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%.3 GROUP-INVARIANT SOLUTIONS

S. V. Coggeshall ,

OF HYDRODYNAMICS

x-1

1. Introduction

The equations of hydrodynamics, being nonlinear, are in general difficult to solve
analytically. A great deal of effort has therefore gone into the numerical solution of these
equations, using a wide variety of algorithms. Issues associated with these numerical
solutions include accuracy and stability ofthe algorithms and their associated solutions.
Comparison to experiment is one basic way to address the validity of numerical solutions,
but the issues of diagnostics and experimental error are always present. Further, there are
regimes for which experimental results are either costly or impossible to obtain. Due to this,
analytic solutions to such equations in relevant physical regimes have been sought. Such
analytic, exact solutions can be used for three purposes (1) benchmarks for numerical
algorithms, (2) the basis for analytic models, (3) to provide insight into more general
solutions.

One method of constructing analytic solutions that has been highly successful is the
use of Lie group reductions. This technique was invented by Sophus Lie in the latter part
of the 19th Century specifically to find solutions to differential equations, both ordinary
and partial. Since their inception, Lie groups have been recognized as a powerful formalism
applicable to a wide variety of physical and mathematical problems. Ironically, their utility
as originally intended as tools to solve differential equations fell out of use until the middle
of this century. In the past few decades there has been an explosion in the application of
Lie groups to differential equations.1-6

The bottom line of the technique is this: invariance of a differential equation under
the action of a Lie group allows (1) the reduction in order of ordinary differential equations
(ODE’s), (2) the reduction of the number of independent variables of partial differential
equations (PDE’s), and (3) construction of new solutions from existing ones. Each allowed
nontrivial invariance group provides such a reduction. Fhrther, chains of reduction are
generally possible such that invariance of a differential equation under an n-parameter
solvable Lie group allows n such reductions, taking and n—th order ODE into quadrature
and a PDE with n+ 1 independent variables into an ODE. Systems of equations are reduced
in the same fashion.

The first step in this procedure is to identify the Lle groups of transformations that
leave a differential equation invariant, that is, the continuous transformations of the space
of dependent and independent variables into new variables such that the differential equa-
tion written in terms of the new variables is identical to the old differential equation. Once
these transformations with this property are found, two things can be done. New solutions
can be found as transformations of old solutions, since the transformations take the solu-
tion surface into itself (the differential equation is invariant). Second, as a consequence of
this invariance, new coordinates can be identified in terms of which the differential equa-
tion takes a simpler, reduced form. It is usually easier to obtain a solution in this reduced
space, which can then be translated back into the original space to provide a solution to
the original differential equation.
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* Starting with PDE’s, one attempts to do reductions until ODE’s are reached. So-
lutions of these ODE’s are sought and then transformed back into the original variables
where they are solutions of the original PDE’s. These group-invariant solutions are only
particular solutions to the PDE’s, not general solutions. They exist and evolve only for
particular initial/boundary conditions. Often the special initiaJ/boundary conditions are
physically relevant and the particular solutions are physically interesting. Some solutions
are more artificial. All the particular solutions can be used as numerical benchmarks,
although issues of stability should be considered.

2. Lie Groups Applied to Differential Equations

A Lie group is a collection of elements along with a binary operation such that the
four group axioms, closure, associativity, existence of an identity and inverse are satisfied.
A point transformation is a transformation of a point in space to a new point according
to some defining relations, such as

~ = fl(~, v), u = h(%v)-

(They are called point transformations because the transformation functions ~i depend
only on the point (z, y) values and not on derivatives. ) If we parameterize this transforma-
tion with a continuous parameter a such that the transformation functions ~1 and ~2 are
continuous and continuously differentiable to all orders in z, y, and a, we have a collection
of continuous point transformations

We can now consider
the parameter a. We
themselves:

~ = fI(z, g; a), il = f2(~, y; a).

the collection of all these transformations for all allowed values of
identify first an identity element a. that takes all points back into

x =fl(~, y;aO), Y =f2(z, Y;czo).

Further, we consider a binary operation among this collection of transformations: a com-
bined transformation that does the action of two consecutive transformations. That is, let
the parameter a take the point (z, y) into (5, j) and the parameter b take the point (fi, j)
into another point (~, C):

k

m 1 A binary operation would then be the transformation with parameter c that~-,
~61 ;-F , point (z, y) directly into the point (;, ~):

~G -..
~m
=m 4EN ,__
;8 ;

: = A(%Y; c), j = j2(%w a)”

SCc2
,

~fi This can be written in short as j(c) = f(b)* f(a).
$3=.—~ 1’ —.-
~m b- ,..

.- 2

takes the
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A Lie groups of point transformations is simply a collection of all such transformations
along with this binary composition function that satisfies the four group axioms, written

C)
(2)
(3)
(4)

For all a, b E D, the domain of the group parameter, there exists an element c c D
such that ~(c) = ~(a) * ~(b).
There exists an element aOG D such that for alla c D, f(a)* f(aO) = f(a).
For all a E D there exists an element a–l such that ~(a) * f(a-l ) = f(ao ).
For all a, b, c c D, [f(a)* f(b)]* f(c)= f(a)* [f(b)* f(c)].

There exist many common transformations that satisfy these four properties and are
therefore Lie groups of transformations. These include translations, rotations, scale trans-
formations, Galilean transformations, and Lorentz transformations.

One of the fundamental accomplishments of Lie was to show that for such transforma-
tions, all the information concerning the global action of the transformation is contained
in the infinitesimal transformation around the identity element a.. This is a consequence
of the continuity properties required for the global transformation functions ~i. Because of
this, all the invariance conditions required to construct such transformation groups become
lineax.

There is a one-to-one correspondence between the global transformation equations
using the ~i’s and the infinitesimal transformation equations around the identity. The
infinitesimal transformation equations are found by expanding a Taylor series around the
identity value

afl afz
z= z+(a —aO)—

t?a
+O[(a – a0)2], i7 = y+ (a – ao)~ +O[(a – a0)2].

a=ao a=ao

Special symbols and names are given to these first derivatives of the the transformation
equations evaluated at the identity element. They are called the coordinate functions,

and they contain complete information about the global transformations since

Here the exponentiation of an operator A formally means

( )(a- ‘0)2(A)(A)+ ... z.e(.–ao)Az = I + (a – ao)A + 21
.

We can also ask how a general function F of z and y changes under the action of the
group. We expand F in a Taylor series around the identity as

[

af~ t3F t+f2
F(2, J) =F(x, Y) + (a – ao) ~ a=ao~ + x

1]a=ao ~

+ O [(a – a0)2],

F(~, j7)-F(z, y) = (a
-a”w$+’%=(a-aO)uF$

3
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. where the differential operator

is called the generator of the group action. This operator describes how functions change
infinitesimally under the action of the group, and it’s exponentiation generates the global
transformation action,

&’(5, ~) = e(a–ao)u@, ~),

which is just the Taylor series.
Using this differential operator V we define two types of invariance. A function I’(z, y)

is said to be an invariant function under the action of the group if ZJ1’ = O identically.
An equation I’(x, y) = O is an invariant equation if TJI’ = O whenever I’ = O. This is
written either as ~~1 FGCI= O or UZ’ = A(z, y)X’ for some function X We now have all the
machinery to understand how Lie group theory is used to reduce the space of independent
variables for PDE’s.

Recall the solution of quasilinear PDE’s using the method of
the PDE

—

t3F i3F
— + ... +9n(x)7& =0>91(x)g + 92(X) ~z2

the general solution is F = F(cI, C2,.... cn_l ), where the Ci’s are
constants of the characteristic equations

characteristics. Given

the n – 1 inte~ation

dxl dx2 dx.
= —= =—

91 92 ‘.. 9n .

Since the invariance condition T.7F= Ois this type of PDE, we know that if a function
F is invariant under a group with generator 27 = (8z +q~y, we can rewrite this function as
another function G(c), where c is the integration constant of the characteristic equations

dx dy

7=7

and the dimensionality of the space has been reduced
A simple example is rotation in zy space, where

by one.

i =zcosa — ysina, G= zsina+ycosa,

and the group parameter a is seen to be the angle of rotation. Simple calculation gives
~=–yandq= z, so the generator is V = –y~= + @Y. (A good excercise is to recover
the global equations for ii and j from the infinitesimal generator U through 5 = eauz.

y–e
-— au y.) Solving the characteristic equations for this case

dz dy
= pivesc=xz+yz,

T

and we note any function F(c) is invariant under this group. Therefore, any function
F(z2 + y2) can be written in terms of this new variable c, which is seen to be the square

4



of the radius. In other words, any iimction whkh is rotationally symmetric can be written
in terms of the radius only.

The concept of symmetry can be generalized. By definition, if an object is invariant
under a transformation it posses a symmetry with respect to that transformation (e.g.,
reflection and rotation). Differential equations define surfaces (solution surfaces) in space.
If this solution surface is invariant under a transformation (it is mapped back into itself),
it possesses a symmetry with respect to that transformation. Invariance of the differential
equation under the generator U implies a symmetry with respect to the transformation
ea U

.

With this technique we find we can reduce the number of variables, given invariance
under this special linear differential operator U. For a system of PDE’s with n independent
variables, we can invoke this mechanism n – 1 times to reduce the system to ODE’s, whkh
are then easier to solve. Any solution of the ODE’s will provide a particular solution to the
original PDE’s. Additionally, since the system of equations is invariant, the transforma-
tions take solutions into solutions.
a new solution from a given one.
equations.

3. Hydrodynamics Model

Often we can use the global transformations to generate
Specific examples will be given for the hydrodynamics

The equations of hydrodynamics can be written

Pt+u”vp+pv”u=o,

Ut+u. vu+hw=o,
P

Et+u. VE+;PV. u+; V. F=S.

Here p is the material density, u the 3-dimensional velocity vector whose components can
be written (u, v, w), E and P the specific energy and pressure, F is the heat flux, and S
is a general energy source term. The equations must be closed with the equation of state,
a relationship between energy and pressure, which can be written in terms of a material
temperature as

E = E(p, 2’), P = P(p, T).

The heat flux F can be chosen to represent normal material conduction or a nonlinear
conduction typical for radiation diffusion, creating Marshak heat fronts. The energy and
pressure terms can also be chosen to allow radiation energies and pressures in various
forms, such as in a black-body equilibrium form

aTd
P=~

aT4
and E=—

P’

a the radiation constant. Radiation conduction can be written

F= –~VaT4.

5
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Here c is the speed of light and A(p, T) is the radiation mean-free-path.
.

The Lie group properties of these equations in 1-D including the radiation difision
terms for an arbitrary material equation of state are listed in Reference 7 along with special
cases of reductions to ODE’S. For the remainder of this chapter the model willbe restricted
to a perfect gas EOS with no radiation energy and pressure terms included:

Pt+u”vp+pv”u=o,

ut + u. vu + jv(rpqs o,

–1
z-’’+ vzv+(~(l)z)v’u. ~-~

rp
V@ T-~S=O.

(1)

Here the material energy and pressure are written in terms of the temperature as

r
P=17pT, E=—

-Y-lT’

r the gas constant and 7 the adiabatic exponent. The heat flux F is written in a general
diffusion approximation F = —x(p, T) VT, and can include radiation Marshak behavior.

The Lie groups which leave Equations (1) invariant are generated by the differential
operators

Uz=&=az,

Uv = 8Y,

?7= = /3=,

Ut = at,

UGZ= taz + au,

uGy = tay + a.,

UGZ = taz + aw,

UZv = –yaz + Xay – Vau + Uav,

u yz = —Zav + yaz – Wav + VauJ,

u Zz = —Xaz + Zaz — uaw + Wau,

U.t = tat – UOU – V3V – Wt3w – 2TtlT,

u 8s = X8= + yay + zaz – q@p + Id. + V& + U& + 2Ti3r,

u = pap,

u:= xti3z + ytay + ztaz + t2t3t– qptap + (z —Ut)au+

+ (y – Ot)i% + (z – wt)~w – 2Ttth,

with the following conditions for the conductivity K and energy source S:

ii= k[a8P—a~t + (2— q)a,~ —qaPt],

US – S(2a8s – 3a8t – 4taP) – qaP
%(’-%)=0

(2)

(3)

6



Here we have written

,

.

and expressed the operator Z7 as a linear combination of the 14 separate generators,

U = azUz + a#JV + ... + a.tU.t -i-aaau.a + aapu8p+ UPUP”

The first four groups are translations in Z, y, Z, t. The grOUPS generated b UGi ELM

Galilean boosts in the Z, Y, z directions. The next three JWOUPSare rOtatiOIISOFollowing
those are three separate scaling groups in time, space and density. The final group iS a
projective group in the space-time plane. Note that for the case of no conduction or source
S, the conditions (3) become

q+2
up =0 unless ~=—

q“

The parameter q takes the value q = Max(lV,k + 1), where N is the number of SPatial
independent variables in the problem and k is a geometry factor equal to O, 1 or 2 for
planar, cylindrical, or spherical geometry, respectively (see Reference 8).

4.One-Dimensional Solutions

In one-dimensional arbitrary coordinates, Equations (1) become

kpu = o
Pt+uPr+p%+- 9r

ut + Uur + ;I’Tpr + I’Tr = O,

P@++)=Oo
--&- (Tt + uT,) + I’Tur + I’T~ + :

r

(4)

We let r be the single spatial coordinate for general geometry (planar, cylindrical, spher-
ical), with geometry factor k = O, 1, or 2. Again, the heat flux C= be related to the

temperature through a (nonlinear) diffusion approximation F = –6(P, T)T,. For the time
being we consider the case of no conduction and set F = O.

The groups allowed in one-dimensional coordinates are represented by the generators

u., Ut, U(3-J Uaty Uas) Usp, and UP. For the one-dimension~ generators we replace z with
r and set all terms with y, Z, v, w to zero. An additional condition in 1-D OCCUHJfor SPELCe
translation, kar = kaGr = O, which says that translations and Galilean boosts are only

allowed in Planar geometry (k = O). The condition (3) on y to keep the projective group
in 1-D with no source is y = “(k + 3)/(k + 1).

A. Traditional Similarity Solutions

We note that the “classic” similarity solutions found
and/or the use of the Buckingham Pi Theoremg are exactly

7
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groups. The general scaling group allowed for Equations (4) is a linear combination of the
. three generators Uat, U.. and U~P,

u = U8t+ aU88+ (b + qa)UP = ari3. + ti% + b@P + (a – l)u& + 2(U – l)T~T,

a and b free parameters. A group generator can always be arbitrarily scaled, so in the
linear combination we can choose one of the multipliers as 1. The global equations for the
action of this group are

When these tilded variables are substituted into Equations (4), we find the equations
remain the same as (4) and are therefore invariant under this scale transformation. Since
this U operating on the system (4) is equal to zero on the solution surface of (4), we
know that the system can be rewritten solely in terms of the integration constants of the
characteristic equations

dr dt dp du dT— =
ar T= ~= (a - l)u = 2(a - l)T -

Integrating the first relation gives c1 = rt-a , which is identified as the new independent
variable s. Integrating the other relations provides the three new dependent variables

(C2 =)H(s) = $, M(s)=&, G(s)= t2:1), (S=;).

To transform Equations (4) into these new variables the required derivatives are calculated
using the chain rule. For example,

,th b

p = H(s)tb, pt = H ~t + bHtb-l = –aH’stb–l + bHtb-l.

When these are substituted into Equations (4), they become the ODE’s

kHM = ~
bH + HM’ + (M – as)H’ + —

s

(a - l)M + (M - as)M’ + %G+G’=O (5)

2(”-l)G+(M-US)G’+(’-1)G[M’++I‘0
Many well-known solutions can be constructed from these ODE’s, for instance the Sedov
and Taylor point explosion,l” imploding shocks (e.g., Guderleyll ), and a reflecting shock
(e.g., Noh12). A characteristic of these types of solutions with M - s is that the velocity
can be written u(r, t) = U.r/t, which gives material trajectories as r = r. ItI“O,shown in

Figure 1 for U. = 1. Solutions O, 1, 2, and 16 in Section 5 are generated using these scaling
groups.

8



B. Exponential solutions
.

Ifthetranslation groupware added to the above scaling groups the solution of the
characteristic equations takes two new branches, depending on the choice of parameters.
The generator is written

U = cU*t+aUa,+(b+aq) UaP+dUr+eUt= (ar+d)8~+(c~+e)8t+bp~P+(a-c)u& +2(a-c)Tfi.

The two new branches are

ecr/d

s—= H(s) = pe-brld, M(s) = uecrld, G(s) = 17Z’e2crld for d, c # O,a = O,
ct+e’

eatle
s—= H(s) = pe-btJe, M(s) = ue-a:ie, G(s) = I’Te-2a2j’ for c = O, e, a # O.

ar+d ’

The use of scaling groups in conjunction with translation groups gives rise to solutions
which are exponential in either time (time translation with space scaling) or space (space
translation with time scaling). These solutions have also been found through inspection
by many authors.

C. Projective group solutions

The projective group generator

up = Tiar + t28t – qpt8P + (r – ut)(?ti – 2Tti?T

creates the global transformations

r t
F=

l–apt’
i= - = p(l – aPt)k+l, ii = u(1 – aPt) + aPr, ~ = T(l – aPt)2. (6)

I–aPt ’ p

This is a projective group because these transformation equations take a straight line in
r – t space into another straight line, t = br + c + i = b?/(1 – ape) + c. This interesting
group is allowed only for the special value of the adiabatic exponent y = (g+ 2)/q, which
for spherical coordinates is ~ = 5/3.

Keeping the projective gxoup along with density scaling and time translation, we write
the generator

U = UP+ b17P– a2U: = rtdr + (a2 – t2)tZ + (b – @)p8P + (r – ut)~tt+ 2Tt&.

The integration constants of the characteristic equations become the new variables

()
b/2a

s = (a2 _rt2)l/2 ‘
H(s) = p(a2-t2)q12 ~ , M(s) = u(a2–t2)112-st, G(s) = I’Z’(a2-t2).—

9



Written in terms of these new variables, the PDE’s (4) become the ODE’s.

kHlkf
bH+H’M+HM’+—=0

-a2~+M’M+r’~;1’G’ =0,

“M+(’-1)G(M’+3=00
One can solve these equations with a power law assurnptio~

H(s) = HI)Sh, M(s) = M~sm, G(s) = G~sg,

but the only nontrivial (MO # O) solution reduces to a special case solution of the ODE’s for
the scaling groups, so nothing new is obtained. However, making the assumption M = O,
the first and third equations reduce to b = O, and the middle equation can be solved in
general with only the assumption of isentropic flow (see Reference 13, Appendix C for
details) to construct Solution 4. Here the constants Ri and RO are locations such that
at initial time, p(r < Ri, O) = T(r < Ri, O) = O, so the solution is for a hollow shell of
material initially extending from Ri to RO. When Ri = O, the solution is no longer hollow
and can be written more simply as Solution 3. For the special case of d = 27, this solution
becomes Solution 5.

These solutions using the projective group have the interesting property of two sin-
gularities on time axis at t = +a. The material trajectories for Solution 3 are shown in
Figure 2. At time t = —a, a point explosion occurs and all material expands out from the
point r = O like a “Big Bang”. At time t = a all the material collapses again in a “Big
Crunch.” At the middle point t = Oall material has stopped expanding and the velocity is
zero everywhere. This type of solution is also described by Sedovl 0 as a pulsating periodic
solution.

The projective group can also be used to generate interesting new solutions from
known solutions. For instance, Solution O is a trivial stationary pressure balance solution.
This solution can be transformed to another, nontrivial solution using the global transfor-
mation equations (6). We write Solution O in tilded variables, @(?,{) = po?b, Z = O, and
~(?, i) = TOT–*, and use the transformation (6) to generate the new solution

()
b

j = p(l – aPt)k+l = po?b = p. r
1 – aPt

* p(r, t) = porb(l – aPt)–b-k-l.

Similarly,

G=u(l—. aPt)+aPr=O ~ u(r, t)=–laP~ ~, and
P

()
–b

~ = T(l – apt)’ = To?-b = To & ~ T(r, t) = Tor-b(l – aP-t)b-2.—
P

This solution is identical with Solution 1 after the time translation ~ = t – l/aP is used.

10



The projective group can often be used to generate new solutions in this fashion.
If we have a solution for which u(r, t) = uor/t, the material trajectories are found by
integrating + = u which provides r(t) = r. ItI‘O. Under the action of the projective group
with parameter a, these relations become

r(uo + at)
u(r, t) =

t(l + at) ‘
r(t) = rOltlUOll+atll–uO.

Figures 3 – 5 show the action of the projective group for various values of Uo. It is seen
that when U. = 1 there is no change of the flow. The trivial solution U. = O (Solution O)
goes into a linear imploding/exploding trajectory (Solution 1). Solutioh 2 has the value
Uo = 1/2 for the required y value for the projective group ~ = (k + 3)/(k + 1). This
solution is transformed by the projective group into Solution 3 (see Figure 5).

It should be noted that the process of generating a new solution from a given one can
only be performed once. A second similar transformation with a different group element
gives only a single transformation with a combined composition function value of the two
group elements, as is known horn the closure property. Secondly, when a particular solution
has been obtained as a solution to the ODE’s constructed using a certain group, the use
of the group again to generate a new solution gives an identity transformation. This is
described as follows:

When a subgroup H of the multiparameter invariance group G is used to generate a
solution, that solution is called an H-invariant solution. This means that it is invariant
under the subgroup H, and any use of the global transformations of H go back into the
original solution. To generate a new solution from an H-invariant solution one must use a
different transformation from G not in H.

Since a solution can be used to generate new solutions using different groups, it would
be nice to identify the minimum collection of subgroups that will generate all possible
group invariant solutions. Such a collection is called an optimal system,l~2@ and it is
constructed by examining the ways in which group invariant solutions transform among
themselves through the adjoint operation.

D. Solutions including conduction

Group reduction of the PDE’s (4) can be performed including the diffusive conduction
term provided the first condition of (3) is met. This condition becomes two relations

pxP(a8P – qa~~)+ 2TKT(a8~ – a8f) = K[a~P– a.t + (2 – q)a~s], and

!?P~p + 2Twr = tcq,

since it is an identity in the variable t. For a power law form of the conductivity y, ~ =
KopuT@, these conditions become (i) a relation between the three scaling parameters,
reducing the number of free parameters by one, and (ii) a relationship between a, ~, and

g if the projective operator is to be used. Generally, one considers the exponents a and

~ to be given from either theory or data, which means that the projective group usually

11



doesn’t exist for conduction. However, one can use the projective group and see what is
.

the resulting relationship between a and ~, and decide whether it is useful.
Again, the groups are used to reduce the PDE’s (4) to ODE’s, for which solutions

are sought. It is typical that power law solutions exist, and these generate Solutions 7 –
15. Solution 15 is found with the projective group, and is the conduction companion to
Solution 3.

E. Solutions with shocks

Once the groups are used to reduce the PDE’s to ODE’s, we can consider continuous
as well as discontinuous solutions. As an example, consider the ODE’s (5) obtained using
the scaling groups. For this simple example we will set the parameters b = O and a = 1.

Writing these three ODE’s in matrix form and solving for the derivatives, we get

~, = kMH(M – S)

s[(M – S)2 – @l’

M’ =
7kMG

s[(M – S)2 – 7G] ‘

G, = –kMG(7 – 1)(M – S)
s[(M – S)2 – YG] “

Note for a = land b= O,s=r/t, H=p, M=u, and G=T.
A simple solution with a shock can be found by solving these ODE’s separately in two

regions and connecting the regions with the standard shock jump conditions

where R is the shock location and the quantities are evaluated at the shock surface & The
shock location will be stationary in the s coordinate system (required by self-similarity).
and the shock location in s space can be called S1, so R = sit, R = S1.

We look for a solution describing cold material flowing into the origin with a velocity
Uo(< O), causing a shock to move from the origin outward. There are then two regions: (l),
the central region that has experienced the shock, and (2) the outer region with velocity
U., that the shock is propagating into.

In Region 2, we integrate the ODE’s analytically to the shock location, S1. At s = m,
the density is a constant p., the velocity is a constant U. and the temperature is zero
(T= G = O). Since G = O the last ODE says that G stays zero for all of Region 2. This
information in the second ODE says that M’ = O,or M = uo for all Region 2. The first
ODE can then be integrated

kuoH(uo – S)

()

k

HI = + H(s)=Ho ~ .
S(?LO– S)2 s

12
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The condition H’(oo) = p. gives HO = po. So the solution in Region 2 is

k
o

()
H=po ~ , M=Uo, G=O.

s

The jump conditions are now used to connect the solution at the Region 2 side of the shock
to just inside Region 1, where the integration will be continued. We find

S1 — Uo
m = P2 S1 r~~ = (S1 – ?@(ul – Uo), ~1 =

{

2s1 – Uo(l – y)

—U1’ –uo(~ + 1) “

There are two possibilities for UI since the jump condition is quadratic. To find out which
one is the correct value, we look at the M’ equation with the requirement that at the origin
the velocity is zero, iLf(0) = O ~ &f = O for all of Region 1. This fact in the ODE’s
demands that G and H are constant in Region 1, where they are just G = T1, H = pl.
Also, since U1= O, S1= U.(1 —7)/2 (the top condition for U1is used; the bottom requires
U. = O) and therefore pl = P2(7 + 1)/(7 – 1). SO for Region 1, the solution is

H=p1=p2
()

y-t-l— , M=O, G=–SIUCI.
T-l

The value of p2 is H(sl +c)I.=0 = PO[(SI–uo)/sI]~ = Po[(7 + 1)/(7 – l)]k. Putting this all
together gives Solution 16. It is interesting that this solution can be projected to produce
Solution 17 in the same way that Solution O projected produced Solution 1.

More complicated shock solutions are certainly possible. One interesting extension
is the addition of conduction, which can be then represented by four first order ODE’s
(one more being the relationship between the heat flux and the temperature). These
equations are generally too difficult to solve analytically, but the ODE’s can easily be
solved numerically to get similarity solutions including heat conduction. An example of

such a solution is in Reference 7.

F. Boundary Conditions

The analytic solutions as given in Section 7 contain no boundary conditions, which
must be taken into account for numerical solutions. There are two approaches to this
concern. The first and simplest is to consider a firite region initialized with the properties
of any of the analytic solutions with no consideration of special boundary conditions.
In this approach the evolution at the boundary immediately deviates ikom the analytic
solution, and a rarefaction wave propagates into the material of interest. The solution is
valid only in the region which has not felt this rarefaction wave. This approach, while
simplest to implement, causes the region of validity to shrink as the problem evolves.

The second approach is to apply the correct boundary conditions at the edge of the

problem. This is immediate if the calculation is Eulerian. For a Lagrangian calculation

one must calculate the location of the boundary at all times and the appropriate material

13



. properties for that location must be imposed. One concern with this approach is that small
errors made in these boundary conditions can propagate into the problem and confuse the
investigation of internally generated errors. For this reason we generally use the first and
simplest approach. More general discussions of the treatment of boundary conditions can
be found in References 7 and 13.

5. Two Dimensional Solutions

A. Multiple Reductions using Lie groups

In two dimensions we consider the case of axisymmetry, rotational symmetry around
the z axis. This coordinate system can be described in either spherical (r, 8) or cylindrical
(R, z) coordinates. There are seven allowed groups in this geometry, which form a 7-
parameter group G7 generated by the operators (UZ, UGZ,USS,Uc, use, UsP,UP).

In two dimensions we need to perform two successive group reductions in order to
reduce the PDE’s to ODE’S. We could perform one transformation, reduce the space to
2 independent variables, and then seek the group invariance properties of these reduced
equations in order to reduce them a second time to ODE’S. Alternatively, it is known that
successive reductions are facilitated by looking at the structure of the Lie group via the
Lie algebra. Details in the Lie algebra provide information so that invariance properties of
the original equations can be inherited by the reduced equations, and the double reduction
can be done in one step.

Recall, an algebra is a vector space with a bilinear composition operation [X, Y]. A
Lie algebra is an algebra for which [X, Y] = –[Y, X]. The Lie algebra associated with a
Lie group is simply the collection of group generators. The composition operation is the
commutator of two generators [X, Y] = XY – YX. Lie’s principal theorem states that
for an n-parameter Lie group with generators UI, U2, .... U., the commutator of any two
generators is a linear combination of the generators,

[vi, Uj]= ~ Cijkuk.

k=l

The constants cijk are called the structure constants of the algebra. There is a one-to-one
correspondence between the Lie group and the Lie algebra.

A table of commutators can be constructed for any Lie group that allows the iden-
tification of subgroups, that is, subsets of generators that are closed under commuta-
tion. For this 7-parameter group G 7, the commutator table is shown in Table 1. From
this table we can find examples of subgroups. Any collection of generators that com-
mute ([Ui, Uj] = O) form a subgroup, such as (USP, UZ, UGZ). This is a commutative or
Abelian subgroup, since all commutators are zero. Examples of non-Abelian subgroups are

(~z,~Gz,~ss), (UZ, UGZ,up), (~t, USS,u~t), (ut,u~~, U,t, up), etc. Each single generator
forms a l-parameter subgroup.

A special kind of subgroup occurs when the commutator with an element from the

subgroup and one from the larger group always goes back into the subgroup. These are

called normal subgroups and their corresponding algebras are called ideals.

14



Definition: Consider a group G and a subset of its elements H along with their associated
algebras g and 7-L If for any two elements hl and h2 in 7-t, [hl, h2] is a linear combination
of elements in ?t, then H is a subgroup of G and fi is a subalgebra of g. If for any element
h of ?i and any element g of ~, [h, g] is a linear combination of elements in fi, then H is
a nomal subgroup of G and W is an ideal of G.

All subgroups whose commutators with the larger group are zero are normal sub-
groups. Examples of normal subgroups are (U,t) C. (U.t, v,,), (UGZ,~t) C~ (UGZ, Ut, UZ),
(~t) G (~t,u.., U.t,USp), etc.

For any subgroup H of G we can identify the collection of all operators vi whose com-
mutation with any element in ?i goes back into ?L This collection, which must contain all
of H, is called the normalizer NorG(H) of the subgroup H of G. It is the largest subgroup
of G with the property that H is a normal sub~oup of NorG(H). The corresponding
algebra N,(H) is the collection vi : [~i, Vj] c H V ~j 6 ?f, vi c ~.

The theorem pertaining to sequential reductions can now be stated:

&heorem Consider a system of differential equations E invariant under a multipa-
rameter group G with subgroup H. The system E/H obtained by reducing E with the
subgroup H will be invariant under the quotient group Q =NorG(H)/H.

The quotient group can be formed by simply removing one of the elements of H from
NorG(H). A simple proof of this theorem can be found in 0vsiannikov[1982].

To summarize the procedure for multiple reductions, first choose a subgroup H for a
reduction. Next, form the normalizer NorG(H) of this collection by finding all the other
generators that, when commuted with the collection H, go back into H. Finally, remove
any one of the generators of H from the set NorG(H). The resulting collection is the
quotient group Q =NorG(H)/H. Now use any element from H for the first reduction.
One is then guaranteed to be able to do a second reduction using any element of Q.

Therefore, for any two generators U1 and U2 which could be linear combinations of
single generators, when [Ul, U2] = U1,use any part of U1 for the first reduction and then
U2 for the second reduction. It is best to use a part of U1 that is not included in Uz. More
detailed discussion on this process can be found in Reference 8. In that paper is listed
the 2-Dimensional optimal system @Q, which is a collection of possible ways to dO SUCh
double reductions. The collection is “optimal” in the sense that all possible double group
reduction solutions can be found horn the members of this list. Each member provides a
path for reducing the 2-D hydro PDE’s to ODE’S.

B. Reductions to ODE’s

Tables 2 and 3 list the new variables for each entry of @2 for the 2-D form of Equations

(1) with no conduction or source S. Each entry of Tables 2 and 3 reduces the 2-D PDE’s
to ODE’S. These variables are sometimes easier to write in spherical coordinates (Table
2) and sometimes in cylindrical (Table 3).

As an example, consider the similarity variables found using the reduction path ?f7

from Table 2, which uses first the combination ?71 = U.t + CW,P, and next U2 = US8 +
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(~+ 3)Usp, cu and @ arbitrary constants. To perform a multiple reduction we could first
‘ reduce by U1, write out the new PDE.’s (which now only have 2 independent variables),

and then reduce again with U2 to ODE’S. We know the reduced, intermediate PDE’s in
two independent variables will be invariant under U2 since we chose U1 and U2 by the
above theorem to have that property. We find that it is not necessary to write out the
intermediate PDE’s; we can go directly horn the original PDE’s in three independent
variables to ODE’s in one transformation step as follows.

In spherical coordinates, we find

ul = t/it+ CYpi3p– UiilU– vi% – 2TaT, and

We first calculate the group invariants of the first generator U1by solving the characteristic
equations

dr de dt dp du dv dT

~=~=~=~=x=: ‘–2T

for the integration constsnts al = r, az = o, a3 = pt–u, ad = ut, as = Vt, a6 = Tt2. we

now write the second generator in terms of these new variables (the ai’s) as

where the fi’s are as of yet unknown functions of the ai ‘s. The fi’s are found by noticing
that fi = U2ai. We calculate

f~ = Uza~ = UZr = r = al, fz = Uzaz = O, f3 = U2a3 = u2(pt-a) = Pft–a = Pa3, etc.

Continuing, we find we can write U2 completely in terms of the new variables as

We now solve the characteristic equations for this operator

dal da2 da3 da4 da5 da6—= —= —
al o /3a3=~=7=%

for the integration constants bl = az = 0, bz = a3a~p = H(o), b3 = ad/al = M(e),
b4 = as/al = V(d), bs = a6/a~ = G(O). The integration constants bi are group invariants

of both U1 and U2, and are therefore the new variables we are looking for that will reduce
the PDE’s to ODE’S. These new variables H, M, V, and G are the new dependent variables
and the new independent variable 6 is itself an invariant under both U1 and Uz. In the
same manner as the single reduction in Section 4A, we calculate the derivatives of the old
variables in terms of the new variables

P = H(0)rpta, pt = cuHrBta-l, p. = @Hr@-lta, pe = H’rpta, ...

16



.

When these are substituted into the PDE’s (1) they become the ODE’s
.

a+ M(B+3)+v; +v’+& =0,

M2– M+ VM’– V2+(B+2)G=O,

–v+2Mv+vv’ +Gg+G’=o,

M(2+3~–3)–2+
T+@@+=)=O

VG’

Any technique can be attempted to solve the reduced ODE’s, which the; provides specific
solutions for the hydro PDE’s. Solutions 18 – 24 are some solutions to the 2-D hydro
equations found by making some ansatz in the solution of the associated reduced ODE’S.

We find that we can transform Solution 19 with the projective group to get Solution
25. Just as occurred the 1-D solutions, a solution with one pole on the r – t time axis is
transformed into one with two poles (see Figure 5). Solution 25 is an explosion/collapse
ellipsoidal 2-D solution.

6. 3-D Solutions

The 2-dimensional optimal system @2 was worked out in Reference 8, which yields
the minimal reduction paths for the 2-D PDE’s into ODE’s for which all possible group-
invariant solutions may be found. The corresponding 3-D optimal system @3 for the
paths for the 3-D PDE’s into ODE’s has not been worked out. However, guided by the
multiple reduction theorem, we can choose a few reduction paths and look for particular
solutions. One such path is U1 = U.t + CIUM + c2u.y + c3uL1/J,U2 = Ud + c4uaa + dsp,
U3 = Usf + cGUsp. This gives the similarity variables

p = H(0)tar~ec+, u = M(O):, v = V(e);, w = W(8):, rT = G(0)$.

When these new variables are substituted into the PDE’s (l), they become the ODE’s

tEL9 ‘c
W.

a+ M(b+3)+V; +V’+— —=
sine

–M+M2+VM’– V2 –W2+G(b+2)=0

–V+2MV+VV’– —
:;+G

~+c’=o

Vw
–W+2MW+VW’+G+c&=0

–2+M(2+3~– 3)+v; +(@)v’+(@)& =0.

A particular solution for these equations can be found through the ansatz V = O, H =
Ho +l?l(sinO)~, c = O, ~ = 5/3, and yields Solution 30. Figure 6 shows material trajectories
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for Solution 30, which has flow spinning either into or out of the origin (depending on.
whether time is positive or negative). Figure 7a, b shows the angular profiles for the
density, temperature, and ~-velocity (w) for this solution with two choices of the free
parameters.

An interesting property of this solution is that it can be transformed with the projec-
tive ~oup into a new solution, Solution 31, in the same way as Solution 19 gave Solution
25. The spinning behavior and angular profiles are similar to Figures 6 and 7. The radial
expansion of these spinning solutions is shown in Figure 5. Figure 5a shows the radial
behavior of Solution 30, which either expands or contracts, depending on whether time is
positive or negative. Figure 5b shows the radial expansion of Solution 31, which is a point
explosion, point collapse spinning 3-D solution.

7. Analytic Solutions

A. 1-D General coordinates, k = O, 1, 2 for planar, cylindrical or spherical coordinates

o.

p(r, t) = porb,

u(r, t) = O,

T(r, t) = Tor-b.

Free parameters: b, p., To

1.

p(r, t) = porbt-b-k-l,

t.t(r,t) = ~,

T(r, t) = Tor-btb-(7–1)(~ +1).

Free parameters: b, k, po, To

2.
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b -jp(r, t) = por t 2 ?
2

u(r, t) =
2+(7–l)(k+l):’

2(7 – l)(k + 1) r2
‘(r’t) = q~+ S)[(7 – l)(k + 1) + 2]2 ~“

I%e parameters: b, k, pO

rb
P(r>t) = PO 2 _ t2)(k+l+b)/2 ‘(T

—rt
u(r, t) = 72 _ ~2,

~2r2
T(r, t) = r(b + 2)(~z

42)2’

with

Free parameters: b, k, r, PO

4.

p(r, t) =

u(r, t) =

k+3
7 = m“

] (,T2:t2)l/2)k+’-b’’[((T:t2)2)2)b-(:)*)#&k+!/:;l-br-k-l

[
R2-b/7

o
_ R2–b/~ *

i

—rt
~2_t2J

T2(y – l)r–2 (
2+ b/7

Z’(r, t) =
r(2y – b) (7Z –rtz)Vz ) [( (r2-’t2Y/J2-b’y-( :)2-b’7]>

with

Free parameters:

5.

b, k,

‘Y=

T, Ro, Ri

k+3
k+l”

.

.

—



(&– p)(l-w

[

~o+a2(7–1)log 1
l/(y–1)

p(r, t) =
~2 T07 (az _rt2)l/2 $

u(r, t) =

T(r, t) =

Free parameters: a,
.

—rt
a2 _f2’

r2

[ 1a2(~–1,log(U2_J2)l/2 “

“ (U2 _ ~2)2 p’+ Toy

k, po, TO

6.With conduction

p(r, t) = porat-k 1- -*,

u(r, t) = ~,

T(r, t) = Tor~t(l-~)(&+l)+~o

l%ee parameters: a, /3, k, po, To

7. With conduction

p(r, t) = por -(2/3 +k+7)/ci~ - ~$:!~:!~:j n ,

2 r
~(r>t) = 2+ (7 – l)(k + l);’

2a(7 – l)(k + 1) r2
‘(r’t) = I’[z + (y – l)(k + 1)]Z(2CY– 2P – k – 7)~”

Free parameters: a,

8. With conduction

f?, k, p.

p(r, t) = per–k,

4cAOa~ – 1_._._–kp:-~T~~3,u(r, t) = ~
r7

T(r, t) = Tork,
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with

cY=/3+4-;, k#o.

F!reeparameters: ~, k , pO,TO

9.With conduction

. . . . . . .—.
p(r, t)= p~r (Yl)(k+lj-2~1-k-( vl)(k+l)

7

u(r, t) = ~,

T(r, t) = TOr2-tv-lJ(k+lJt-2,

with

F!ree parameters: k, p.,

10. With conduction

CY=p+4+ ‘–l
2–(~–l)(k+l)”

To, either a or ~

p(r, t) = por*t*-k-l,

u(r, t) = ~,

T(r, t) = Tor.:;-.tT+~~~ 7

with

[

3r 1
&cX-1+(13+3)(7 -l)p;_J?+4-cl .

To =
4cAOa(y – 1) /3+3 2

Free parameters: Q, @, k, p.

11. With conduction

p(r, t) = per–k-b,

d k–b
u(r, t) = rb I’TO~,

T(r, t) = Tor2b,

21
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with
.

b=
k–1–ak

2+a–2(/?+4)’ ‘d

Free parameters: a, ~, k, pO

12. With conduction

+-+-k-l-*,p(r, t) = por”

u(r, t) = ~,

~(r, t) = Z’Or*t-2,

with

2 =k+4–cx(k+ l)-2(@+4), md

CY-J?-4 a–l

[

3 r 1
*

l–a{2+[2– (~–l)(k +l)](cx-/3-4)} .To= —
4cAoa 2(k + 1)(v – l)po

Free parameters: k, po, either a or /?

13. With conduction

p(r, t) = per-k-b,

u(r, t) = uorb,

u:b r2bT(r, t) = r(k _ b) ‘

with

o! = l-;, P=;~-%k#o, =d

[

b(5k-1)/2

Po = 16~A0a(7 – 1)] k ~o(k _ b)(Ii-1)/zr(sk-lJ@[2b+ (~ – l)(k + b)]k”

Free parameters: b, k, U.

14. With conduction
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u~ =

To =

Po =

u(r, t) J= UQ-,

T(r, t)
r’

= To~,

2/3+5
2/3-4 +(1-a) (k+l)’

(CU- 1)(2B+ 5)[9- (1 - C2)(k + 1)]

r[2f? – 4 + (1 – a)(k + 1)]2[2/?– 4+2(1 – a)] ‘
I 1 a-l

1 1–2+uo[2+(7 –l)(k+l)] 3 r _ - -

2[fi(2P-4)+2@+k+ 7]=7TQ ‘-3

Free parameters: cr, /?, k

15. With conduction

-~12L7+k+7J(T2 _p(r, t) = por u t2)–+(~+1)+*(’P+ k+7),

—rt
u(r, t) = ~ _t2’

k+3
7—‘k+l”

INee parameters: a, ~, k, T, p.

16. Shock, no conduction

Region 1:

()
~+1 k+l

p(r, i!) = po —
7-1 ‘

u(r, t) = O,

?&– 1)
T(r, t) = Zr ,

.

.
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.
Region 2:

()
kr— Uot

p(r,t)=po — 9r

u(r, t) = Uo(< o),
2’(7-,t) = o.

The shock location is

R= –;(7 – l)uot.

free parameters: k, Uo, p.

17. Shock, no conduction

Region 1:

()
~+1 k+l

p(r, t) = /20 —
?’-1

(1 – at)-k-l,

u(r, t) = –R, —

U;(7 – 1)(1 _ @-2,
T’(r, t) = z~

Region 2:

()
kUot

p(r, t) = po(l – at)-k-l r – 9r

Z’(r, t) = O.

The shock location is

R = UO(y– 1) t(l – 2at)

4a l–at

k+3
with 7 = —.

k+l

Free parameters: a, k, po, U.

B. 2-D axisymmetric flow, (r, 0) or (R, z):

Solutions 18-21 come from ?f7 with the ansatz ikf = Mo(a + bcos219), V = VOsinOcosO.
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18. /?# –2, bMO+ VO= O, aMO = O:

/l(r,e, t) = pot -’(~+’)i(~+’) (rcose)fl

U(r, 6, t) = (7: ~, ;Cos’e

2
V(7’,6, t) = —— ~sin6cos0

(V+l)t

2(7 – 1) r 2 ~s28

()‘(r’~’t) = r(7 + I)yp + 2) T

Free parameters: ~, po

19. ~ # –2, bMO+ V. = O,aMO= 1:

p(r, 8, t) = pot
–~-3+3(@+l)(7–1 )/(7+1) (rcosO)p

(

7- 1COS20u(r, (?,t)=~ l–3—7+1 )
y–lr

u(r, 8, i) = 3—- sin6cos0
V+lt

6(7 – 1)(2 – ~) r 2 ~os2@
()‘(r’@’t) = r(7 + 1)’(P + 2) T

F& parameters: /3, po

20. p = –2, aMo = O:

p(r, 6, t) = p0t2-yr-2 (sin8)l-7 (cos@)T-3

u(r, 0, t) = :Cos’tl

v(r, 6, t) = —~sinOcosO

T(r, e, t) = To (~)’ (sin0)7-1 (COS6)3-7

Free parameters: pO, TO

21. p = –2, aMo = 1:

p(r, e, t) = pot‘(l–~)r-’ (sino)27-4 (c~s@)2–27

u(r, 0, t) = ;(1 - Cos’e)

v(r, 8, t) = ~sin0c0s8

!l’(r, 0, t) = To (~)2 (sin6) 4-27 (cose)2~-2

.

.
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Free parameters: po, To.

22. H12 with theansatz A=O:

p(l?, z, t) = poexp (at+ /32– a/3t2)

UR(l?,z,t) =0,

U=(R, z, t) = –~+2at
P

T(R, z, t) = –$
Free parameters: po, a, /3,a

23. 7i14 with the ansatz ikZ = O:

p(r, 0, t) = por 2[-2@+T(a+l)]/(2 -7) (~in~)-2/(Y+l)

U(r, e,t) = o

V(r, e, t) = Vera (sin6)(l ‘7) ’(1+7)

21
2’(T, 6, t) = Vo972’ (si~e)(2-2Y)/(7+1)

2r~

FYeeparameters: pO, a, VO

24. 7i14 with the ansatz ill = Mocos6, V = Vosid:

p(r, 6, t) = por ‘z7/(zY–1) (5ino)(z-zv)/(zv_l)

u(r, 6, t) = UOCOS6

1 – ‘ySino
v(r,6, t) = uo—

7

Z’(r, (?,t) = u.
z (~ – 1)(27 – 1)sin2~

2r7s

Free parameters: pO, vo, UO

25. (Solution 19, projected)

p(r, 6, t) = po(rcosd)p(t – T)-B-3+3(B+l)(7-1)/(T+l)[l + s(t – ~)]–3(P+l)(7-l) i(y+l)

r

(

~_37–1u(r, d, t) =
)

sr

{

—COS2 e +
s [t – T + 1/(2s)]2 - 1/(4s2)} y+l “ l+s(t–r)

3(7 – l)rsinOcosO
V(?-,d, t) =

S(T + 1) {[t – T+ 1/(2s)]2 – *}

[ 1
2

6(7 – 1)(2 – ~) C0520
Z’(r, d,t) = r

r

(7+ 1)2(P + 2)
{

s [t – T + 1/(2s)]2 – 1/(4s2)} ‘
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Free parameters: pO, /3, s. This solution reduces to Solution 19 when ~ # 5/3. .

C. 2-D cylindrical solutions (R, +):
Here the groups (Uas+ cIUst + CZU.V+ C3U,P, U.v + c4Usu + C5USP)were USedto

generate the similarity variables

()
d

~ = Ratbe-c~, p = H(A) ~ t’, UR = A@,

2

u~ = V(A):, 2’=
()

G(A) ~ .

26. ~ =2, e=O:

()R2
p(R, & t) = pO ~

R
UR(R,#,t) = ~

R
U+(R,q$~)= ~o~

()

4v; +1 R 2
T(R, #, t) = ~ ~

Free parameters: pO, UO
27. ~ = 2,e=O:

()

R“
p(l?, ~, t) = poR–2 ~

UR(R,r$,t) = ~

()
Rb

U4(R, q$,t) = voR-l ~

2

()

2b

z’(R, 4, t) = ~(a +V;b– 4) R-2 ~

l?ree parameters: po, VO,a, b
28. R d-bj

()
p(R, @,t) = po ~ R~(a+b)e-@

UR(R, ~,t) = ;

–d+(2+d+c@/7g
U+(R, ~, t) =

c t
(2 - ~)(1 - ~)R2

T(R, 4, t) = r7z~7 – l)(a~ + 2) + fh – dlt2

with C2 = ~[~(b + a/7) + (d+ 2)/7)- 4[(’Y - l)(a~ + 2) + &Y - ~

27



Fkee parameters: po, a, b, d, f.
29. V = O:

()

R
P(&4, ~)=Po ~

a ~-2ec4

UR(R, ~, t) = ~

U+(R, &t) = O

()

R
Z’(R, @,t) = To ~ ‘a #(1-7)e-cd

free parameters: PO, a, TO

D. 3-D solution, spherical coordinates (r, 0, ~):

30. V = O, H = Ho +H1(sin6)a, c= O, 7= 5/3:

v(r, 0, ~,t) = O

[

r 41’To(b + 2) (sin8)~+2 apo 1
1/2

W(T, e, ~, t) = *Z
f20+ plsina6 - (PO + plsina~)(b+ 2- a) + (b+;- a)

r z 4rTo (sin0)b+2

()[
T(r, 8, ~,t) = ~

apo

PO+ p~sinad - (PO+ plsin”~)(b + 2)(b + 2- a) + (b +; - a) 1

free parameters: po, pl, To, a, b

31. (Solution 30, projected; ~ = 5/3)

P(TI ~, 4, t) = [(t – T)(1 + S(t – T))]–(*+3)’2 rb(po + p~sinae)
r Sr

u(r, 8, +, t) =
2s {[t – ‘T+ 1/(2s)]2 – 1/(4s2)} + 1 + S(t – T)

v(r, 6,4, t) = O

[

1 41’To(b + 2) (sin0)b+2 1
1/2

apo
w(r, 0, g$,t) = *Z

po + plsinad ‘(po+plsinaO)(b +2-a) +b+; -a

‘s{[t– T + 1/(;s)]2 – 1/(4s2)}

[

1 41’TO(sin6)b+2 apo
T(r, ~, d, t) = ~ P.+ plsinad –

(Po + plsinao)(b + 2)(b + 2 – a) + (b +; - a) 1

[ 1
2

x s{[i– T + 1/(;s)]2 – 1/(4s2)} “

Ree parameters: po, pl, To, a, b, s
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1. Material trajectories for a solution with u(r, t) = uOr/t.
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Figures 3-5. Figures 3a -5a show material trajectories for solutions with u(r, t) = uOr/t,
with values 11.O=1, O, and 1/2 respectively. Figures 3b – 5b show the effect of the projective
group action on these solutions.
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