive phase. The drive frequency can be lowered by operating at alightly higher values of θ and correspondingly deeper reversal with only modest (- 1-2 MW) increases in TFC ohmic losses. Restricting the toroida! ilux awing to be $\delta\Phi/\Phi_0 = 0.03$ at 200 Hz would result in a current modulation, $\delta I_{\bullet}/\langle I_{\bullet}\rangle = 0.017$. Although the poloidal-field and toroidal-field circuita provide comparable registive power to the please (11 MW and 18 MW, respectively) the high-Q poloidal-field circuit requires a peak and RMS reactive power of 3.6 GW and 2.3 GW, respectively. Such high power levels can be handled inexpensively [- \$10/kVAR(reactive)]) and losess below - 1%.

Core Integration

Figure 4 achamatically illustrates the essential elements of the RFP/FTF. Combined with the engineering parameters listed in Table I, selection of an active

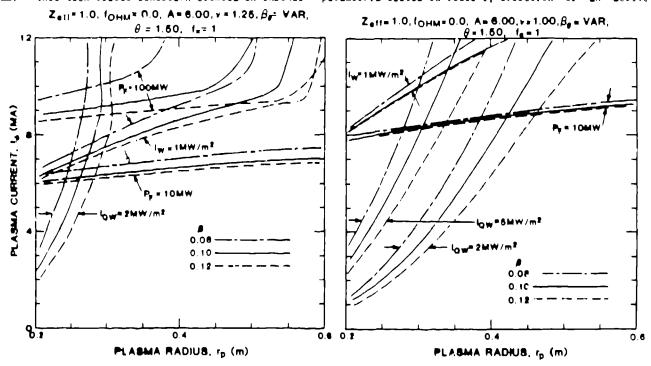


Fig. 3. Sensitivity of basecase design window and design point to veriations in plasms bets, β_{θ} , and transport parameter, v.

impurity control acheme, detailed neutronics, vacuum, thermal-hydraulic, mechanical, power-handling, and operational computations will lead to an engineering integration of sufficient detail to allow accurate economic and technological assessments to be made. This core integration activity will purae the "open" configuration depicted in Fig. 4, which can accommodate both horizontal access to teat specimens without PFC demounting, as well as toroidal-field divertor chambers.

FTF Coil Configurations

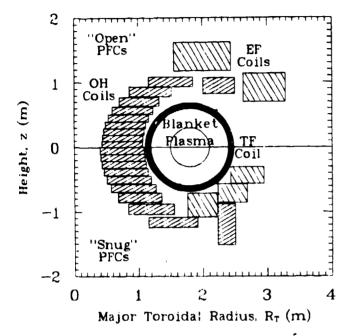


Fig. 4. Comparison of a more maintainable/acceptible "open" PFC configuration (upper half plane) with a more—efficient "snug" PFC configuration (lower half plane).

Conclusions

Scoping atudies of a Fusion Test Facility (FTF) based on a long-pulsed or steady-state Reversed-Field Pinch (RFP) have been performed. The FTF constraints euggested in Ref. 5 have led to the following general features of an ohmically heated neutron source:

- Small physical size, total fusion power, and driver power (ZT-40M/ZT-H size)^{1,3} while maintaining high neutron first-wall loading to give small capital and operating costs.
- Confinement acaling based on prosent RFP experimental results. 1
- e Sub-ignition operation with the possibility of anomalous ion heating! (not assumed here) to minimize further the power input and plasma size while maximizing neutron first-wall loading.
- State-of-the-art resistive TFC and PFC to minimize ohmic power requirements in e compact (200 tonne) device.
- Steady-state oscillating-field current drive (?-0 pumping) consistent with the experimentally observed RFP plasma dynamo, but remaining to be demonstrated,

- Impurity control options provided by poloidal pumped limiters or toroidal-field diversors.
- Moderate-to-high bata (0.05-0.15) operation, also consistent with experiment.¹

The RFP program is not yet ready to embark on a device of the class suggested in Table I. The next-atep RFP devices presently being designed and proposed for construction, however, represent the necessary and significant intermediate step to the RFP/FTF (and ultimately for the RFP reactor), as these systems strive for plasma currents in the range $I_{\phi}=2-4$ MA. Key issues in both physics and technology can be identified with the above list, many of which will be resolved by the next RFP devices being planned. 3 , 10

References

- R. S. Massey, R. G. Watt, P. G. Weber, G. A. Wurden, D. A. Baker, C. J. Buchenauer, et al., "Statua of the ZT-40M RFP Experimental Program," Fus. Technol. 3 (1), 1571 (1985).
- 2. R. L. Hagenson, R. A. Krakowski, C. G. Bathke, R. L. Miller, M. J. Zmbrechts, N. M. Schnurr, et al., "Compact Reversed-Field Pinch Reactors (CRFPR): Preliminary Engineering Considerations," Los Alamos National Laboratory report LA-10200-MS (August 1984).
- P. Thullen and K. F. Schoenberg (eds.), "ZT-H Reversed-Field Los Alamos National Laboratory document LA-UR-84-2501 (1985).
- 4. C. Copenhaver, R. A. Krakowski, N. M. Schnurr, R. L. Miller, C. G. Bathke, R. L. Hagenson, et al., "Compact Reversed-Field Pinch Reactors (CRFPR): Fusion-Power-Core Integration Study," Los Alamos National Laboratory report LA-10500-MS (August 1985).
- M. Abdou (ed), "FINESSE: A Study of the Issues, Experiments, and Facilities for Fusion Nuclear Technology Research and Development (Final Report)," University of California at Los Angeles report (to be published, 1985).
- 6. J. B. Taylor, "Relexation of Toroidal Plasma and Generation of Reversed Magnetic Field, Phys. Latt. 33, 1139 (1974).
- 7. K. F. Schoenberg, R. W. Moses, Jr., and R. L. Hagenson, "Plasma Resistivity in the Progress of a Reversed-Field Dynamo," Phys. Fluids 27(7), 1671 (1984).
- K. F. Schoenberg, R. F. Gribble, and D. A. Baker, "Oscillating Field Current Drive for Reversed Field Pinch Discharges," J. Appl. Phys. 50 (9), 2519 (1984).
- K. A. Werley, R. A. Nebel, and G. A. Wurden, "Transport Description of the Rise Time of Sawtoorh Oscillations in Reversed-Field Pinches," Phys. Fluids 28(5), 1450-1453 (May 1985).
- 10. H. A. B. Bodin and G. Rogsteni, "The RFX Experiment Technical Proposal," Culham Laborstory report RFX-R1 (April 15, 1981).

Table 1. DEVICE PARAMETERS FOR FUSION TEST FACILITY (FTF) BASED ON REVERSED-FIELD PINCH (RFP)

PARAMETER	Fusion n First-wa 1 mw/m²	LL LOADING
GEOMETRY		(a)
Plasma major/minor radius, $R_{\overline{T}}/r_{\overline{p}}(m)$	1.80/0.30(8)	
Plesma/blanket volume, $V_p/V_{BLK}(m^3)$	3.2/9.6	
First wall area, A _{FW} (m ²)	21.3	
Blanket/ahield thickness, $\Delta b(m)$	0.30 ^(b)	
PLASMA		
Pinch/reversal parameter, 6/F	1.50/-0.074	
Poloidal field at plasma edge, B ₀ (T)	5.1	6.4
Poloidal/total beta, β _θ /β	0.10/~ 0.05	
Average electron/ion temperature, (c) T _e /T ₁ (keV)	4.7/4.5	11.2/10.8
Average electron density, n _e (10 ²⁰ /m ³)	6.9	4.6
Plesma current/current density, I (MA)/j (MA/m2)	7.6/26.8	9.6/33.8
Lawson parameter, (d) nrg(1020 e/m3)	0.97	0.89
Ohmic/fusion power in places, Pop/Pp(MW)	29.0/29.2	13.4/133.0
Plasma Q-value, $Q_p = P_F/P_{Qp}$	1.0	9.9
First-well sverage heat flux, I _{OW} (MW/m ²)	1.6	1.9
Poloidal flux, LpIb (Wb)	40.7	51.9
Kinetic/magnetic energy stored in pleama, Wp/Wg(MJ)	1.5/154.1	2.4/245.6
Plasma resistive decay time, $L_{\rm p}/R_{\rm p}(s)$	10.6	36.7
MAGNETS		
Total ohmic power to coils, Poc(MW)	25.0	39.8
Toroidal-Field Coila (TFC)		
 current-center radius/thicknese, r_{cφ}/δ_{cφ}(m) 	0.63/0.05	
current density, (e) jce (MA/m²)	6.7	8.5
• power consumption, P _{TFC} (HW)	3.0	4.8
e mass, H _{TPC} (tonne)	17.4	
Poloidul-Field Coils (PFC)		
• current center radius/thicknese, $r_{c\theta}/\delta_{c\theta}(m)$	0.80/0.30	
curent density, (a) j _{cθ} (MA/m²)	6.7	8.5
• power consumption, Ppp (MW)	21.9	35.0
• mass, MpFC(tonne)	126.0	
• PFC inductance, (f) L _c (10 ⁻⁶ H)	2.01	
• coil current, I _{co} (MA)	10.14	12.80
• solenoid flux, L _c I _{cé} (Wb)	20.3	25.7
• coil L/R time (a)	9,4	

⁽e)Plasma radius taken at T = 0 surface and is greater than radius of reversal layer, first-wall and plasma tadiue taken as equal.

⁽b)Taken to be equal to first-well radius and rapresents an upper bound on experimental/test volume.

 ⁽c)Bessel-function model pressure profiles assumed, P(r) = J²_Q(μr), with n(r) and T(r) = J_Q(μr). A remistance form factor of g_{QHM} = 4.7 was computed to be consistent with these profiles.
 (d)The experimentally calibrated scaling, ¹ · ce = 0.085 Ii · ²⁵ (MA)r_p², was used with τ_{pi} = 4τ_{ce} and τ_E computed as the global energy confinement time. No anomalous ion heating was assumed.
 (e)Current density in TFCs and PFCs equal, magnitude set by PFCs size and power consumption.

⁽f) Taken ss Lc = μοRT[in(8RT/rcθ) - 2.0].