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A B S T R A C T

The study of laser-created plasmas often requires the; use of a kinetic
model rather than a hydrodynamic one. This model change occurs,
for example, in the hot spot formation in an ICF experiment or
during the relaxation of colliding plasmas. When the gradients scale-
lengths or the size of a given system are not small compared to the
characteristic mean-free-path, we have to deal with non-equilibrium
situations, which can be des(:ribed  by the distribution functions of
every species in the system. We present here a numerical method
in plane or spherical 1-D geometry, for the solution of a Fokker-
Planck equation that describes the evolution of such functions in the
phase space. The size and the time scale of kinetic simulations require
the ~lse of Massively Parallel Computers (MPP). We have adopted a
message-passing strategy using Parallel Virtual Machine (PVM).
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I .  P H Y S I C A L  M O D E L

A. Hypothesis and Equations

We consider the ions of the plasma as nonequilibrium populations interacting both
all together and with the electrons. We make no approximation on the shape of the
ion distribution functions. We only take into account the far codomb interactions
which are well described by the Fokker-Planck  collision operator.

1. Approximations

The smallest time-scale we are interested in is the time ~zz of ion-ion collision. The
electron-electron collision time T . .ee j IS ~ times smaller than ~iz, where ~ = r

Sm~i > e
.

and mz being respectively the electron mass and the ion mass. We assume that on
a time rzi, the electrons are at a Maxwellian equihbrium. We replace the electronic
Fokker-Planck equation by a diffusion equation for their internal energy.

In all our applications, the Debye length Ad, is very small compared to the gradient
scale lengths and to the collision mean free path. So we assume quasi-neutrality

of the plasma.

2. Equations

The Fokker-Planck equation for any particle species, say a, reads:
Ofm afa
~ + Vi—

+ qaEi ~f.
8Xi ~~= ~Q(fa> f , )  ~

P
where E is the electric field, qa the charge of the particle a , ma its m~s,  fm its
distribution function, and Q(~a, ~P) the Fokker-Planck  collision operator.

We will consider plane or spherical geometries. The Fokker-Planck  equation will
be solved in a moving frame in order to ded correctly with a “piston” (pusher
in ICF).  The transport part of the equation is the only one to be modified by
this change of frame. We also normalize the ionic velocity with a selected one
V. (r, t). The space dependency of V. guarantees that we will be able to discretize
a steep temperature gradient well. The time dependence of O. allows us to keep
this accuracy during the simulation.

Taking into account these transformations in 1-D spherical geometry, the equation
now reads:
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where + is a grid velocity , ; its acceleration.
of ~c~ in velocity space.

The equation for the electron temperature is

We assume a cylindrical symmetry

and comes from the product of the electronic Fokker-Planck  equation with 1; – Z. 12
together with an integration in velocity space.

B. The Fokker-Planck Operator

The Fokker-Planck operator, as given by Landaul reads:

where,

and,

Rosenbluth2 has given a less symmetric form of this operator which, to date, has
been more frequently used.

and,

with,

(1.3)

(1.4)

(1.5)
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We have the following relations between the Rosenbluth’s  potentials G@ and Hp:

AGP = 2HB

AHP = –4~fP .

Equations (1.2) and (1.3) are equivalent, but for numerical reasons we shall
discretize Eq. (1.3).

C. Ion-Electron Interactions

Taking into account the ion-electron interaction, the Fokker-Planck  equation for
ions is

and for electrons,

(1.6)

(1.7)

1. Exchange Ion-Electron in the Ionic Equation”

According to our approximations, we expand the electronic distribution function
as:

fe = feO  + e~el , (1.8)

where feo is the equilibrium Maxwellian (Q(feo,  fee) s O), and jel is a perturbation
computed from ~eo.

feo reads:

where ne is the electronic density, tie the mean electronic velocity, and Te the
electronic temperature ; Z = e; where ; is an electronic velocity. So ? is of the
order of one ion velocity.

We use this form of f, in the Eq. (1.6), and keep terms up to first order in ~.
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2.

After some algebra, the Fokker-Planck  equation for ~a reads:

afa afa
~ + vi -  ~ =  ~Q(f.,fp)~ + E.i

t a
P

L
16r2e4Z~ nemi  ma  8

+ log A~.
m% 3(2nT.  ): ~ (( vi - Ua,)fa(v)  + Zu +

ma~v~(v)) ‘ ’19)

with,

where,

and,

(1.10)

Notice that with only one ionic species and the c~uasi-neutrahty  of the plasma, we
obt tin:

E.a = –——
m~;e  li(neTe)

which is the classical expression of the electric field.

Electron Equation

Using (1.8) for f., we multiply (1.7) by jme(;  – tie)2  and integrate over velocity.
After some algebra, the equation for the electronic energy reads:

(1.11)
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Here again, we only have retained first order terms in c.

The heat flux ~is evaluated using the classical Spitzer3  method, and modified to
take into account several ion species.

II. NUMERICAL MODEL

We use a splitting method between the transport part and the collisional part of
the Fokker-Planck equation to solve it numerically. The acceleration due to the
electric field is naturally included in the collision operator.
We solve successively:

then,

~= ~Q(f.,fp)+Acceleration  + Exchangeelectron-ion.
P

We then solve the diffusion equation for the electron temperature.

We use a rectangular mesh [0, Vlnaz] x [–~lmaz, +qlma.] in velocity space and
an equally spaced set of points for the dimension [0, R~~Z]. When the boundmy
~maz moves to R~az, we compute a new set of equally spaced points to discretize
[0> RAazl.

A. Transport

In plane geometry, the transport part of the equation reads:

df af
~ + VII% = o

and in spherical geometry,

(2.1)

For brevity, we have not reproduced here the terms (1.1) which come from the
change of frame. We shall see that our numerical method will naturally include
them.
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An explicit method4 gives good results in plme geometry, but shows a drastically

decreasing time step at the center of the geometry, coming from a Courant-
Friedrichs-Levy condition like:

Implicit methods come out to be very dispersive. For all these reasons, we have
adopted a particle method to solve our transport equation.5~6~7

1. Particle Method

We shall consider here only spherical geometry. Plane geometry is straightforward.
We replace the function rzvlf  with a sum of Dirac distributions:

P

WP is the quadrature
(rP(0),  ~~P(O),  ~llp(o)j.

Along a characteristic,

d has the components

J*(t)  = *.

weight in the space (r, Vl, Vll ), related to the location

lp(t)  obeys the equation,

:Jp(t) = Jp(t)divd

Jp(o) = 1.

(~11, –+~1~11, ~ ~~ V2 ) in the space (r, Vl, Vll ), and we have

Considering rP(t)vlp(t),  which is constant along a characteristic, we have

uPJP(t)r~(t)vlP  (t)~p(t)  = OP~p(t)rP(0)w~P  (t)~p(t) = ~prP(0)rp(O)~~p( O)jp(t).

We then deduce ~p(t)  from fp(0) with the particle equation,

We obtain,

T2vlf =  ~wpT;(o)vlp(o)fp(  o)6(T –  ~p(t))d(vl –  ~lp(~))d(ull –  ~llp(~)) .
P

We shall detail the choice of the quadrature points.
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Each cell of the initial mesh is divided in null x nvl x nr smaller boxes, where null
is the number of particles per cell in the direction Vll, nVL in the direction Vl, and
n~ in the direction r. A good choice is n Vll = nvL = nr = 2.

The quadrature weights are the volumes,

up = (Ar)i(AVL)k(AVll  )j

The quadrature points are chosen in order to make the total weight of a particle
~that is, wPr~(0)vlP(O)—equal  to the volume of the 1>OX associated with the
particle. This choice forces the location of the particle to be:

and,

1
Vlp(o) = – (Vlk + Vlk+l

) ( )
Vllp(o) = + ~J[lj + ~llj+l .

2 7

We now have to choose ~P(0).  A simple but poor choice would be to take ~ as
constant in a cell and to pick its initial value. A more accurate choice is to replace
~ by a linear expansion in (r3, vi, Vll),  the slopes being those of Van-Leer,4

where M is the center of the initial cell scaled as (r3, vi, Vll  ).

We take jP(0) to be the value of ~ at the center of the box associated with the
particle. This vtiue  ensures that the number of particles computed before the
transport solution will be the same as if it were computed with a value of ~
constant in a cell:

where VM is the volume of the initial cell.

The particles are then moved along the characteristics, and j is computed at the
end of the time step on each final cell with the relation:

.
~M

where Vp is some control

~pwp.;(o).lp(o) fp(o)v~~  ,——
VM

volume associated to the particle p.

(2.2)
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This volume is defined by our choice of a shape (cutoff function) for the par-
ticles, which can be either a “step” function or a “hat” function. The location
of the shape function is the location of the particle at the end of the time
step, (rz+~, vl~+~, vllj+~ ) and its width is the cartesian  product (TZ, ra+l) x

(Vlk,  ~Lk+l)  x (~llj, ~llj+l)

After projection on the final mesh, the particles are lost and replaced by ~, which
is the initial condition for collisions.

The above projc{.tion  only keeps the particle number constant. The advantages
of the method are to get rid of the CFL condition, to allow any boundary
condition, and to account naturally, when we project the particles on the new
grid, for the cumbersome terms coming from the change of frme.  Besides, the
particles are moved independently, which makes this method a good candidate for
parallelization.

B. Collisions

We discretize Rosenbluth’s  form of the Fokker-Planck  collision operator. This
choice benefits from the results of a long practice in Fokker-Planck  codes. Un-
fortunately, it has the inconvenience of not fulfilling some conservation properties.

1. Discretization  of the Fokker-Planck Operator

We have chosen a 1-D plane or spherical geometry. The distribution functions are
function oft, In, V1 and Vll only (not ~).

We see that Vl, Vll and @ are the cylindrical coordinates of the vector V in a
frame whose mis is perpendicular to the infiite  plan in plane geometry, and the
segment OM where O is the center of the sphere and M the space point in spherical
geometry.

In this frame, the collision operator reads,

(2.3)

with V1 = vl and V2 = Vll, and Rosenbluth’s  potentials,

and

., “ ., —-  ., -

10



2.

*

The azimuth around the axis of symmetry of the vector # is ~’.

The collision operator conserves the density n, the total momentum, and the total
energy.

For two species, its equilibrium solutions are 2 Maxwellians  at the same tempera-
ture and the same mean velocity:

–ma(v~ + (Vll – UII)2)
‘“= (4”)$ ‘Xp ( 2T )

and

Rosenbluth’s  Potentials

The domain [0, Vlmaz] x [–qlmaz, +qlmar] is discretized  with rectangles. We need

to know the quantities ~ and ~~’,~~, for v; = Vll, Vj = VII and Vj = VL at thez : .]
center of the segments Avl, 3 coefficients, and the same quantities for vi = Vl,
Vj = Vll and Vj = V1 at the center of the segments Avll, 3 more coefficients.

To compute Rosenbluth’s  potentials, we solve two Poisson equations,

AHP = –4K~P

AGP = 2HP

We use a finite element method, PI, on a triangular mesh whose nodes are at
the middle of the faces of the initial rectangular mesh. We have inhomogeneous
Dirichlet  limit conditions at the domain boundaries.

To compute these boundary conditions, we take advantage of the fact that

(.f~Tl~ – ~~1~~’)  and (fo2T1-~#’)  =e complete  elliptical integrals  of the first
and second kind* which depend only on (vl, VII, Vi’, VII’).

These integrals are computed once for (vl, Vll) at the domain boundaries and for
(V i’, Vll’) at the center of the inner triangles. HP and G@, at the boundaries, are
then computed with a simple quadrature using these coefficients, the area of the
triangles and the value of ~P at the center of the triangles. The coefficients ~

~2G@ I
and avi awj are then deduced by means of bicubic  spline interpolation.

M. Abramowitz,  I. A. Stegun,  Handbook of Math Functions, p 589.
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3. Finite Volumes

With the form (1.3) of the collision operator, we assume that ~a is constant within
an elementary cell ~ of the velocity domain. After a product by a test function

@ = 1 and an integration by parts, we have:

(2.6)

The boundary r is the union of the four faces of the rectangle 0. We assume the
flux F to be constant on each of the faces and compute it at their centers. The

~2Gcoefficients ~Ui ~~j and ~ (2.3) are also assumed t. be known at the center  of
the faces.

Let O be the center of a face, we compute at a time t* (see below):

n+l

F~(o)  = * (o) + a*(o) j:+l(o) ,

with,

and,

The discretization  of Fi(0) is the fo~owing:

~(o)  =  ~ f(B) - f ( A )
a

A s
) + u*(0) ((l - 6)f(A)  + 6f(B)) .

A and B are the cross points of the segment of slope ~ going through O, with
one of the 6 horizontal or vertical segments of the polygon whose edges are the
centers of the 6 cells whose intersection with that segment is not empty ; f(A) and
~(~) me linearly interpolated from the values of f at the edges of these segments;
6 is defined as,

6= 1 + 1

a*(0)As 1 –  ~a*(0)Ag  .

This ensures that the stationary solution of the continuous equation cancels the
discretized flux.8
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The number of points, involved in the calculation of fa in one cell, is variable in our
scheme, with a maximum of 9 points. If the coefficient of the cross derivatives is

null, that is ~~2,~~, = O for i # j, our scheme reduces to the solution of a Laplacianc .3
with a 5 point dlscretization.

C. Time Discretization

We use an implicit

1

scheme:

The time centering of the coefficients is either explicit: t* = in, centered: t* =
t~+ljz  or fully implicit: t* = tn+I.

With a time step of the order of a few ~zz, the explicit centering gives good results.

D. Electrons

We have to solve the electron Eq. (1.11), together with the ion Eqs.  (1.9) (one for
each ion a).

With the help of our splitting method, we have already solved the transport part
and the ion-ion collisions, on the moving grid between in et tn+l. That is,

Coming from the above computation, fa is now our initial condition. We shall
consider now ion-electron collisions and the acceleration due to the electric field,
on the new grid at tn+l.

That is, for each species we solve:

where,

and in axisymmetry,
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We solve this equation using the same method as with ion-ion collisions, T. is
the electronic temperature at the beginning of the time step. For every species
we compute the total energy variation during ion-electron collisions, which after
a summation over all the species, gives an approximation to the quantity (see
Eq. 1.11):

The source term S of the electronic equation is the opposite sign of this quantity.
In this way, we ensure total energy conservation.

So we solve,

which, in 1-D plane or spherical geometry reads,

83 18
( (

igeo 3—— – ne Ue Te +~(~neTe)  + ~zgeO ~r r  2 neueTe + q)) = S ,

with igeo  = O or 2 in plane or spherical geometry respectively. We solve this
equation on the moving grid. To accomplish this, we integrate the above equation
between t~ and tn+l on a cell of the moving grid (ri, ri+l). We get:

/

tn+l

Wi++ (~n+l) –  wi+*(tn) + dt(ri+l  (t) ‘geoFi+~(t) –  ri(t)’geoFi(i))  =
. tn

tn+l

1. I
ri+l (t)

dt sri9eodr  ,

Vi (t)
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--

with,

/

‘i+l (t) 3
Wi+*(t)  = –ne Ter ‘geodr ,

. ri(t)  2

and,

where + is the grid velocity.

We assume T, to be constant within a cell, the flux is
of time step constraint. The complete scheme reads,

computed at tn+l to get rid

vn =

(– At ri+l(tn+l) ‘geo~i+l(~n+l) –  ~i(~n+l) ‘geoFi(tn+l)) +  SAiVn+l ,

with,

I

‘ i t  I ( t )

v(i) = r ige”dr  ,
ri (t)

and,

~i(~n+l) = (~ni(ui – +i)~z )‘+1 + niuiTin+l  + qi .

ui, ni are computed with an interpolation of the centered quantities ; the heat flux
qi (q = –~~(r)~T35)  is computed using:

qi  =  –Condz x  (T35 –  ~35 )t++ i—$ ?

with,
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A linearization is made with respect to the temperature, which means we have to
solve a linear system at each Newton iteration with the temperature variation as
unknown.

To obtain the boundmy  conditions, we preset the flux at both edges of the domain.
We always set the flux of conduction at R~i~ and Rmax  to zero. With a piston at
Rmaz ~ moving with the velocity v~~~d we choose,

FRma=(t) = nivpi.dTRmac .

TR~az is chosen to be the temperature of the cell located at Rmax  if we want to
have a reflective condition equivalent to the ion ones. We can also impose TR~az
to force a surface temperature. In any case, the term involving Ui – ii is never
retained, the grid velocity being the piston velocity.
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E. Numerical Test

~fre present  here a test in order to validate the particle solution of our equation.
This testg is concerned with the simulation of a strong shock, which is difficult
to simulate with conventional hydro codes. In order to save computing time, we
consider that the plasma is at the Maxwellian equilibrium, and we replace the
Fokker-Planck collision term by the BGK  onel”  with a small relaxation time
compared to the time step of the simulation (see Fig. 1).

The numerical conditions are:

Number of space cells
Number of cells in Vll
Number of cells in V1
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Time step
CPU time
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Fig. 1
Density and Temperature profiles at t=O.6

( o Hydro code, — Kinetic code, ----- Theoretical curve )
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The hydro code, based on conventional Richtmyer scheme with standard artificial
pseudo viscosity, shows a large drop in the density at the center, resdting  in an
unphysical jump of the temperature. This jump leads to wrong estimates of the
hot spot formation in ICF simulations. The kinetic code gives better results.

We also give the pressure and velocity profiles computed with our kinetic code and
compare them to the theoretical profiles (see Fig. 2).
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111. PARALLELIZATION

Because we can use a CRAY T3D,  at the Los Alamos National Laboratory as
well as at the CEA /CEL-V in France, we chose to make our development on the
CRAY T3D at the Advanced Computing Laboratory, LANL. However, we want
to be able to run our code on a network of workstations as well as on T3D. For
this reason we rejected CRAFT (Cray Fortran  programming model) and SHMEM
(explicit shared memory programing model), and we adopted a message-passing
model of parallelization. The free software, Parallel Virtual Machine (PVM),  being
available on T3D as well as on the network, will be our Message-Passing library.

A. Programming Models

We have adopted a scheme “master-slaves,” where a master spawns slaves. On
a network of workstations, the master is a specific workstation, chosen from the
accessible ones. On the Cray-T3D,  the master may be run on the front-end of
the T3D,  and we speak of this as the “distributed scheme” ; or the master may

be a particular PE* on T3D,  we then speak of this as the “standalone scheme”
or “SPX4D.  ” The slaves are always on the T3D. This organization allows us to
specialize the master in the 1/0 tasks which are sequential. This method is strictly
accurate for the distributed mode but less accurate in our standalone mode, where
the master (PE # O) is still a slave.

We show in Fig. 3 the organization of our distributed scheme, where the master
program is different from the slave programs, which are all identical. To illustrate
our standalone scheme, just remove the “master” part of the Fig. 3. Only the
master-slaves communications are shown on this diagram.

We have implemented the two programming models presented above. The com-
munication front-end - PE, and PE - PE are very different on CRAY  T3D. We
expect the standdone  scheme to be the more powerful one.11 We shall see that in
our application, which is intended to be as close as possible to a production code,
the conclusion of a comparison of the two schemes can be very qualified.

The communications between the front-end and the MPP are the slowest. We
minimize the number of those communications, The master spawns nproc slaves
where nproc  is the number of PE (2m on CRAY). Each slave starts its task with
an allocation of memory. When all the PEs have completed this allocation, the PE
# O sends a message “allocation ok” to the master, which enters an infinite loop
and does an 1/0 task each time it receives the order from PE # O. The graphics
are then done by the frontend. We shall now detail the work of the slaves.

* Processing Element. We shall call “PE”  either a T3D elementary processor or a
slave process on workstation.
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B. The Slaves

As we already indicated, our splitting method allows several levels of paralleliza-
tion.

● Tr~sport  phme : parallelization with respect to the particles.
. Collision phase : parallelization with respect to the space cells.

A third level of parallelization could be considered when solving the electron-ion
interaction. Since this will be done later, we shall not speak of it here.

In each phase, the parallelization is connected to data distribution, which is
accomplished by segmenting the data in one or in several directions of phase
space. If we divide the spatial mesh into nproc segments of n cells each, we can do
nproc  computations in palallel. However, it is necessary to gather the information
sometime, that is, to do communications between nproc PEs. The efficiency of
the algorithm depends on a good balance between the number of communications
and the data segment ation.

We have implemented two algorithms hereafter called Alg 1 and Alg 2. The first
one, Alg 1, limits the number of communications to the detriment of the parallel
level. The second one, AJg 2, optimizes the data distribution, but increases the
number of communications.

Figure 4 shows the unavoidable communications between slaves. The detail of
these communications depends on the choice of the algorithm (Alg 1, Alg 2). The
communications coming from an 1/0 task are infrequent. We shall only detail the
parallel zones and the resdting communications.

1. Transport Phase

In this phase is computed the variation of the distribution function j(r, vll, v~),
for a given species due to transport alone (see Eq. 2.1).

This phase includes 3 steps:

(z) Particle creation, which replaces the continuous function ~ with a popula-
tion of particles, each of them having a weight, a position r, a velocity vII
and a velocity V1.

(ii) The trajectory, which is the movement of the particles along the character-
istics. During this step, the particles retain their weight, but they change
their position and velocities.

(iii) The projection by means of the formula (2.2), rebuilds ~ in every point of
phase space.

Let npart  be the number of particles with which we have replaced ~. Wcdl that
we typically have,

npart = (nptr  x N,)  x (nptj  x NVII ) x (nptk x NV1 ) ,
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Fig. 4
@ Necessary communications between slaves,

and parallel zones (gray areas).

where nptr , nptj and nptk are the numbers of particles in each direction r, Vll
and V1.

Step (ii) immediately suggests that we distribute these npart particles between
the PEs, and simultaneously move these subsets of particles. This distribution is
what is done in both algorithms, A/g 1 and Alg 2. So at the step (i) we replace ~
by pieces on each PE.

We show in Fig. 5 how the particle creation is partitioned on each PE. In the case
shown, we have 4 PEs in a “geometry” [2; 2; 1] which means:

[number of PEs in the direction r ; number of PEs in the direction VII ;
number of PEs in the direction V1 ]

For brevity, we have not represented the direction VL on Fig. 5. We can imagine
a PE as an “elementary cube. ” The union of this set of “elementary cubes” is the
whole phase space.
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Fig. 5
Piecewise representation of ~ on PEs.

with subsets of particles.

Figure 5 must be read:

Particles on PE # O, have positions between O et R~~~/2,  velocity  ~11
between O et vll~~c, velocity V1 between (in this case) O et vl~~z.
Particles on PE # 1, have positions between R~az/2 md  R~~~, velocity  vi!
between O et vll~a=, velocity vl between O et vl~~=.
Particles on PE # 2, have positions between O et R~~~/2, velocity VII
between –vll~~c et 0, velocity V1 between O et vl~cn.
. . .

For any geometry INl; N2; N3] (the choice is Up to the user) where N1 x N2 x N3 =

nproc,  the algorithm is:
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// distribution of the PEs depending on the geometry

// geOrnetrYIOl=Nl,  geOrnetry[lJ=N~,  geometry[zj=N~
// let pe~um  be the number of the executing PE
int geometry[3], PeCube~3j  ;

int *ipe , *jpe  , *~pe;
int npartr  , npartj , npartk ;

npartr = ndray X nptr/geometry[O] ;

npartj = nvpar X nptj/geometry[l] ;

npartk = nvperp X nptkigeometry[z] ;

ipe = new int[nproc]  ;

jpe = new int[nproc]  ;

kpe = new int[nproc]  ;

for (2 = O ; i < geometry~Oj ; i + +)

for (j = O ; j < geometry[l)  ; j + +)
for (k = O ; k < geometryfzj  ; k + +){

ipe[i + j X geometryfOJ  + k X geometry~Oj  X geometryflj  = Z ;

jpe[i + j x geometryfoj  + k x geometry[o]  x geometry[lj  = j ;
kpe[z + j x geometry[o] + k x geometry[o] x geometry[~] = k ;

}
PeCube[O] = ipe[PeNurn] ; PeCube[l] = jpe[PeNurn] ; PeCube[2] = kpe[PeNum] ;

. . .

Code # 1: Distribution of the phase space between the PEs,

On each PE of number PeNum is defined an array PeCube[3] whose values indicate
the “location” of that PE in the discretized phase space, the numbering being that
of a 3D Fortran  uray. Notice, except PE # 0, our numbering has nothing to do
with the CRAY partition, it is only relevant to our code.

We then give a particle a position and velocities Vll and V1. The algorithm is the
following:
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c Initialization of the particles parameters
c We use the array PeCube

i=O ! particles number
irl = 1 t (PeCube(0) X npartr)

ir2 = (1 + PeCube(0)) X  npartr

ijl = 1 + (PeCube(l) X  npartj)

ij2 = (1 + PeCube(l)) X  npartj

ikl = 1 + (PeCube(2) X  npartk)

ik2 = (1 + PeCube(2))  X npartk
do ipr = irl, ir2

. computes the positions r c [r(ir~),  r(ir2)]

do ipk = ikl , ik2

. computes v~ E [v~(ikl), v~(ik2)]

do ipj = ijl , iJ2

. computes vll E IUll(ijl),  Vll(ij2)]

. gives i the position r, velocity vI]

. and velocity VL above computed,

. and the weight ~ ~(r, VII, u~)
enddo

enddo

enddo

. . .

Code # 2: Pmticles definition on each PE.

Step (ii) then follows simultaneously on each PE. Only a PE that knows the
boundary of the discretized domain has to ded with boundary conditions.

During this step, particles may “change of PE.” More precisely, they may get new
positions or new velocities which have been defined on a neighboring PE ( in our
numbering). We limit the time step in order not to allow a particle to jump a PE
in one time step. In other words, a particle may not cross too many cells in one
time step, for two reasons:

- We want to limit the number of overlapping cells (see later) between
neighboring PEs.

- We consider the particles belonging to the cells close to the boundary the
only ones to be searched for “reflection” on a boundary.
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During the projection of the particles on the mesh (iii), we rebuild f (see Eq. 2.2)
piecewise, each piece coming from the part of the phase space covered by the
particles on one PE. To get the complete ~, we sum all these contributions,
that is we do communications between all of the PEs. It is with respect to these
communications and to the part of the phase space known by each PE, that we
distinguish the two algorithms, Alg 1 and Alg 2.

A/g 1 and Construction of ~

In this algorithm, we want to limit the number of communications between PEs.
To achieve this, we define in the sequential steps of the initialization (see Fig. 4)
~ completely on each PE. In other words, a PE knows the whole mesh. The PEs
compute the same thing, but this is not a loss of efficiency, the construction of ~
being an unavoidable synchronization barrier. The main drawback of this scheme,
is its memory consumption. With a large mesh, or a large number of different
species, we shall have to use Alg 2.

As each PE knows the whole mesh, the rebuilding of ~ is greatly simplified. There
is no real transfer of pmticles from one PE to another. We only have to sum on
PE # O all the contributions to ~ from every PE, and then send the result to the
whole partition.

To have communication with all the PEs together with the maximum effectiveness,
we have used an algorithm, whose number of synchronization bmriers scales as
log(nproc).  This algorithm can be sketched as follows for nproc = 16,

15
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Fig. 6

Communication tree between all the PEs.
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The code corresponding to

// defines the
// and of the
int father  ;

Fig. 6 is very simple. Each PE runs,

“father” that receives the information
“child” that sends the information

int chiJdl = 2 X  PeNum + 1 ;
int chiJd2 = 2 X  PeNum + 2 ;

if ( PeNum YO 2 ) {
father = ( PeNum - 1) / 2 ;

} else {

father = ( PeNum - 2) / 2 ;

}

if ( childl < nproc ) {
. wait here to receive the message from childl

then add ~(pe~urn) and ~(childl)

}

if ( child2 < nproc ) {

. wait here to receive the message from chiJd2
then add ~(PeNum)  and j(child2)

}

if ( PeNum  != O ) {
send local result to father

} e l s e {

. here local result is global result
send to all PEs the global result

}
if ( PeNum != O) {

. wait here to receive the global result
sended  by the PE with PeNum = O

}.

Code # 3 : Communications following Fig. 6.

Here the messages are received by calling a blocking routine which is a natural
synchronization barrier. The above algorithm ensures that we always have the
maximum number of PEs working at the same time. At the last test reached, the
new ~ is known by every PE, and we can go to the collision part of our equation.

Alg 1 will turn out to be unusable when the phase space is too large. We may dso
want an optimum splitting of the data on a restricted number of PEs. This is the
aim of Alg 2.
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3. A/g 2 and Construction ofj

In this algorithm, as in Alg 1, the npart particles me distributed between the
nproc  PEs, but we only define f piecewise  on each PE. Given a geometry
INl; Nz; N3],  we can divide each direction of phase space into the number of PEs

in that direction. The r axis is discretized in N1 segments of N./Nl cells each, the
axis Vll in N2 segments of NV,,  /N2 cells each , etc , . .

Although it is theoretically possible to cut out the axis Vll and Vl, this would
greatly complicate the computation of the moments of ~, for example, the density:

We shall cut out only the axis r in a first step. In other words, the definition of j
on one PE is,

where
nl = 1 t (PeCube(0) x N,/Nl  ) ,

and,
nz = (1 + PeCube(0))  x Nr/N1.

The array PeCube  is defined same way as in Alg I(see  Code # 1).

We modify the diagram of Fig. 5 in order to take into account the partitioning of
the axis r for nproc  = 8.

h / 2 R

-*
r

““v//
Fig. 7

Portion of the r axis known by each PE
in case of a geometry [2; 2; 2].
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In the case of Fig. 7, ~ is defined from rmin (here O), to rmax/2  on PEs # O, 2,
4 and 6. On PEs # 1, 3, 5, and 7, ~ is defined from rmax/2  to rmax.  As we have
not partioned  axes Vll and VL, the space [vll,  Vl] is known by every PE. However,
as in Alg  1 , the creation of the particles is still made on ‘tenementary cubes” of
phase space. The numbering is the same for the two algorithms AZg 1 and AZg 2
(on Fig. 7, the dashed lines do not represent a division of the phase space; they
only show the “elementary cubes’) as defined in 3.2.1).

In order to rebuild j after projection (iii), we must sum the contributions of the
PEs which cover the same spatial segment ( same values of nl, n2 above). In
the example of Fig. 7, the PEs O, 2, 4 and 6 contribute to the computation of j
between rmzn and rmax/2,  the PEs 1, 3, 5 and 7 contribute to the computation
of ~ between rmax /2 and rmax. The same tree is used for these communicant ions
(see Fig. 6) and the same code (see code # 3).

On the CRAY T3D with 256 PEs, the maximum number of PEs which commu-
nicate all together is 32, for a geometry [8; 8; 4]. There are 8 groups of PEs doing
these communications in parallel ; this number of groups comes from the number of
segments (Nl ) in the r direction. Although the algorithms used for these commu-
nications are the same as in Alg 1, here the performance is better, the maximum
number of PEs we have to make communicate being smaller. However, prior to
these communications, other ones have to be done.

Here, during the trajectory, because they may reach positions (and velocity if we
had partitioned the velocity axes) which do not belong to the definition of ~ on a
given PE, particles may effectively change PE. To take into account these flights of
particles, the cells of neighboring PEs overlap in the direction of the partitioning.
These are the gray zone on Fig. 7. The number of overlapping cells depends on
the time step of our simulation.

In the example illustrated in Fig. 7, PEs O and 1 are neighbors, as are PEs 2
and 3, PEs 4 and 5, and PEs 6 and 7. The communications are to be done both
ways. For instance, PE # O “gives” to PE # 1 those of its particles which have
reached a position r > rmax/2, and the PE # 1 “gives” to the PE # O those of
its particles which have reached a position r < rmax/2.  Practically, we do not
exchange particles, but the values of ~ rebuild after projection in the overlapping
cells.

The choice of a geometry INl; N2; N~] is free, providing NI x N2 x N3 = nproc.
N1, N2, N3 must be even or equal to one. This free choice allows the adjustment
of the partitioning in a given direction.
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For any given geometry, the definition of neighboring PEs, and the communications
between them, are the following:

// communications between tight and left neighbors
// voisin[O] is the left neighbor
// voisin[l]  is the right neighbor

int voisjnfOj  = (PeCube(0)  ! = O) ? (PeNum – 1) : –1 ;

int vojsin[l]  = (PeCube(0)  < geometry[Oj — 1 ) ? (PeNum + 1) : nproc ;

if  (voisjn[O]  >  – l ) {

}-

send to vojsin(o~  the portion of
~ which belongs to it
wait here to receive from voisin[o] the portion of
~ which belongs to me
then add to ~(~eNum)  the contribution
Df voisin[Ol

if (voisin[l]  < nproc){

- send to voisin[~j the portion of
- ~ which belongs to it
- wait here to receive from voisinf~)  the portion of
- ~ which belongs to me
- then add to ~(pe~um) the contribution
- Of voisin[l~

}
. . .
Code # 4: Communications between overlapping cells.

Boundary conditions, when a temperature, a density, and a mean velocity are to be
specified, are taken into account by means of ghost cells defined at the boundaries
of the discretized phase space. They do not give rise to extra communication.

4. Collision Phase

We solve here the collision operator (BGK or FKPL).  This acts only on the velocity
space. Therefore it can be solved simultaneously for each spatial cell.
The information we have on ~ after the transport phase, depends on the algorithm,
Alg 1 or Alg 2, which has been chosen ;

● ~ is completely known on each PE (AZg 1).

We may either solve the collisions for all the cells on every PE or distribute the
spatial cells between the PEs. In the first case the PEs, also, compute the same
thing. We have a loss of efficiency, but no more communications are needed to do
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5.

the rest of the computation (ion-electron interactions). This choice may be justified
by consistency with Alg 1.

If we choose to distribute the spatial cells between the PEs, we certainly win in
efficiency (cpu  time), with the maximum efficiency being reached when the number
of spatial cells (ndray) is smaller than the number of PEs (nproc).  Then ndray
PEs solve simultaneously the collision operator on 1 spatial cell. However, we
will have to gather the information and have communications on the minimum of
(ndray,  nproc)  PEs. The communication algorithm is in this case strictly identical
to the one used to rebuild j after transport in Alg 1 (see Fig. 6 and Code # 3).

● ~ is piecewise known on each PE (Alg 2).

In this case, we can solve the collision operator on the spatial segment known by
each PE. This does not need any additional communication, but the efficiency
reached is not maximum. There are only N1 PEs, corresponding to the N1
spatial segments, that share the ndray spatial cells. However, for each of those
NI segments, we can also distribute the spatial cells between the Nz x N~ PEs
that share the same spatial zone (see Fig. 7). This action leads to a few more
communications, but a maximum efficiency may be reached.

Notice: with both Alg 1 and Alg 2, when we distribute the spatial cells between
the PEs for the collision operator, we refer to this as: “collision optimization.”

Diagnostics and 1/0

In the distributed scheme, an 1/0 task sends a message to the master on the
frontend. In an SPMD (standalone) scheme, this is the PE # O which does the 1/0
request with apparently no additional communication. However, we shall see in the
next section that the execution of an 1/0 task on a T3D PE requires the frontend.
Besides, the algorithm Alg 2 indirectly leads to a few more communications. When
we want to compute an energy balance, a particle density, etc ... , the computation
of the moments of ~ will give values only for the cells known by each PE. We shall
have to gather that scattered information onto PE # O before any global energy
balance, any write, or any draw. Those communications are infrequent, but they
are part of the performance decrease.

I V .  P E R F O R M A N C E  M E A S U R E M E N T S

We shall make our measurements on the CRAY  T3D. The interesting time is the
elapsed time, which is the time a job takes to return to the user. For any “real”
user this time is the only relevant one. In the elapsed time, we shall include the cpu
time and the communication time between the PEs on MPP. The communication
time between the front-end and the MPP depends on the load of the front-end,
which is not in our control. Most of our routines are written in C++, so we cannot
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use “MPP Apprentice performance tool”* cd which does not yet support C++.
Our measurements will be done using the well known “call second.” We have fewer
details, but sti~ enough accuracy.

Before entering into details of measurements, we may initially ask the question:
did we gain in doing the parallelization of our code? We may partially answer
that question by doing two runs, with ~ and @ PEs, on the front-end (YMP)
of the T3D.  Here only the cpu time is relevant and will tell if our code parallelizes
or not.

Computation ~arameters  . Ala 1 with collisions o~timization

Number of spatial cells : 40
Number of cells in VII : 48
Number of cells in vl : 24
Number of particles : 368640
Number of iterations :  40
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We show in Fig. 8 the cpu times for the collisions and the three steps of the
transport (Fig. 9 is a zoom of Fig. 8 for the three bottom curves).

When going from one process to two processes, apart from the particle creation,
the cpu times have been divided by a factor close to two, which is very good. To
explain the result of the particles creation, we must keep in mind that most of this
step is concerned with the computation of the Var-Leer)s slopes, which in Alg 1
are computed on the whole mesh no matter what the number of PEs is. In the

* CrayTools  1.2 for MPP.
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two other steps of the transport, the computation is made on the particles in a
subset whose number is divided by a factor of two when the number of PEs is
multiplied by a factor of two. In the collision step, the PEs share the spatial mesh.
We conclude that our scheme parallelizes  very well.

A. SPMD Scheme

In this scheme, there is no explicit communication YMP-T3D. These communi-
cations are the least efficient, so we can expect the best performances from this
scheme compared to the distributed one (see ). Our tests lead to opposite con-
clusions. In our application, we keep the 1/0 t~ks, done here by the PE # O.
Unfortunately, to complete an 1/0 request on T3D an external agent (running on
the YMP front-end) is involved, and we cannot avoid the load of the front-end.
The SPMD scheme appears to be very sensitive to the load of the YMP. The
perform~ce  measurements turn out to be very difficult to analyse.

Moreover, PVM is not the same on T3D and on YMP. Without a “PVM daemon”
(case of the SPMD scheme), the control of the buffers seems different, and we
faced a lot of “PVM out of resources.)’ In other words, some computations were
impossible with this scheme. We shall not present measurements with this scheme.

B. Distributed Scheme

Every test will be done with the following parameters:

Number of spatial cells: 128
Number of cells in Vll : 48
Number of cells in V1 : 24
Number of particles : 1179648
Number of iterations : 1

We show in Fig. 10 the total elapsed time for the two algorithms Alg 1 and
Alg 2 in every option. The maximum speed-up is 13.5. It is obtained with Alg 2,
optimization of the colbsions and with 256 PEs.
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As we have already mentioned, a message-passing method must find a good balance
between the number of communications and the data distribution. The growth of
the elapsed time (Fig. 10 Alg 1) for nproc >32, is due to the increasing number
of communications, as can be seen on the Figs. 11 and 12.
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The cpu times are continuously decreasing with the number of PEs (Fig. 12).
However the growth of the communication time (Fig. 11) is enough to reverse
the curves of elapsed time (Fig. 10). The location of this minimum depends on
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the efficiency of the sofware  used (here PVM) as well as on the computer. This
minimum may certainly be shifted with the use of shmem-put or shmem-get on
CRAY T3D.

We compare now the performances of the algorithms Alg 1 and Alg 2.

WUtinwbrtrmwpfl WUlimbrrnl~rnm
1 1 1 1 i 1 1 1 4 11 1 I I 1 I 1 1 I

Fig. 13 Fig. 14

Figure 13 details the three steps of the transport. The decreasing (equal for Alg 1
and Alg 2), of the trajectory time and the projection time are very good. We find
again the dependence of the particle creation on the Van-Leer slopes computation.
Alg 2 shows the best results; the spatial mesh is shared between the N1 spatial
segments related to the geometry IN l; N2; N3].  The change in the slope of the
particle creation curve is due to a change of this geometry ; N1 = 2 to 8 processors,
N1 = 4 for 16 processors.

We find also the best performances with A/g 2 (see Fig. 14), for the resolution
of the collisions. The time for collision does not depend on the number of PEs
in Alg 1 without optimization. As we expect, the best results are obtained with
optimization of the collisions, whatever the algorithm. The maximun efficiency is
reached when the number of PEs is equal to or greater than the number of spatial
cells.
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We show in Fig. 15 the efficiency of the algorithm of communication between every
processor as related to the tree of Fig. 6.-
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Fig. 15
Effectiveness of the communications

between every PEs.

The mean slope for nproc  >2 is close to log 2 as we expected.

C. Scalability

We want to study here the variation of the elapsed time versus the size of the
problem. More precisely, does the variation of elapsed time stay small when we
double both the size of the problem and the number of processors, keeping constant
the ratio of cells versus PEs ?

We do our tests with Alg 2 and the optimization of the collisions, the number of
spatial cells being successively: 32, 64, 128, 256. In the same time the number of
processors is 8, 16, 32, 64, everything else being kept constant.
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This makes three tests at very different scales. A 32 space cells test produces a
small mesh ; a 256 space cells test is too big to run on one YMP.

Going (see Fig. 16) from 8PEs/32  cells to 16 PEs/64 cells increases the elapsed
time by a factor of 1.10. Going from 16 PEs/64 cells to 32 PEs/128  cells increases
the elapsed time by a factor of 1.19, and going from 32 PEs/128  cells to 64PEs/256
cells, increases the elapsed time by a factor of 1.03. We see a rather small variation
in the elapsed times, and a good stability over a large scale of problem. In the case
of 64 PEs and 256 cells, the CPU time is of the order of 1 second per PE and
the elapsed time of 1.6 ; this makes up the speed to the order of 40, allowing us
to conclude that a good scalability is obtained with respect to a non-fied size
problem. Besides, as shown in the two following figures, the variation is mainly
due to the communications time,
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V .  C O N C L U S I O N

We have designed a numerical algorithm to solve a multi-species ion Fokker-Planck
equation. This algorithm gives, in spherical geometry, much better results than
conventional hydro codes. However, the memory size and the cp time associated
with kinetics simulation need the use of MPP  compl~ters.  We have shown in this
work how to parallelize  our algorithm. Although still in progress, the preliminary
results are very promising, and encourage the porting of our code to a more
powerful computer with faster data transfer than the CRAY-T3D.
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