SUBMITTED TO	PROCEEDINGS OF THE INTERNATIONAL SUMMER SCHOOL ON THE
	STRUCTURE OF HADRONS AND HADRONIC MATTER, DRONTEN
	THE NETHERLANDS, AUGUST 4-17, 1990, GIVEN AS AN

DISClAIMER

[^0]

MONTE CARLO METHODS and APPLICATIONS IN NUCLEAR PHYSICS

J. Carlsnn
T5 Mail Stop B 283
Los Alanos . Vational Lab
Los Alamos. N.M 37.54.5

Abstract

Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed. including discussions of the three-nucleon-interaction. charge and magnetic form factors. the coulomb sum rule, and studies of low-energy radiative transitions.

1. Introduction

In these lectures I will introduce Monte Carlo methods as applied to few- and many-body quantum systems, and in particular to few-body problems in unclear physics. While I will not be able to go into some of the technical details. I hope to provide you with a basic understanding of the principles involved. I also hope to convince you that there are many intriguing questions that ran be addressed by studying light nuclei, and that Monte (arlo methods provide a useful way of attarking these few-body problems.

I will discuss Variational ${ }^{1-4}$ (V.MC) and (ireen's function Monte Carlo ${ }^{5-7}$ (CF.MC). \checkmark MC anc (il:MC are fairly general; they are often used in condensed matter ${ }^{-11}$ and atomic physus ${ }^{12.1: 3}$ in addition to their applications in nuclear physics. [hese methods are also closeiy related to the finite temperature methods used in both conclensed matior and lattice QCD. Nuclear physics applications include hypernuclei and war. wus ronstituent quark models in addition to light murlei. Attempts are also beink mate to apply generalizations of these muthods to heavier murlei. but I will restrict myself tof few-body problems in these lectures.

I will also cover the structure of the gromud viates of light nuclei. including iwobody correlations, the importance of the tensor force. and the affect of threr-anclenn interactions. I will present calculations of the (omblonis) sman. our of the loest experi monta ${ }^{14}{ }^{14}$ indications of strong correlations within the nuclens. In addition. I will burla upon models of the currentes. inchuling wo boilv charge and current operators.
and their importance in describing electromagnetic forrii factors. Finally, I will look at Monte Carlo methods for calculating low-energy scattering; and in particular at recent calculations of neutron radiative capture on ${ }^{3} \mathrm{He}$.

Firs. however. I will present the basic Monte Carlo algorithms. Th.e most importaiat principles will be described along with the simplest practical algorithms. These tools should allow you to exploir at least simple systems on your own. One should always keep in mind, though, that for more complicated problems. better Monte Carlo methods (improved sampling techniques, etc.) can be vital. making the difference between a robust solution with good statistical accuracy and a result with statistical errors so large as to render the calculation virtually meaningless. I hope that the references will be sufficient in number and detail to allow anyone interested to easily go beyond the relatively crude algorithms given here.

2. Nuclear Hamiltonian

Before studying the Monte Carlo algorithms, I would like to spend a little time discussing the nuclear Hamiltonian and the difficulties involved in determining its eigenstates. We will employ the traditional description of the nucleus as a system of non-relativistic nucleons interacting through strong spin- and isospin-dependent nuclear isteractions. The solutions of the Schroedinger equation

$$
\begin{equation*}
U|\Psi\rangle=\left[\sum_{1}-\frac{h^{2}}{2 m} \nabla_{1}^{2}+\sum_{i<j} V_{i j}+\sum_{\cdot<j<k} V_{i, h}+\ldots\right] \Psi=E|\Psi\rangle \tag{1}
\end{equation*}
$$

ciall then be used, along with an appropriate current operator. to determine many properties of the nucleus. The potential is determined by fitting two- (and possibly three-) body experimental data. It includes the one-pion-exchange term at loug 1 istances. and in some cases is modeled as a set of one-boson exchanges at shorter Llistnaces. Clearly this model leaves out some interesting physics: internal degrees of frurlom (such as the delta resonance) have been suppressed and the effects of meson ':xclange have been absorbed into the potential. Each of these simplifications pro-- lucers important effects even in ground-state properties, as we shall see. Nevertheless. . . H In this simple non-relativistic treatment contains a great deal of physics.
lhe two-loody interaction can be written as a sum of spin-isospin d.pendent uperator ()$_{1,}^{k}$ multiplied hy functions of the pair separation $r_{, j}$:

$$
\begin{equation*}
V_{i j}^{\prime}=\sum_{i<j} l^{\cdot k}\left(r_{1}\right) O_{i j}^{k} \tag{2}
\end{equation*}
$$

where the operators $\left(O_{1}^{A}\right.$, are
a $1 \cdot \mathrm{re}$ the sumbol \otimes indicates all protucts of one terin in the first bracket atad one

spins of the nucleons, and τ_{i} and $\tau_{\text {, }}$ are similar matrices for the isospins. The tensor operator $\mathrm{S}_{i,}$ is $3 \sigma_{i} \cdot \dot{r}_{i j} \sigma_{j} \cdot \dot{r}_{i j}-\sigma_{i} \cdot \sigma_{j}$ and $\mathrm{L} \cdot \mathrm{S}_{i}$, is the spin-orbit interaction, where L represents the relative angular momentum of the pair, and S the total spin. The operators L. S_{i}^{2}, and L_{i}^{2}, determine the spin-orbit squared and angular momentum squared dependence of the interaction, respectively.

All modern interactions (Argonne, ${ }^{17}$ Bonn, ${ }^{18}$ Nijmegen ${ }^{19}$...) may be written in a similar manner. Terms up to first order in the momentum ($L \cdot S_{i j}$) are tiniquely indicated by the data, but the choice of the more non-local operators varies in different interaction models. We will concentrate primarily upen the Argonne VIt interaction which employs t'se particular choice given above. It has been constructed to minimize the importance of the non-local terms in the in:eraction, and includes a one-pion interaction at long distances, an intermediate range attraction with the range of a two-pion-exchange, and a short-range phenomenological repulsion.

Some terms in the Argonne V14 interaction are shown in figure 1. for simplicity 1 only present the central (momentum-independent) and tensor terms in the interaction. Two primary features that are common to all NN interaction models should be stressed. The most striking feature is the strong repulsive core at short distances. This presents some difficulties to mein-field or perturbative calculations, but it is possible to treat the strong correlations induced by these interactions with Monte Carlo. In fact, I will show results from condensed matter physics for systems of fifty to several hundred very strongly-interacting partucles. The repulsive core in these systems is even stronger, in relative terms, than that in the NN interaction.

Figure (a) ('ritral trims in the Argonne V'l interaction.

Figure 1b) Tensor terms in the Argonne V 1 t interaction.
The secc nd feature, also crucial to nuclear physics, is the strong spin- and isospindependence of the interaction. The potential can be quite different for different combinations of total spin and isospin (note that the $S, T=0,0$ and 1,1 central terms occur in negative parity states, and consequently always appear in combination with $L_{i,}^{2}$, terms). Results are also very sensitive to the tensor force, in fact we find that the tensor force provides about $2 / 3$ of the total potential energy in light nuclei. Consequently, any wave function which ignores the strong tensor correlations will not reproduce any of the bound states. The strong state-dependence of the interaction is also what limits our calculations to light nuclei, at least for the present. To understand why, we will need to look at the structure of the wave function.

Before proceeding to the wave function, though, I should mention the threeuucleon interaction (TNI). The TNI will be discussed in more detail in a later section. it this point I would simply point out that the presence of a three nucleon interaction is essentially required by the fact that we are suppressing the internal structure of the nucleons. The importance of the three-nucleon interaction ('TNI) can be taken is a ineasure of the importance of ignoring the internal degrees of freedom in the mucleon. the quarks. At long distances the forin of the TNI is assumed to arise from pion exchanges and excitations to virtual deltas. its precise strength is fit to the-thre-hody binding energy. ${ }^{2}$ We will find that the ' CN l is much less important than the two-mucleon interaction, typically $\left(V_{1, h}\right) /\left(V_{1}\right) \leq 5 \%$. However, it cloes provide a siguiticant fraction of the binding energy in light muclei. as the binding energy reaults. from a splustive cancellation of large kinetic and potential energy terms.

3. Variational Wave Functions

Given the Hamiltonian of Eqs. 1-3, any wave function can be decomposet into a sum over spin-isospin states times functions of the coordinates of all particles:

$$
\begin{equation*}
|\Psi\rangle=\sum_{l} \psi_{l}(\mathbf{R})_{\chi_{l}} \tag{4}
\end{equation*}
$$

The sum over states I runs from 1 to $2^{A} A!/ N!Z$! for a system of N neutrons and Z protons ($A=N+Z$). The factor 2^{A} comes from the spins (each of A spins up or down) and a factor of $A!/ N!Z!$ from the isospin. The isospin factor is smaller because of charge conservation, the total number of protons or neutrons remains constant. Note that we are not exploiting good overall isospin, which could reduce the number of components further at the cost of a more complicated basis. Calculations employ a basis of definite third components of spin and isospin for each particle. This is discussed in more detail in the Appendix.

Solving the Schroedinger equation now entails solving many coupled differential equations for the complex amplitudes $\psi_{1}(\mathbf{R})$. For $\mathrm{A}=3$, Faddeev methods ${ }^{20-22}$ can be used to solve for these amplitudes explicitly, although they of course employ a different basis of states. As the number of nucleons increases, however, it becomes less and less feasible to solve directly for the amplitudes ψ_{1}. One possibility for going to larger syater.a is to develop approximate variational solutions for the wave function, this is the alternative we will discuss first. Note that the three-body nuclei provide a very important test for any variational calculation since they can be calculated 'exactly' with Faddeev methods.

Any variational calculations proceeds by first making an ansatz for the form of the wave function and then minimizing the expectation value of the Hamiltonian

$$
\begin{equation*}
\langle H\rangle=\frac{\left\langle\Psi_{T}\{\alpha\}\right| H\left|\Psi_{T}\{\alpha\}\right\rangle}{\left\langle\Psi_{T}\{\alpha\} \Psi_{T}\{\alpha\}\right\rangle} \tag{5}
\end{equation*}
$$

with respect to changes in the variational parameters $\{a\}$ embedded in the form - ? variational (trial) wave function $\Psi_{T}\{\alpha\}$. The important physics required in this case includes (1) an accurate form for the wave function 23 two nucleons are brought close together. (2) a reasonable treatment of the spin-isospin correlations induced by the interaction, and (3) the correct asymptotic wave function as one nucleon is pulled away from the remaining nucleons.

A generalized Jastrow form for the wave function can be used which incorporates all of this physics:

$$
\begin{equation*}
\left|\Psi_{r}\right\rangle=s\left(\prod_{,<j} F_{1}\right)|\phi\rangle \tag{6}
\end{equation*}
$$

In this equation, t is an anti-symuetrized slater determinant, the F_{1} are :tatedrpendent two-body correlation operators. and \mathcal{S} is a symmetrization operator . 'The
symmetrization operator indicates a sum over all orders of terms in the product, and is required since the correlation operaters between different pairs do not commute.

For light nuclei, it suffices to choose Φ as a spin-isospin vector independent of all spatial coordinates:

$$
\begin{align*}
\Phi\left({ }^{2} \mathrm{H}\right) & =\mathcal{A}\left[(n \dagger)_{1}(p \dagger)_{2}\right]_{1} \tag{i}\\
\Phi\left({ }^{3} \mathrm{H}\right) & =\mathcal{A}\left[(n \downarrow)_{1}(n \dagger)_{2}(p \dagger)_{3}\right]_{1} \tag{S}\\
\Phi\left({ }^{4} \mathrm{He}\right) & =\mathcal{A}\left[(n \downarrow)_{1}(n \dagger)_{2}(p \downarrow)_{3}(p \dagger)_{4}\right] \tag{9}
\end{align*}
$$

In this notation, \mathcal{A} is an anti-symmetrization operator indicating a sum over ail possible interchanges of particles with appropriate signs. For larger nuclei ($\boldsymbol{A}>\boldsymbol{4}$), spatial degrees of freedom must be incorporated into the Φ. Here, however. we can choose the pair correlation operators $F_{1,}$ to give the correct asymptotic conditions on the wave function.

We choose the pair correlations to have the following form:

$$
\begin{equation*}
F_{1,}=f^{c}\left(r_{1,}\right)\left[1+\left(\sum_{k} u_{3}\left(r_{1,}, \mathbf{R}\right) u^{k}\left(r_{1,}\right) O_{, 1}^{k}\right)\right] \tag{10}
\end{equation*}
$$

where the sum over operators k runs over all momentum-independent operators in the interaction (Eq. 3). The pair correlations f^{c} and u^{k} are obtained by solving two-body differential equations of the general form: ${ }^{3.4}$

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{m} \nabla^{2}+v\left(r_{1,}\right)+\lambda\left(r_{1,}\right)\right) F\left(r_{1,}\right)=0 \tag{11}
\end{equation*}
$$

where $\lambda(r)$ contains several variational parameters. In the spin singlet cnannels. two uncoupled equations are solved, one for $T=C$ and one for $T=1$. In the spin triplet rhannels. coupled equations are solved for the central ant tensor correlations. Once the equations are solved in the various channels. linear crinbinations are obiained which can be cast in the operator form of Eq. 10.

The function $\lambda(r)$ is a woods-saxon at short distances. The width and range of the woods-saxon are variational parameters. At long distances its form is determined by requiring that the wave function have the correct asymptotic properties as one mucleon is removed from the rest. The separation energy which determines the exponential decay is an additional variational pararieter, as is the ratio of the leusor and central correlations at long distance.
lhe un correlation in Eq. 10 is a three-borly term which reduces the strength of the operator-dependent two-bod, correlations for some configuratious of \therefore a nucle'ins.' It ilepends not only on the pair distance r_{1}, but also on the positions of ali the mher piarticles. limpirically, it has proven useful to parametrize u_{1} as

$$
\begin{equation*}
u_{b}\left(r_{1,} . R\right)=\prod_{k, 1, j}\left[1-1 \cdot\left(\frac{r_{1,1}}{R_{1, k}}\right)^{I_{2}} \operatorname{\mu vp}\left(-l_{1} R_{1, k}\right)\right] \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
R_{1, k}=r_{1 j}+r_{i k}+r_{j k} . \tag{13}
\end{equation*}
$$

The values of t_{1}, t_{2}, and t_{3} are determined variationally. In principle they could be adjusted independently for each pair correlation operator (each k). but in practice they are usually chosen to be the same in all channels.

The exact deuteron wave function can be cast in the form of Eq. 6. In this case the three-body correlation u_{3} is replaced by the identity, and the function $\lambda(r)$ is simply a constant, the deuteron binding energy. The functions $f^{c}(r)$ is $u(r)$, the s-wave part of the deuteron wave function. The tensor term $f^{c}(r) u^{S}(r)$ is, withis. a normalization constant, $w(r)$, the d-state component of the wave function. The deuteron's wave function is worked out in the 3rd component of spin and isospin basis in the Appendix. For the deuteron, of course, the components of the wave function are only functions of one variable, so that calculating expectation values of any operator is relatively easy. For larger systems, though, this becomes progressively more difficult. Hence, we rely upon Metropolis Monte Carlo to calculate the necessary integrals

4. Variational Monte Carlo

Given a parametrized wave function in the form of Eq. $6,\langle H\rangle$ must be minimized as a function of the variational parameters. Evaluating (H) involves computing many 3A dimensional integrals, so we turn to Mon:e Carlo methods, in particular to Metropolis Monte Carlo. Monte Carlo methods in general become more valuable as the dimension of the space increases, and their efficiency depends to a great extent on the quantity to be measured and also upon the care with which they are applied.

Monte Carlo methods as applied here are described in some detail in a book by Whitlock and Kalos. ${ }^{23}$ I can only provide some of the basics here. Those interested can consult this book and other standard references to determine optimum methods for sampling various distribution functions, and also for more detailed discussions of the Metropolis and Green's Function Monte Carlo methods. Also, R. B. Wiringa and 1^{4} have written a bock chapter which contains quite specific discussions of the Variational Monte Carlo met hods as applied to light nuclei and also includes a sample program.

A. VMC-General Method

Metropolis Monte Carlo ${ }^{24}$ is designed to evaluate ratios of integrals such as:

$$
\begin{equation*}
\langle\mathcal{O}\rangle=\frac{\int W^{\prime}(\mathbf{R}) \mathcal{O}(\mathbf{R}) d \mathbf{R}}{\int W^{\prime}(\mathbf{R}) d \mathbf{R}}, \tag{14}
\end{equation*}
$$

where $(W)(\mathbf{R})$ is a positive definite function. While such a form may seem rather limited. in fact many interesting physics problems can be written in this way. Classical statisical inechanics is a primary example. If we take $W(\mathbf{R})$ to be $\mathrm{exp}(-3 H)$ and \mathcal{O}
to be an observable, we can use the Metropolis method to compute the expectation value of \mathcal{O} at an inverse temperature β.

Quantum variational calculations can also te performed using the Metropolis method. The standard choice is

$$
\begin{equation*}
W(\mathbf{R})=\Psi_{T}^{\dagger}(\mathbf{R}) \Psi_{T}(\mathbf{R}) \tag{15}
\end{equation*}
$$

and $O(\mathbf{R})$ to be the operator acting on $\Psi_{T}(\mathbf{R})$ at that point:

$$
\begin{equation*}
O(\mathbf{R})=\frac{\Psi_{T}^{\dagger}(\mathbf{R}) \mathcal{O} \Psi_{T}(\mathbf{R})}{\Psi_{T}^{\dagger}(\mathbf{R}) \Psi_{T}(\mathbf{R})} \tag{16}
\end{equation*}
$$

The wave functions are necessary for the case when \mathcal{O} depends upon momentum, and therefore includes derivative operators. For purely static scalar quantities, the wave functions will divide out in this expression. Note that I have suppressed the dependence of the trial wave function on the variational parameters $\{\alpha\}$. With this choice of W, the denominator in Eq. 14 is simply the normalization of the wave function, while the numerator gives the expectation value of the operator \mathcal{O}. Initially we are trying to minimize the energy in a variational calculation, so we consider the case where \mathcal{O} is the Hamiltonian. In nuclear physics, the Hamiltonian (and also the wave function) will depend upon the spin and isospin of the nucleons and the functions W and O involve sums over all possible spin-isospin states. For simplicity, however, we first consider the case of a spin-isospin independent interaction where the wave function only depends upon the spatial coordinates of the particles.

The Metropolis algorithm is based upon the fact that the ratio in Eq. 14 can be evaluated as an average over a _ it $\boldsymbol{\gamma}$ points \mathbf{R}, distributed with probability distribution W(\mathbf{R}):

$$
\begin{equation*}
\langle\mathcal{O}\rangle=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left(\mathbf{R}_{1}\right) . \tag{1i}
\end{equation*}
$$

In the limit of an :afinite sample of points this relation is exact, but in actual calculations there is a statistical error associated with finite sample sizes. Under very general conditions. the central limit theorem states that the statistical error will go like $1 / \sqrt{V}$ for large N.

The Metropolis algorithm allows us to obtain a set of points \mathbf{R}, for an almost arbitriarily complizated function $W(\mathbf{R})$. This is important because our trial wave lumctions contain strong correlations, and it is difficult to perform the integrals in any other way. In essence, the Metropolis method sets up an artificial dynamics such that the equilibrium distribution of points is proportional to $W(\mathbf{R})$. The primary ingredich in the Metropolis algorithm is detailed balance, which simply requires that the net llux from any point R to any point \mathbb{R}^{\prime} must be balanced by the flux in the revrese direction when equilibrium has been reached. Clearly this is more restrictive thim is absolutely necessary, uevertheless it is a very valuable technique.

A random walk algorithm can then be developed which satisfies detailed balance and gives an equilibrium distribution proportional to an arbitrary $W(\mathbf{R})$. Suppose we start at \mathbf{R}_{1}, and construct a random walk in which each step contains two elements. a proposed (trial) move and an acceptance/rejection step. First, a point \mathbf{R}_{t} is chosen for the trial move with a transition probability $T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{\mathbf{t}}\right)$, and second, this trial move is accepted with probability $A\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{t}\right)$. If the move is accepted $\mathbf{R}_{\mathbf{2}}$ is set to \mathbf{R}_{t}, otherwise $\mathbf{R}_{\mathbf{2}}$ is set to $\mathbf{R}_{\mathbf{1}}$. The whole process is then repeated (the next step beginning from $\mathbf{R}_{\mathbf{2}}$) until the walk has reached equilibrium and a sufficient number of points have been generated to obtain accurate results.

A little thought will convince you that detailed balance imposes the following condition on the random walk if it is to generate an equilibrium distribution proportional to $W(\mathbf{R})$.

$$
\begin{equation*}
W\left(\mathbf{R}_{1}\right) T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{\mathbf{2}}\right) A\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{\mathbf{2}}\right)=W\left(\mathbf{R}_{\mathbf{2}}\right) T\left(\mathbf{R}_{\mathbf{2}} \rightarrow \mathbf{R}_{1}\right) A\left(\mathbf{R}_{\mathbf{2}} \rightarrow \mathbf{R}_{1}\right) \tag{18}
\end{equation*}
$$

The left hand side of this equation is the flux from \mathbf{R}_{1} to $\mathbf{R}_{\mathbf{2}}$, it is given by the product of the probability of being at \mathbf{R}_{1} (which we require to be $W\left(\mathbf{R}_{1}\right)$), the probability T of proposing a move from \mathbf{R}_{1} to $\mathbf{R}_{\mathbf{2}}$, and the probability A of accepting that proposed move. The right hand side of the equation is the total flux in the opposite direction.

A very simple choice for $T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{t}\right)$ is a constant ($1 / L^{3}$) within a 3 A dimensional cr:de with side L. This transition p:obability is trivial to implement. For each component i of the 3A dimensional vector. simply take:

$$
\begin{equation*}
\mathbf{R}_{t_{1}}=\mathbf{R}_{1_{1}}+\boldsymbol{2} L\left(\zeta_{1}-0.5\right) \tag{19}
\end{equation*}
$$

where the ζ, are random numbers evenly distributed between 0 and 1 . With this choice of T. it is obvious that $T\left(\mathbf{R}_{\mathbf{1}} \rightarrow \mathbf{R}_{\mathbf{2}}\right)$ is identical to $T\left(\mathbf{R}_{\mathbf{2}} \rightarrow \mathbf{R}_{\mathbf{1}}\right)$. If $\mathbf{R}_{\mathbf{2}}$ is within the box centered at $\mathbf{R}_{1}, \mathbf{R}_{\mathbf{2}}$ is also within the box centered upon $\mathbf{R}_{\mathbf{1}}$ and both transition probabilities are equal, but if $\mathbf{R}_{\mathbf{2}}$ is outside the box both transition probabilities are zero.

With this choice for T detailed balance becomes farticularly simple. We can satisfy Eq. 18 by taking

$$
\begin{equation*}
\lambda\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{2}\right)=\min \left[1 \cdot \frac{W\left(\mathbf{R}_{2}\right)}{W\left(\mathbf{R}_{1}\right)}\right] . \tag{20}
\end{equation*}
$$

.iote that the acceptance probability must always be between zero and one. If the function W is greater at the new point than at the old, the move will always be accepted. Otherwise, it will be accepted with a probability equal to the ratio of the functions. Note that a total of $3 A+1$ random numbers are needed at each step in the walk. 3A to choose a trial step and one to accept or reject it.

The resulting algorithm. employing a general transition probability T. can be written duwn very simply:

1. Given a 3A dimensional coordinates \mathbf{R}_{1}, generate a trial corrdinate point $\mathbf{R}_{\mathbf{t}}$ with projability $T\left(\mathbf{R}_{\mathbf{i}} \rightarrow \mathbf{R}_{\mathbf{t}}\right)$.
2. Calculate the quantities $W\left(\mathbf{R}_{1}\right), W\left(\mathbf{R}_{1}\right) T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{t}\right)$, and $T\left(\mathbf{R}_{t} \rightarrow \mathbf{R}_{1}\right)$, the transition probability for the reverse step. The acceptance probability is given by the expression:

$$
\begin{equation*}
A\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{t}\right)=\min \left\{1, \frac{W\left(\mathbf{R}_{t}\right) T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{1}\right)}{W\left(\mathbf{R}_{1}\right) T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{t}\right)}\right\} \tag{21}
\end{equation*}
$$

3. Accept or reject the move with probability A. If the move is accepted, set \mathbf{R}_{1+1} equal to \mathbf{R}_{i}, otherwise set it to \mathbf{R}_{i}.
4. Calculate all quantities of interest (the Hamiltonian, etc.) at \mathbf{R}_{i+1}, adding the contributions to the average over all points (Eq. 17).

The random walk will only generate points distributed with probability $W(\mathbf{R})$ after it has reached equilibrium. Convergence to equilibrium is an important consideration that must be tested in each calculation. All results obtained prior to equilibrium should be disregarded in the averages above. This is usually not a problem in light nuclei as several hundred steps normally suffice unless one starts from a pathclogical intial point (one nucleon 20 fm from the others, for example). A good way to test for equilibrium is to compute the average over 'blocks' of consecutive points in the random walk consisting of several hundred points to several thousand points each.

Eventually, the averages within each block should settle down to a constant plus a (hopefully small) fluctuating term. If the blocks are large enough, the averages should have a normal distribution centered on the true mean, and the error can be estirrated from thim using the central limit theorem:

$$
\begin{equation*}
\Delta(\mathcal{O}) \approx \sqrt{\left(\overline{(\mathcal{O}\rangle^{2}}-\overline{(\mathcal{O})^{2}}{ }^{2} / / M\right.} \tag{22}
\end{equation*}
$$

where $\Delta\langle\mathcal{O}\rangle$ is an estimate of the error in determining $(\mathcal{O}\rangle$ and M is the total number of blocks. The expression involves the average of the square of the estimated operator expectation value minus the square of the average, and the bars indicate averages over blocks rather than individual points. The results in each block are themselves aterages over a few hundred to a few thousand points in the walk. This error estimate is only valid when the blocks are large enough' so that the central limit applies. The size of blocks required must be tested in eac'. calculation, but this test involves cnly at re-analysis of the run Smaller blocks can be grouped into larger ones in order to illsure that the statistical error is independent of the block size.

I have not yet specified how to choose the step size L in the random walk. The ciloice of L strongly affects the efficiency of the ralculation but should not affect the final average. For example, if L is very small then nearly all moves will be
accepted but many steps will required pel block to eliminate the correlat:ons between neighboring blocks. Similarly, if L is too large all moves are likely to be rejected. and again many steps will be required to gain independent samples. The general lore holds that adjusting L so that approximately half the moves are accepted is a reasonable choice. Niumerical experiments testing the correlations between nearby points in the walk car be valuable in optimizing L.

One can also imprcue the efficiency by making better choices for the transition and acceptance probabilities. One popular alternative is to include information about the first derivative of W evaluated at \mathbf{R}_{1} in the transition probability $7^{\prime}\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{\mathbf{t}}\right) .{ }^{23}$ In this case the acceptance A must involve the transition probability for the reverse step. which in turn depends upon the derivative of W at \mathbf{R}_{1}. The transition probability T must be positive definite and normalized such that $\int T\left(\mathbf{R}_{1} \rightarrow \mathbf{R}_{\mathbf{1}}\right) d \mathbf{R}_{\mathbf{t}}=1$ for any R_{1}.

Variational Monte Carlo alculations are constructed so that they will be more efficient for better trial wave functions. In fact. if the trial wave function is an exact eigenstate of the Hamiltonian the energy's statistical error will be zero. In this ideal case every sample of $H(\mathbf{R})($ Eq. 16) will produce the same result. the ground state energy. This is not true for expectation values of other quantities. Rapidly arying functions. for example charge form factors at high momentum transfer. will have much larger statistical errcrs. In many cases it is possible to reduce the error by using different weight functions W. or perhaps by doing the integrals over some coordinates with traditional numerical methods rather than by Monte Carlo.

Another very useful technique is called 'reweighting'. ${ }^{23}$ Since we are initially concerned with calculating the difference in energy between two wave functions, it is more efficient to calculate this difference directly. For example, suppose we constiuct an initial random walk using the square of the wave function $\Psi_{T 1}$ for the weight function $\boldsymbol{W}(\mathbf{R})$. The energy of this wave function can be calculated easily from this walk. but we can also use it to evaluate the energy difference between two wave functions. The energy diference can be written in the form of Eq. 1i:
and computed using any weight function W. in particular the square of the originai wave function $\Psi_{T 1}$. Cf course. we will now have to compute both the numerator and Ifominator separately (the denominator in the second term is no longer exactly onte: it :arin p.int), but the correlations between the two calculations can be exploited to ur $\cdots \cdot!\mathrm{v}$ reituce the statistical errors. This inethod is most useful when the differrnces th. .a the two wave functions are not too large.

B. VMC - Applications to Light Nuclei

Variational Monte Carlo calrulations of light nuclei ${ }^{1-4}$ are somewhat more complicated than described above because of the spin-isospin dependence of the interaction and wave functicn. In this case, the expectation val'se of the Hamiltonian can be written:

$$
\begin{equation*}
\langle H\rangle=\frac{\int d \mathbf{R} \sum_{k 1} \frac{\Psi_{k}^{\dagger}(\mathbf{R}) \mathbf{H}_{k 1} \Psi_{1}(\mathbf{R})}{W(\mathbf{R})} W^{\prime}(\mathbf{R})}{\int d \mathbf{R} \sum_{k 1} \frac{\Psi^{\dagger}(\mathbf{R}) \Psi_{1}(\mathbf{R})}{W(\mathbf{R})} W(\mathbf{R})} \tag{24}
\end{equation*}
$$

where the sums over k and l run over all spin-isospin states. In principle. we could use a weight function W which depends upon k and l, and perform tine sums as well as the integrals by Monte Carlo. In general. though, this will produce iarge statistical errors since the low-variance property for the energy described above only applies to the full Harniltonian acting on the full wave function. Therefore. we: simply sum over all k and i at each point in the walk. although this places severe practical limits on the size of nucleus that can be studied.

One can choose W to be:

$$
\begin{equation*}
W(\mathbf{R})=\sum_{1} \Psi_{1}^{\dagger}(\mathbf{R}) \Psi_{1}(\mathbf{R}) \tag{25}
\end{equation*}
$$

In fact we use something slightly more complicated, and include a Monte Carlo sampling of the orde J of pair correlation operators implied by the symmetrization operator \mathcal{S} in the trial wave function (Eq. 6). This entails choosing a weight function which depends upon the order of operators in the left and right hand wave function. and requires a calculation of the normalization of the wave function as well as $(H) .^{1.4}$ For example. in a three-body nucleus:

$$
\begin{equation*}
\therefore\left(F_{12} F_{13} F_{23}\right)=\frac{1}{\sqrt{6}}\left(F_{12} F_{13} F_{23}+F_{13} F_{12} F_{23}+F_{23} F_{12} F_{13}+\ldots\right] . \tag{26}
\end{equation*}
$$

L.abrling the order of operators by p and q (and suppressing the spin-isospin indices):

$$
\begin{align*}
\Psi^{\dagger}(\mathbf{R}) & =\sum_{p} \nabla_{p}^{\dagger}(\mathbf{R}) \\
\Psi(\mathbf{R}) & =\sum_{1} \Psi_{q}(\mathbf{R}) . \tag{1}
\end{align*}
$$

we choose

$$
\begin{equation*}
W_{p q}(\mathbf{R})=\left|\operatorname{Rr}\left(\Psi_{p}^{\dagger}|\mathbf{R} \cdot| \Psi_{\imath}(\mathbf{R})\right\rangle\right| . \tag{:8}
\end{equation*}
$$

In thes expression I have indicated the smu over all spin-isospin states by angled lirackets. .iote that since the left and right land terme are no louger simply llerminian conjugates. the absolute magnitule is requircol in oriler to rusure that W is
positive definite. This also implies that one must calculate the denominator explicitly. For light nuclei, though, we have observed that the real part of the product ($\Psi_{p}^{\dagger} \Psi_{q}$) is positive for reasonable correlation functions.

A nother complication arises when trying to compute the kinetis energy and the momentum-dependent terms in the interaction. Because of the complicated matrix structure of the wave function. it is very difficult to sompute directlv the momentum operators acting on the wave function. Consequently, all derivatives are evaluated simply by re-calculating the wave function at slightly displaced values of the particle coordinates, and forming the numerical derivatives:

$$
\begin{align*}
\nabla, \Psi\{\mathbf{R}\} & =\left[\Psi\left\{\mathbf{R}+\epsilon \dot{r}_{\prime}^{\prime}\right\}-\Psi\left\{\mathbf{R}-\epsilon \dot{r}_{\dot{\prime}}^{\prime},\right\}\right] /[2 \epsilon] \\
\nabla^{\prime \prime},{ }^{2} \Psi\{\mathbf{R}\} & \left.\left.=\left[\Psi\left\{\mathbf{R}+\epsilon \dot{r}_{\prime}^{\prime}\right\}+\Psi\left\{\mathbf{R}-\epsilon \dot{r}^{\prime}\right\}\right\}\right]-2 \Psi\{\mathbf{R}\}\right] /\left[\epsilon^{2}\right] \tag{29}
\end{align*}
$$

In these expressions i represerts a direction ($\mathrm{x} . \mathrm{y}$ or z), and j represents the particle. The expectation values of L^{2} terms are treated similarly, although in some cascs it is more convenient to use integration by parts so that only first derivatives are required.

Typically, twenty to thirty runs are required to optimize the variational paramelers. Most of the calculations are difference calculations designed to compute the energy difference of various wave functions (Eq. 23). Each run will require several thousand configurations in order to obtain a statistical accuracy of a few hundredths of an MeV . Once the optimum wave function has been determined, a set of Monte Carlo calculations should be undertaken to determine all of the expectation values. For the three-body problem, ten to twenty thousand configurations seem to provide reasonable statistical accuracy for the energy and one-body densities. Ten thousand configurations takes roughly 30 minutes of cpu time on a one megaflop computer.

Typical results for the three-body prublem are given in Table I. and contrasted with the 'exact' Faddeev results. Variational results are always an upper bound to the true ground-state energy, for the triton the variational energy is typically about 0.3 - 0.6 MeV higher than the Faddeev. Wiringa ${ }^{25}$ has recently improved the variational wave function by adding $L \cdot S_{1,}$ two-body correlations and including threeb, \because correlations. These improvements reduce the energy diference significantly.
.io upper bound property exists for operators other than the Hamiltonian, how.wer. In fart, while the error in energy is second order in the error in the trial wave finction, the error in other observables :" generally first order. Consequently, two ariatuonal wave functions may give verv sumilar energies but different values of other nisurevables. For example. the point rus radins of the nucleons can change by 0.05 to 10.1 fill without signific : Intly affecting the groumd state energy. Ihis uncertainty in the wave function. rather than the statistical error associated with the Monte Carlo integrations. is often the most important difliculay with variational calculations. (ommparisobs whin other quantitions such as the magnetic form factors (discussed in section (i) inticate that the variational wave functions provide a good overall descrip'ion of the struchure of light muchei. Veverthelises. methods to systematically improve the variational wave function are extremely valuable

Table 1: Triton Resulcs - Variational and Faddeev

Interaction	Method	Energy (MeV)		$\left(r_{1}^{2}\right\rangle^{1 / 2}$			(fm)
AVI4 + TNI	Variational	-8.42	(04)	1.68	(02)	9.9	(1)
AV14 + TNI	Faddeev	-8.99		1.65		10.0	
Nijmegen	Variational	-7.25	(03)	1.86	(03)	7.7	(1)
Nijmegen	Faddeev	-7.63		1.77		7.9	
Keid V8	Variational	-7.08	(05)	1.82	(02)	.	
Reid V8	Faddeev	-759		1.76		9.7	

Summary of triton results from reference 26. Energies are given in MeV, distances in fm. and statistical errurs are indicated in parentheses. The rms radii given are point nucleon radii. The last column gives the magnitude of the spin $3 / 2$ wave function component: except for very small P-state components this is equal to the D-state percentage.

5. Green's Function Monte Carlo

Green's Function Monte Carlo (GFMC) calculations project an exact ground or low-lying state wave function Ψ_{0} from an initial trial wave function Ψ_{r}. Monte Carlo techniques are used to calculate the operator $\exp \left(-H_{r}\right)$ a.ting on Ψ_{T} for large imaginary times r. Expanding a variational wave function $\Psi_{T}\{\alpha\}$ in eigenstates of H

$$
\begin{equation*}
\Psi_{T}\{a\}=\sum_{m} \beta_{m}\{a\} \Psi_{m} \tag{30}
\end{equation*}
$$

we find

$$
\begin{equation*}
\exp \left(-H_{r}\right) \Psi_{r}\{\alpha\}=\sum_{m} \exp \left(-E_{n}-\right) \beta_{m}\{\alpha\} \Psi_{m} \tag{31}
\end{equation*}
$$

where I have included $\{\alpha\}$ to label the implicit dependence of Ψ_{T} on its variational parameters. For large r, only the state with the iowest energy eigenvalue will survive. You s'yould be aware that many similar algorithms are available that go under different names. including Green's Function Monte Carlo (GFMC), ${ }^{\text {s-7 }}$ Diffusion Monte (Carlo ($\left[\mathrm{MC} \mathrm{C}^{\prime}\right.$). ${ }^{27}$ etc. I will not go into the distinctions here. but one should be aware of their existence. Most of these algorithms are primarily designed to treat systems without state-dependent interactions, liniting their applicability to unclear physics.

A. (iFMC-General Method

All of the methods are based upon high-temperature or short-time expansious of the (incrins limation:

$$
\begin{equation*}
\exp (-H r)=\prod \exp (-H \Delta r) \tag{3:}
\end{equation*}
$$

where the product rums over many short time steps $\dot{\Delta} r$.

Of course we do not know even the short-time propagator exactly; the exact form would require imply a knowledge of all eigenstates. However. for short time steps ΔT we can construct accurate approximations to the propagator. The simplest approximation is:

$$
\begin{align*}
G\left(\mathbf{R}^{\prime} \cdot \mathbf{R}\right) & =\left\langle\mathbf{R}^{\prime}\right| \exp (-H \Delta r)|\mathbf{R}\rangle \\
& \approx \exp \left(-V^{\prime}(\mathbf{R}) \Delta r / 2\right)\left\langle\mathbf{R}^{\prime}\right| \exp (-T \Delta r)|\mathbf{R}\rangle \exp \left(-V^{\prime}\left(\mathbf{R}^{\prime}\right) \Delta r / 2\right) \tag{33}
\end{align*}
$$

where I have split the Kamiltonian into its kinetic (T) and potential (V) pieces and assumed that the potential is local.

Creens Function Monte Carlo is similar in many respects to a transport Monte Carlo simulation. The basic idea is choose an initial set of configurations with density proportional to a trial wave function, and to use Monte Carlo methods to iterate an integral equation:

$$
\begin{equation*}
\Psi^{+^{\prime}}\left(\mathbf{R}^{\prime}\right)=\int d \mathbf{R} G\left(\mathbf{R}^{\prime} \cdot \mathbf{R}\right) \Psi^{\prime}(\mathbf{R}) \tag{34}
\end{equation*}
$$

until convergence to the ground state wave function. Each configuration is an independent copy of the entire system. and their 'trajectories' are followed as Eq. 34 is iterated. The kinetic energy term allows the sampled points to move about in configuration space while the potential energy duplicates or destroys walks.

The Monte Carlo simulation mimics a diffusion process in which the kinetic energy ierm governs the rate of the diffusion. since:

$$
\begin{equation*}
\left\langle\mathbf{R}^{\prime}\right| \exp (-\Gamma \Delta r)|\mathbf{R}\rangle=. V \exp \left[\frac{-\left(\mathbf{R}-\mathbf{R}^{\prime}\right)^{2}}{4 \frac{\frac{1}{1}_{2}^{2 m}}{2} \Delta r}\right] \tag{35}
\end{equation*}
$$

where V is a normalization constant that instres $\left.!d \mathbf{R}^{\prime}\left\langle\mathbf{R}^{\prime}\right| \exp (-T \Delta r) \mid \mathbf{R}\right)=1$. The potcintial. on the other hand. can be thought of as a source or sink of random walks. When the potential is repulsive, the (ireen's function (Eq. 33) is small and walks will be absorbed. In regions where the potential is attractive, though. new walks will be created.

Lior statr-independent interactions it is not necessary to use short-tine approximation (l:q. :3). Domain (FFMC methods' exploit an integral equation for the inverse of the Ilamiltonian, locally expanding this true Green's function about a Fonstant potential (ireen's functions withur a domain. It is possible to "se Monte (:rrlo terluiques to perform one randonn wilk within another. sampling the exact (itreni: function and hence avoiding any short-time approximation. (ieneralizatums of the rxat inethod to state-dependent potentials or rionentumedepudent interac toms is an masolval problem, however. ("onserguruly. we will employ methods that. alifungh iomurwat more sophisticated than l:q. 33. do include a time-step error. lhis cmue verpereror can be made arbitrarily small by making Δt very small. The. rerory per tome atep in this short-time apprexi:mation above are proportional to Δr^{2}.
as you can see by expanding the exponentials. However, the overall error is proportional to Δr, as the total number of steps required to propagate a giver imaginary time is proportional to $1 / \Delta r$.

GFMC methods are closely related to the finite-temperature simulations in condensed matter (Path Integral ${ }^{25}$ and Fermion Monte Carlo ${ }^{30}$) and lattice QCD. These meihods retain the complete history of the system over time (its world-line or path), and evaluate

$$
\begin{equation*}
\langle\mathcal{O}\rangle=\frac{\sum_{\mathbf{R}}\langle\mathbf{R} \mathcal{O} \exp (-3 H) \mathbf{R}\rangle}{\sum_{\mathbf{R}}\langle\mathbf{R} \exp (-3 H) \mathbf{R})} . \tag{36}
\end{equation*}
$$

to determine the expectation value of an operator \mathcal{O} at an inverse temperature 3. Clearly, this expression is of the form of Eq. 14. and can be evaluated using Metropolis Monte Carlo to lample over all paths. Note that the paths are closed since they begin and end al the same point \mathbf{R}. The fact that the complete time ${ }^{-}$ history must be retained typically limits these methods to $\approx 50-100$ steps in inverse temperature.

Here. however. we are particularly interested in projecting out specific quantum states. We can use this to our advantage and build in our knowledge of the approximate eigenstates. The basic technique is called 'importance sampling.' Multiplying and dividing Eq. 34 by an importance function Ψ_{I}, we obtain

$$
\begin{equation*}
\Psi_{I}\left(\mathbf{R}^{\prime}\right) \Psi^{\prime+1}\left(\mathbf{R}^{\prime}\right)=\int d \mathbf{R}\left[\Psi_{l}\left(\mathbf{R}^{\prime}\right) G\left(\mathbf{R}^{\prime}, \mathbf{R}\right) \frac{1}{\Psi_{l}(\mathbf{R})}\right] \Psi_{l}(\mathbf{R}) \Psi^{\prime}(\mathbf{R}) \tag{37}
\end{equation*}
$$

where the quaritity in brackets is designated the importance sampled Green's function. For bosu ." systems, Ψ_{l} is usually the optimum trial wave function Ψ_{r} obtainel in a variational calculation. This construction has the advantage that the energy can be obtained as an average of $\Psi_{T}^{\frac{1}{2}} H \Psi_{T} / \Psi_{T}^{\frac{1}{1}} \Psi_{T}$, and consequently there is no statistical crror in the limit that the trial state is equal to the exact one. Also. using the pectral representation of the Green's finction we can compute the total number of samples $l(\mathbf{R})$ generated by a point originally at \mathbf{R} :

$$
\begin{equation*}
l(\mathbf{R})=\int d \mathbf{R}^{\prime}\left[\Psi_{l}\left(\mathbf{R}^{\prime}\right) \sum_{m} \Psi_{m}\left(\mathbf{R}^{\prime}\right) \exp \left(-E_{M} \Delta r\right) \Psi_{m}(\mathbf{R}) \frac{1}{\Psi_{l}(\mathbf{R})}\right] . \tag{3s}
\end{equation*}
$$

In the limit that Ψ_{1} is equal to the groumel alare (and $\left.E_{0}=0\right),(\mathbf{R})$ is precisely , wi mulependent of the starting point R. (iood choices for Ψ_{I} imply that rach rontiguration in the $i^{\text {th }}$ generation will contribute almost exactly one configuraion 10) enemeration $i+1$. This limitation of fluctuations is very infortant in reduchag the artistical biar of the calculation.

Wh this atage, it is also useful to consiter betier npproximations to the (ireen's funtion (han Fiq. 33. For satir (momentum- motrpendent) pormtials, it is useful (1) ionstruct
where G_{0} is the free particle propagator for the A-body system. g_{1}, is the two-body propagator including the interaction. and $g_{1,}^{0}$ is the $t w o$-body free propagator. The free particle propagators are just normalized gaussians:

$$
\begin{align*}
& G_{0}\left(\mathbf{R}^{\prime}, \mathbf{R}\right)=V^{\prime} \exp \left(\frac{-\left(\mathbf{R}^{\prime}-\mathbf{R}\right)^{2}}{4 \Delta+\hbar^{2} /(2 m)}\right) \\
& g_{,, 1}^{0}\left(\mathbf{r}_{1,}^{\prime}, \mathbf{r}_{,}\right)=V^{\prime} \exp \left(\frac{-\left(\mathbf{r}_{1,}^{\prime}-\mathbf{r}_{\prime}\right)^{2}}{4 \Delta+\hbar^{2} /(2 \mu)}\right) .
\end{align*}
$$

The lowest order approximation to the ratio of two-body propagators recovers Eq. 33. The exact two-body Green's function, though, can be cvaluated as an average over all gaussian paths linking $r_{1,}$, and $r_{1,}^{\prime}$. In ñite-temperature studies of bulk liquid helium. Cenerley and Pollock ${ }^{28} 29$ have usei this method to determine the Green's function of Eq. 39.

The simplest feasible GFMC algorithm can be described as follows:
!. Begin with a set of points in configuration space distributed with probability density Ψ, Ψ^{\prime}. At tie zeroth : eration. Ψ^{0} is the trial wave function Ψ_{T} (here assumed to be the same as Ψ_{1}), so the original set of points can be generated with the Metropolis methods deacribed previously.
2. For each point in the ith generation \mathbf{R}. generate a new point \mathbf{R}^{\prime} in the 3.A dimensional space by sampling from a normalized approximate Green's function $\dot{\sigma}\left(\mathbf{R} . \mathbf{R}^{\prime}\right)$. In the simplest case, \dot{G} can be taken to be the free particle Green's function. A better choice. though. is to include some information about the impiortance function. for example by including the first derivative of $\Psi_{l}(\mathbf{R})$ is i
3. Assign each configuration a weight equal to the ratio of the true importance sample: Green's function to the a_{1} proximate Green's function (i). This ratio is given by (F.q. 39):

$$
\begin{equation*}
\left.w_{1}=\frac{\Psi_{l}\left(\mathbf{R}^{\prime}\right)}{\Psi_{l}(\mathbf{R})} \frac{G_{0}\left(\mathbf{R}^{\prime}, \mathbf{R}\right)}{\dot{G}\left(\mathbf{R}^{\prime}, \mathbf{R}\right)} \prod_{1<,} \frac{g_{1,}\left(\mathbf{r}_{1},, r_{1,}\right)}{g_{1,}^{0}\left(\mathbf{r}_{1}, r_{1}^{\prime},\right.}\right) \tag{11}
\end{equation*}
$$

1. 'impute all quantaties of interest at the location \mathbf{R}^{\prime}. and inclute thrm in a winhted average over all points. For example. the energy at mereration 1 ran ber ivaluaied as:

$$
\begin{equation*}
\sum_{1} w, \frac{\Psi_{r}^{\prime}\left(\mathbf{R}_{j}^{\prime}\right) H \Psi_{1}\left(\mathbf{R}_{j}^{\prime}\right)}{\Psi_{r}^{\prime}\left(\mathbf{R}_{j}^{\prime}\right) \Psi_{T}\left(\mathbf{R}_{j}^{\prime}\right)} \tag{12}
\end{equation*}
$$

for ther rise $\boldsymbol{\Psi}_{\mathbf{1}}=\boldsymbol{\Psi}_{\mathbf{T}}$. In the more general case. both the numerator

$$
\begin{equation*}
. V=\sum_{1} w_{1}\left[\frac{\Psi_{\Gamma}^{\prime}\left(\mathbf{R}_{j}^{\prime}\right) / / \Psi_{r}\left(\mathbf{R}_{j}^{\prime}\right)}{\Psi_{r}^{\prime}\left(\mathbf{R}_{i}^{\prime}\right) \Psi_{i}\left(\mathbf{R}_{i}^{\prime}\right)}\right]\left[\frac{\Psi_{r}\left(\mathbf{R}_{j}^{\prime}\right)}{\Psi_{l}\left(\mathbf{R}_{1}^{\prime}\right)}\right] \tag{1131}
\end{equation*}
$$

and denominator

$$
\begin{equation*}
D=\sum_{i} \omega_{i} \frac{\Psi_{T}\left(\mathbf{R}_{i}^{\prime}\right)}{\Psi_{l}\left(\mathbf{R}_{\mathrm{i}}^{\prime}\right)} \tag{44}
\end{equation*}
$$

must be evaluated, and the energy is V / D.
5. Each weighted configuration is replaced by n copies of the configuration with unit weight, n being chosen to replicate on average the original weight w_{1}. For example, if w_{i} is 0.5 , choose n to be 1 half the time and 0 half the time: if w_{1} is 2.1 , keep two copies with 90% probability and three copies with 10% probability.

Steps 2 through 5 are then repeated until convergence, each repetition representing one iteration of Eq. 37. A constant can be added to the Hamiltonian to control the growth or decrease of the population size. If this onnstant is such that the ground state energy is precisely zero, the population will remain constant on average. One almost never knows the exact energy iritially, but the constant can be adjusted as the calculation proceeds. The growth estimate of the energy can be calculated as the logarithm of the ratio of population sizes divided by the time step Δr since the ground state eventually dominates Eq. 31. In fact, this provides a very important consistency check on the calculation. The energy as determined by the growth of the population should be consistent with that determined by averaging over the individual points, as in step 4 above.

It isn't immediately obvious that the branching step above is necessary. Indeed. the results obtained by merely retaining the weight facters would be identical, on iverage. to those obtained with branching. However, the branching process greatly reduces the statistical error. After many generations without branching the weights of a few configurations will become much larger than the rest, and most of the computer time will be spent calculating quantities that have very low weights. Convoquently. such a calculation will be very inefficient.

Is I have mentioned, Green's Function Monte ('arlo algorithins can be conitrinted which eliminate all short time approximations. Such a!gorithms are somewhat more compiicated but have proven to be extremely valuable in condensed matIrr phyins. where they have been used to determine the ground state energy of buik ${ }^{1}$ Ild as a function of the density. ${ }^{10}$ Some analogies ran be made which counct urlium atoms to nuclear physics, as the helimn helium potential is very repulsive at .hor; distances (due to the Pauli principle) and wenkly attractive at large distances. l'he (il: Ml and experimental zero-temperature equations of state agree within approxmancely 0.1 K over a wide range of densities mompassing both the liguid and ailin rexums. Ifelimu is an extremely strongly interacting guantum systen: and the ugrevene of the many body calculations with experimental reanlts in very impres. *ive. Such calculatoms typically ruploy 50 to 1.50 atoms comfined within a periodic box. Oilier quantities, such an the structure function $S(k)$, have also bern computed .und "xcrellent agrerment letwern theneretical and experimental results is achieved.

We now tura to fermion problems, which are considerably more difficult. In the preceding discussions, I have implicitly assumed that the wave function is positive definite. The ground state wave function of a fermion system, however, necessarily involves both positive and negative regions because it must be anti-symmetric. In some lattice problems. notably lattice QCD at zero baryon density and electronic lattice problems at half filling. the fermion problem can be overcome by introducing auxiliary fields which transform the problem into a bosonic equivalent. ${ }^{30}$ Here I will cracern myself only with continuum problems, however. Naively, the anti-symmetry can te treated by writing the wave function as the difference of two functions. each of which is positive definite:

$$
\begin{equation*}
\Psi^{\prime}=\Psi^{+\prime}-\Psi^{-1} . \tag{4.5}
\end{equation*}
$$

Equation 34 can then be used to iterate each of the two components separately, and the results combined to determine the fermion ground state. When determining the expectation values. we will aiways take the overlap with an anti-symmetric trial function, hence eliminating any bosonic components in the calculation. The lowestenergy state obtained afte: many iterations will be the fermion ground state.

Figuru 2) Iransient estimation GFMC for the lowest anti-symmetric state in a 1 dimensional inlinite spuare well. The anti-symumetric wave function is given by the difference brewrent ψ^{+}(ollid line) and ψ^{-}(dashed line).

Ihe fallacy in this smple approach is illustrated in Figure ?2. Athough the lifference between the positive and uegative distributions is. in fact. anti-svimuctric. this out: sumuetric vigual is completely dommated by statistical noise in the linut "if matiy wrations (larger). In alie tigure, we ronsider solving for the lowest ruergy
 trasity diserbution of the pessitive and negather configurations. life top portom if the ligure premens the intial liserbintion. Her two components $\boldsymbol{\psi}^{+}$and Ψ^{-}are
well-separated since ihey are taken from the positive and negative regions of a trial wave function. As the calculation proceeds (middle figure), the two distributions begin to overlap as they diffuse throughout the box. The signal we are interested in is the anti-symmetric wave function, here represented by the difference in the two curves.

As the iterations proceed, the relative size of this signal (bottom figure) becomes smaller and smaller, eventually being completely dominated by statistical noise. The bosonic ground state is always lower than the iermion state for spin-independent potentials, inence the growth in statistical error as the calculation proceeds. This growth arises because any bosonic signal which is introduced through statistical fluctuations increases at a faster rate than the fermion components of the wave function.

For at least a few iterations, one can allow the population size in the GF.MC calculation to grow sufficiently to overcome this difficulty. This method is termed 'transient estimation ${ }^{31}$ and is very successful for some quantum syatems, for exainple in studies of the electron gas ${ }^{32}$ and liquid ${ }^{3} \mathrm{He} .^{31.33}$ It is possible to prove that you can obtain a series of decreasing upper bounds to the exact ground state energy. simply I.v projecting out the anti-symmetric signal for as long as possible. The value of this inethod depends upon the accuracy of the initial trial wave function and upon the difference in energy between the lowest symmetric and anti-symmetric solutions of the Hamiltonian. The computer time required grows exponentially with the number of iterations. however, so it is not always practical to obtain a converged result.

Another variational method is also commonly used for fermion systems, the socalled 'fixed-node' method. ${ }^{13.11}$ In this case one defines two separate regions of configuration space. one for the positive configurations (those associated with Ψ^{+}), and one for the negative. The positive configurations are rot allowed to diffuse into the negative region and the negative configurations cannot diffuse into the positive region. Separatiln the system this way is equivalent to solving for a modified Hamiltonian in which ati intinite barrier exists along the nodal surface. This modified Hamiltonian r'ssentially tarris the system into an approximately equivalent bosonic problem which inay be solved without difficulty with GFMC.

The solution is only approximate because of the possible discontinuities in the derivative of the wave function at the todal surface. If the nodal surface is known exactly. the fixed-node solution will yield the exact: fermion ground state. However. the "xact nodal surface is usually only known in one-dinensional problems like the iphare wrll example above. In one dimension, the wav. function is zero wheneven ifo frrmons are at the same point. but in many dimensions this condition is insuf licicut (1) completely determine the $3 \mathrm{~A}-1$ dinensional nodal surface. Neverthelens. wry winrame upper bounds to the ground state mergy can often be obtained with the lixeri: :mine methoil. The nolal surface is usmally taken from the most accurate avalable variational wave function.

I surven of strongly interacting ${ }^{1} 1 \mathrm{l}$ atome provides a good test case for Sonter

Carlo algorithms. By emploving periodic boundary conditions with different box sizes, one can simulate an infinite system of atoms and determine the ground state energy as a function of density An atom-atom interaction mudel has been developed by Aziz. ${ }^{34}$ which consists of a strongly repulsive core region and a weakly attractive tail. The repulsive core arises from the fermi repulsion of the electrons in the atom. and the attractive tail is a result of electron re-arrangemerts and is dominated at long distance by the atom's induced dipole moments.

The figure below compares the results of Variational and 'jreen's Function. Monte Carlo calculations with the experimental equation of state. ${ }^{11.33}$ As can be seen in the figure. the agreement between GFMC and experiment is excellent: the two curves are within approximately 0.1 K at all densities. The variational results are higher than the GF.MC by $\sim 0.3 \mathrm{~K}$. It is difficult io go beyond an accuracy of $\sim 0.1 \mathrm{~K}$ in these calculations. because at this level finite-size effects and three-atom forces become important.

Figure 3) Ground state energy per atom versus density for liquid ${ }^{3} \mathrm{He}$. The squares indicate nariational Monte ('arlo calculations. the circles fixed-node GFMC. and the solid line the ixpreimintal results.

It the equilibrium density, a tramsient estimation calculation has also been per. formell. It yields an upper bound for the gromad state energy of .2.4.4 $\pm 0.0 .4 \mathrm{~K}$. whilh in within statistical errors of the experimental $\cdot \underline{2} 47 \mathrm{~K}$. We call also compare the lwou bedy distribution function $g(r)$ that is measured in neutron and X. ray urat. "rime: "xperiments. The calculated curves are compared to experimental results in ligure 1 Cince this is an infinite lique I g(r) goes to one at large distances. At suall Instanios there is a large hole in the distribution function due to the suronk oure repulsion. The theory and experiment agree very well. although there are vight differeners at spparations where finite size effects may be innortant.

Figure 4) Two-body distribution function $g(r)$ for liquid ${ }^{3} \mathrm{He}$ at experimental equilibrium density. The statistical errors in the Monte Carlo calculation are roughly indicated by the size of the symbole.

The GFMC calculations for bulk ${ }^{3} \mathrm{He}$ employ 54 particles with periodic boundary conditions. This is exactly the type of thing we would like to do in nuclear physics. The equation of state of nuclear matter (even at zero temperature) is a very important quantity, as are measurements of two-body distibution functions. Due to the complexities of the nuclear interaction. though, we are currently limited to studying very light nuclei. GFMC calculations with state-dependent interactions are described in the next section.

B. GF.MC - Applications to Light , Vuclei

The primary complication that arises in nuclear physics GFMC calculations is the state-dependence of the interaction. The potential, and hence the pair Green's functions (Cq. 39), are operators in spin-isospin space. Consequently, we must employ generalizations of the previous schemes to performa Green's function Monte (.arlo calculation. For example, importance sampling is more complicated aince the wave function is not a simple number. In addition. the weights in general will not be a single number (or even necessarily real), so branching techniques must be modified.

Explicitly evaluating even the pair Green's function is a rather daunting task given the fact that it depends upon so many variables. In addition, the potentials betwern lifferent pairs do not commute, so the pair approximation itself breaks down much more rapidly in nuclear physics than in condensed-matter problems. For these reasoris. we construct approximate pair propagators by constructing 'sub-paths' betweell r_{1}, and r_{1}^{\prime}, to evaluate $g_{i j}\left(r_{1}, r_{1,}^{\prime}\right)$. These sub-paths are simply gaussian paths
with fixed end-points, a particular path through points r_{i}^{1}, r_{1}^{2}, etc. has a probability proportional to:

$$
\begin{equation*}
P\left(\mathbf{r}_{1,}^{1}, \mathbf{r}_{1,1}^{2}, \ldots \mathbf{r}_{1,}^{N-1}\right) \times \prod_{k=0}^{N-1} \exp \left[-\frac{\left(\mathbf{r}_{1}^{k}-r_{1}^{k+1}\right)^{2}}{\hbar \hbar^{2}} \frac{\hbar^{2} /(2 \mu N)}{}\right] \tag{46}
\end{equation*}
$$

where $r_{1,}^{0}$ is the fixed initial point and $r_{,}^{V}$, is the fixed endpoint. In the limit $N=1$ we get the original short-time approximation (Eq. 33), and in the limit.$V \rightarrow m$ we can reconstruct the complete dair approximation (Eq. 39). When V is a power of two the path can be easily reconstructed by successive divisions, first sampling $r^{V / 2}$ and then subdividing between $r^{N / 2}$ and the endpoints, etc. We typically use $. V=8$, which is a compromise between accuracy and efficiency in calculaiing the pair propagator. We also sample several paths hetween $\mathbf{r}_{i j}$, and $\mathbf{r}_{i j}^{\prime}$, incorporating antithetic sampling techniques ${ }^{23}$ to reduce the variance.

At this stage there doesn't appear to be much logic in using sub-paths since we could obtain the same effect by simply using a smaller time step in the original equations. The operstor algebra enables inuch greater efficiency, however, when we consider only one pair of particles at a time. If we fix the positions of the particles. the momentum-independent operators in the interaction form a closed set and we can trivially exponentiate the potential. ${ }^{35}$ The ratio of true to free particle pair Green's functions (Eq. 39) is approximated as:

$$
\begin{equation*}
\frac{g_{1,}\left(r_{1,}, r_{1,}^{\prime}\right)}{g_{1,}^{0}\left(r_{1}, r_{1,1}^{\prime}\right)} \approx \exp \left[\frac{-V\left(r_{1,}^{0}\right) \Delta r}{2 N}\right]\left\{\prod_{k=1}^{V-1} \exp \left[\frac{-V\left(r_{1,}^{k}\right) \Delta r}{i V}\right]\right\} \exp \left[\frac{-V\left(r_{i j}^{v}\right) \Delta r}{2 . V}\right] . \tag{+i}
\end{equation*}
$$

The operator algebra given in reference 35 can then be employed to approximate this ratio in terms of the six operators

$$
\begin{equation*}
O_{1,}^{k}=\left\{1, \sigma_{1} \cdot \sigma_{1}, \tau_{1} \cdot \tau_{1}, \sigma_{1} \cdot \sigma_{1} \tau_{1} \cdot \tau_{1}, S_{1}, S_{1}, r_{1} \cdot r_{3}\right\} \tag{18}
\end{equation*}
$$

and associated coefficients. In forming the full A.body Green's function (Eq. 39). we use a Monte Carlo sampling to symmetrize over the order of pair Green's functions.

The unclear interaction also contains three nucleon and momentum-dependent two nurlenh interartions. These interactions are relatively weak. hence the following цuneralization of Eid. 39 can be employed:

$$
\begin{equation*}
1 ;\left(\mathbf{R}^{\prime} \cdot \mathbf{R}\right) \approx\left[l-\sum_{1<,<k} \Delta r V_{i, k}\right]\left[\prod _ { 1 < 1 } \left[1-\Delta r V_{1 j}^{L \cdot s} L \cdot s_{1, j} j\left(i_{0}\left(\mathbf{R}^{\prime} \cdot \mathbf{R}\right)\right] \prod_{,<,} \frac{g_{1,}\left(\mathbf{r}_{1, j} \cdot \mathbf{r}_{1,}^{\prime}\right)}{g_{1, j}^{0}\left(\mathbf{r}_{1,} \cdot \mathbf{r}_{1,}^{\prime}\right)} .\right.\right. \tag{4!}
\end{equation*}
$$

 function. More accurate expressions for (i are possible but difficult to implement. lior "xample. cxponemiating ine two-pion-exclamge threc-nuclenn interaction involves a -mmplicateal spin-isospin structure.

The remaining non-local terms are proportional to the square of the momentum operator, and hence can be described in this method as a direction-dependent 'effective mass'. ${ }^{36}$ However, the fact that this effective mass depends upon spin and isospin limits our ability to do GFMC calculations, since the basis of the method is thai the Green's function can be written as a free-particle Green's function times smail corrertions (of the order of Δr). This is no longer true for terms such as L^{2} and $L \cdot S^{2}$, hence we solve for a simplified Argonne V8 model in which no such terms are present. The Argonne V8 model is constructed to reproduce the deuteron exactly. and to reproduce the full S- and P-wave interaction with the exception of the coupling of P and F waves. The difference between the full interaction model and the simplified V8 model can then be computed in perturbation theory. This perturbative effect is fairly small, approximately 0.15 MeV in the triton and 0.9 MeV in the alpha particle. Improved methods for treating state-dipendent non-local interactions would be extremely va!:دable.

The basic GFMC algorithm desc.ibed previourly now goes through with a few fairly straightforward generalizations. Each configuration now consists not only of the coordinates of the particles, but also a set of amplitudes in the various spin-isospin channels. The amplitudes are products of the hermitian conjugate of the trial wave function times the amplitude of the true wave function. At each iteration, we first divide each amplitude by the hermitian conjugate of Ψ_{T}, hence reconstructing the wave function. Then we construct an approximate spin-independent Green's function \bar{G} and sample a new point \mathbf{R}^{\prime} from $\bar{G}\left(\mathbf{R}^{\prime}, \mathbf{R}\right)$. One alternative is to choose \dot{G} to be the the free A-body propagator times the ratio of central correlations in the trial wave function at the points \mathbf{R}^{\prime} and \mathbf{R}. This choice incorporates an approximate importance sampling.

Given the initial and final points in configuration ; pace. we then construct the full Green's function in operator form, and calcuiate its effect acting upon the wave function at the initial point. Finally, we multiply each component of the wave function by the hermitian conjugate of the trial function's component at the new point. This completes one iteration of the Green's function equation. Branching is incorporated by using the absolute value of the sum of all amplitudes in the various channels.

Within each run we iterate approximately 1000 configurations for several hundred to a thousand generations. Approximately twenty runs are required to accurately assess the statistical errors, so the calculations are quite computer intensive. The alpha particle calculations typically require 50 - 100 hours of cpu time on a CrayX.MP. It may be possible to speed them up by incorporating better approximations to the A-particle Greens function. and hence allowing larger time steps and fewer inerations. The results obtained to date with !oth Variational and Creen's function Wrutc (isrlo inethods are presented in the next section.

6. Results

I will first present results from a new set of GFMC calculations for the alpha particle with a chree-nucleon-interaction (T.NI) ${ }^{37.38}$ The convergence of the GFMC calculation is demonstrated in figure 5 , which shows the energy plotted as a function of the total iteration time τ (Eq. 31). At $\tau=0$. the eneigy is equal to the variational result. and it quickly drops to the exact ground state energy. In fact. the plot covers only the initial part of the calculation, up to a total iteration time of $0.012 \mathrm{MeV}^{-1}$. The actual calculation includes 5 times as many iterations, the horizontal lines in the figure are statistical error bounds obtained by averaging the results between 0.024 and $0.060 \mathrm{MeV}^{-1}$. The convergence of the GFMC soll 'ion is determined by the accuracy of the trial vave function as well as the excitation structure of the nucleus. In this case the variational wave function seems to contain small components of high energy (short-ranged) excitations, excitations which are rapidly projected out in the GFMC method.

Figure: ; . . Mpha Particle Ground State Energy ws. iteration time r.
The variational wave function used in this calculation was taken from reference Uli anl was optimized for the Argonne Vi 4 plus C'rbina model i T.VI. Consequently. It Hors int provide a very good estimate for the ground state energy with the inolel - T.il. whill has a stronger repulsive component and a weaker two-pion-rxchange torin. Howrwer, the rms radius of this thal wave function is very near the exa - : r"sult. heolice it requires smaller extrapolations for the rstimates of other propertirs. (if:Mc: produces a wave function on!! in a slatistical seuse. and therefore ground
state energy expectation values other than the energy are extrapolated from 'mixed' and variational estimates via:

$$
\begin{equation*}
\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle \approx 2\left(\Psi_{T}|H| \Psi_{0}\right\rangle-\left\langle\Psi_{T}\right| O\left|\Psi_{T}\right\rangle \tag{.50}
\end{equation*}
$$

The extrapolations required with the present variational wave function are generally quite small.

The three-nucleon-interaction included in these calculations is the Argonne model $8 .^{37}$ At long distances, the operator structure of this interaction is assumed to be that of the two-pion-exchange T.NI (Fig. 6). In this diagram, one nucleon is excited through pion exchange to a delta resonance, which then decays by exchanging a pion with a third nucleon. Such a diagram is clearly not included in any iteration of two-body terms, and consequently must be represented, if we restrict ourselves to nucleon degrees of freedom. as a three-body force. The Urbana TNI has the form: ${ }^{d}$

$$
\begin{equation*}
V_{1 j k}^{\prime}=U_{0} \sum_{i v c} W_{2 \pi}\left(r_{1 j}\right) W_{2 \pi}\left(r_{i k}\right)+A_{0} \sum_{c \nu c} V_{2 \pi}\left(r_{1}, r_{1 k}\right) . \tag{.51}
\end{equation*}
$$

In addition to the two-pion-exchange T.VI. the Urbana model contains a short-range repulsive term proportional to U_{0}. This term has the range of a two pion exchange on each leg, and can be motivated through dispersive corrections in the three-nucleon system. The interaction model also gives reasonable predictions for nuclear matter saturation properties in variational integral equation studies. ${ }^{39}$

Figure 6) Two-pion-exchange three nucleon interaction. The dashed lines represent pxchanged pions. the heavy solid line a delta resonance. and the thin solid lines represent mucleons.

There are, of comrse. many diagrams that can contribute to the T.VI. making it extremely difficult to derive the three bolly force in any furdamental way. ('onsequently. we adopt a phenomenological approach similar to that used to construct the intermeeliate- and short-ranged part of the .N.V furce. and aljust the T.NI's strength 10) tit the three-body binding energy. The parameters obtained are in rough agree. ment with expectationg obtained be, imating the strength of two-pion-exchange dhagraus such as Figure (i. I world, ime you that the three-body force is quit-
 of the en Meve total biading in the apha particle.

We obtain a ground state energy of $-29.20 \pm 0.15 \mathrm{MeV}$ for the Argonne V8 + TNI model 8 interaction, approximately one MeV overbound compared to the experimental -28.3 MeV . Employing perturbation theory to estimate the difference between the Argonne V14 NN interaction and the V8 model yields 0.9 MeV repulsion. yielding a total energy of $-28.3 \pm 0.2 \mathrm{MeV}$. in remarkably good agreement with the experimental result. One should be somewhat cautious because of our use of perturbation theory in the difference between the V14 and V' 8 models; but it appears that the same three body force can be used to produce very accurate binding energies for three and four body nuclei. The Urbana TNI model 8 has been chosen to provide a good fit to the triton binding energy. ${ }^{40}$ Faddeev results give - -4.45 compared to the experimental -8.48 MeV . We have also attempted to check our perturbative estimate using three body naclei, perturbation theory yields very good results but the difference between V8 and V14 models is only 0.15 MeV for $\mathrm{A}=3$. The expectation value of the three nucleon interaction is a small fraction ($\leq 5 \%$) of the total potential energy, so at this level there is no apparent reason to introduce four- or higher-body interaction terms. Other models (Reid. Nijınegen. ...) of the NiN potential give a similar underbinding for the three- and four-body nuclei. hence it should be possible to fit the binding energies of these nuclei as well with an appropriate 'T.VI model.

The most accuraie variational calculations to date ${ }^{\text {s }}$ underestimate the alpha particle binding by approximately one Mc.V. As always, the total binding energy results from a sensitive cancellation between kinetic and potential terms. Each of these terms is on the order of 100 MeV (Table 2), hence the TNI represents ~ ;) \% of the two-body potential energy, but a large fraction of the binding energy: ('onsequently, accurate calculations are very important when studying the effects iff the t, ree-nucleon interaction. We also present several other expectation values in lable 2 . Although these numbers are not directly a cessible experimentally. they do provide a useful guide to understanding light nuclei.

Table 2: Alpha Particle Expectation Vialues

Energy (McV)	28.3	(0.2)
(T)	109.3	(1.2)
($V_{\text {NN }}$)	.136.5	(1.5)
(V_{n})	. 111.8	(1.0)
$\left\langle V_{1}\right\rangle$	25.5	(2.5)
(V_{j})	223:2	(1.1)
(Viou)	0.75	(1).01)
(V_{3-1})	S. 0	(0.2)
($l_{3-2 n}$)	10.3	(0.2)
$\left(r^{2}\right)^{1 / 2}(f m)$	1.1.:	(0.01)

Of particular interest is the strong effect of the tensor interaction in the alpha particle. With the Argonne N.N interaction, the tensor components contribute approximately $2 / 3$ of the two-body potential energy in the alpha particle. Almost exactly the same fraction is found in Faddeev calculations of three-body nuclei and in cluster Monte Carlo calculations of ${ }^{16} 0^{11}$ The entry V_{π} in the table gives the contribution of the full one-pion-exchange term in the AV14 interaction, it is almost equal to the total $V_{N, ~}$ expectation value. The Argonne .VN interaction can be written as a sum of one-pion exchange, short range, and intermediate (two-pion) range terms. As shown in the table, there is a strong cancellation between the intermediate range attraction V_{1} and the short-range repulsion V, in the two-body interaction.

Another measure of the strength of the tensor interaction is the D state probability in the four-nucleon ground state. With the Argonne plus Urbana model 8 I.NI interaction. the D-state probability is 16%, other models range from 12 to $1 \bar{i}$ I7. These probabilities are nearly consistent with what one would expect based upon the number of triplet pairs in the $A=2$, 3. and 4 body nuclei; a ratio of 1:1.5:3. In addition, the asymptotic D to S state ratio of the alpha particle wave function is in good agreement with experimental results. ${ }^{3}$ The remainder of the wave function is dominated by the fully symmetric S-wave state, which has a probability of $\$ 2.3(0.2) \%$. In addition, there are small components of other symmetries, either S. or P -wave.

Fixuri i) VMC and (ifMc results for the proton densty in the alpha particie.
Nie have aho romputed the probon ilensity for both the mariational and (if:Me
 .fere urly requal overall. l'here is a suall difference within 0.5 fun of the couter

does not appear in the variational results. This dip appears in only a very small fraction of the total volume because of the r^{2} phase space factor. .Vevertheless. it does have some consequences when calculating the alpha particle charge form factor. In the impulse approximation. the charge form factor can be obtained as the fourier transform of the one-body charge distribution.

Ir reality, though, the effects of two-body charge and current operators can be impirtant even at relatively low momentum transfer. The effects of these two-body terms must be included in order to obtain meaningful comparisons with experimental results. Riska ${ }^{42}$ has developed a method for constructing models of the exchange currents which satisfy the continuity equation:

$$
\nabla \cdot \bar{j}_{e x}+i\left[k_{i}, \rho\right]=0,
$$

with an essentially arbitrary two nucleon interaction V_{1}. Terms in the interaction can be identified which have the appropriate quantum numbers for pion or rho exchange. The continuity equation can then be used to constrain the pi- and rho-exchange terms in the current. which are called 'model-independent' because they are obtained directly from the interaction. In addition. there are transverse pieces in the current (e.g. V $\Delta y, \rho \pi y$, and $\omega \pi \gamma$) which are not so constrained. The inost important two-body terms in the current are due to the pion:

$$
\begin{align*}
& \frac{\bar{k}_{1}-\bar{k}_{1}}{k_{1}^{2}-k_{j}^{2}}\left(\sigma_{1} \cdot k_{1} \sigma_{3} \cdot k_{3}\right)\left[i_{*}\left(k_{2}\right)-r_{r}\left(k_{1}\right)\right] G_{E}^{v}(\eta) . \tag{1931}
\end{align*}
$$

where k_{1} is the momentum transferred to mucleon i and i_{n} is the fourier transform of the tirms int the interaction assorinted with the quantum numbers of exchanger ${ }^{4}$ pinis. In the linit of point pions and mulleons.

$$
\begin{equation*}
i_{r}(k)-\frac{1}{3} \frac{f_{4}^{2}}{m^{2}} \frac{1}{k^{2}+m^{2}} \tag{in}
\end{equation*}
$$

Riska's merlod determines $\dot{b}_{8}(k)$ and $\dot{B}_{n}(k)$ lirectly from the interaction. In fact. hais urethed produces nearly point-like pi- and rho-propagators with the Argomic interan 1 om.

Figure 8a) Magnetic form factor of ${ }^{3} \mathrm{H}$. from Schiavilla and Riska. ${ }^{43}$ Impulse approximation (IA) results are shown along with the complete results (IA +MEC). Curves labeled FAD employ the exact Faddeev wave function. and variational results are labeled VAR.

Figure ab) Maguetic form factior if 'lin. as abiove.

Schiavilla and Riska have computed the magnetic form factors of ${ }^{3} \mathrm{He}$ and ${ }^{3} \mathrm{H}$ (Fig. 8) with this method, as well as the backward cross-section for the electrodisintegration of the deuteron. Several sets of curves are included in the figure, including resulis with the impulse currents alone and impulse plus two-body currents. In addition. the form factors obtained with Variational .Monte Carlo and Faddeev methods are compared. The two sets of calcutations give very similar results. although there are scime diiferences in the region of the diffraction minimum and beyond. Clearly. the contributions of the exchange currents are crucial to reproducing the experimental results. particularly the contribution of the isovector exchange current operators. Schiavilla and Riska have alao calculated the backward elecirodisintegration of the leuteron near threshold. This reaction is also very sengitive to the isovector exrhange currents. and is well reproduced in the calculations up to very high values of the momentum transfer.

Thry have also computed the charge form factors of the three-body nucleit4 and whain good agreement with experime \cdot al results. Exchange corrections to the charge - peratur are more speculative since they contain relativistic correctionsts and are not ronstramed by the continuity equation. Some of these ambiguities are eliminated in the shlia particle however lue to the fact that the alpha particle is an isosialar instem. We have combined the following one-body rharge operator:
 - harme nprator har to pons:

$$
\begin{equation*}
\left.\left\{r_{1}^{\prime}\left(l_{1}\right) r_{1} \cdot r_{1}+r_{1}^{\cdot 6}\left(l_{1}\right) r_{12}\right\}\left(\dot{\sigma}_{3} \cdot \mid \sigma_{1} \cdot k_{1}\right) r_{2}\left(k_{1}\right)\right\} \tag{iti}
\end{equation*}
$$

1) calculate the charge form factor of the alpha particle. This form of charge oproratior asas first consulered by Klort and Cjon in examining pion photoproduction. ${ }^{\text {me }}$ Wi-

; ilin'

Figure 9) VMC and GFMC results for one-body and pion contributions to the alpha particle charge form factor.

The full calculations are compared to experimental results in Fig. 10. The GFMC ralculation is in excellent agreement with experimental resul's up to a mornentum transfer of $\approx: .5 \mathrm{fm}^{-1}$. Beyond that point, the calculated form factor is significantly larger than experimental results. Nevertheless. the overall agreement is excellent. particularly at lower momentum transfers where one would expect the theory 11 work best.

Another very important goal in nuclear physics has been to obtain an experimental determination of the correlations of nucleons within a nucleus. Inclusive electron scattering experiments can measure the Coulomb sum, which provides a useful tool for studying these correlations. The Coulomb sum is defined as:

$$
\begin{equation*}
S=\frac{1}{Z} \int_{\omega ; 1}^{\infty} \frac{R_{L}(q \cdot \omega)}{\left[G_{E}\left(q^{2}\right)\right]^{2}} d \omega \tag{5i}
\end{equation*}
$$

where R_{L} is the longitudinal response of the nucleus and G_{E} is the proion form factor. The integral extends from energies just above elastic scattering to infinity, and hence we can use closure to calculate the Coulomb sum as a ground state expectation value.

$$
\begin{equation*}
S=\frac{1}{Z}\left[\left(0\left|\sum_{j=1}^{A} \rho_{j}^{\dagger}(q) \sum_{k=1}^{A} \rho_{k}(q)\right| 0\right\rangle-\frac{\left[Z F_{c}\left(q^{2}\right)\right]^{2}}{\left[G_{E}\left(q^{2}\right)\right]^{2}}\right], \tag{58}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{k}(q)=\exp \left(i q \cdot r_{k}\right)\left[\frac{1+r_{s k}}{\underline{\underline{m}}}\right] \tag{59}
\end{equation*}
$$

if we ignore small neutron contributions (which are included in the calculations) and I wo body terms. In this approximation, the Coulomb sum is simply:

$$
\begin{equation*}
s=1-Z \frac{\left.F_{:}\left(q^{2}\right)\right]^{2}}{\left[G_{E}\left(q^{2}\right)\right]^{2}}+\frac{1}{Z} \mu_{\text {pp }}(q) . \tag{60}
\end{equation*}
$$

where F. is the charge form factor of the nucleus and $\rho_{p p}(q)$ is the fourier transform of the two-body distribution function integrated over the pair's center-of-mass.

Figure (I) (omblomb sum in the alpha particlo.

The calculations are compared to experimental results in Figure 11. Two caveats should te noted concerning this comparison. First, the experimental results only extend to a finite energy, and consequently must be extrapolated to determine the full Coulomb sum. Schiavilla et a..$^{4-40}$ calculated the energy- and energy-squared weighted sum rules with a variational wave function; assumed a functional form for the response in the tail region, and fit this curve to the calculated moments. The contributions of the tail region in the experiment are given by the difference between the points labeled 'extr' and 'trunc'. The latter includes only the response up to the experimental limit. As shown in the figure, the VMC and GFMC curves are nearly identical. and both agree very well with the extrapolated results.

Beck ${ }^{30}$ has extracted $\rho_{p p}(q)$ from the experimental results in the three-nucleon system. and obtained the curve shown in Figure 12. He combined the experimental Coulomb sum and charge form factor, the results of Schiavilla. et al. for the (small) neutron contributions, and a slightly different extrapolation technique to produce the results shown in the figure. Although the qualitative features of the experimental and theoretical curves are similar, the experimental $\rho_{p p}(q)$ is much higher bevond the first minimum. This would indicate even a stronger correlation in the p-otons than is present theoretically, but contributions of two-body operators to the Coulonb sum should be included before strong conclusions are drawn.

F'isure (2) •Experimental' vs. calculated (solid line) $\rho_{p p}(q)$, q it MeV. from Beck. ${ }^{\text {so }}$
l'wo mimortant avenues are open for future research once a consistent picture of light nuclei has been obtained. The first of these is calculations of the structure and properties of heavier nuclei. The methods I have described in these lectures ram he directly extended only up to approxmately $A=A$, and work in this area is
currently under way. Beyond $A=8$, better methods have to be developed to handle the spin-isospin degrees of freedom in the nucleus. Important progress in this regard has been made by Pieper et al.. ${ }^{1 "}$ who have employed a cluster summation technique to study ${ }^{15} \mathrm{O}$. To date, variational calculations with the Argonne Vit pluy T.NI model i interaction (which is more attractive than mo fe! 8) give approxamately i Mel' binding per nucleon out of the experimental 8 Mel . They are currently working on improvements to both the variational wave function and the cluster summation methods. Improvements to the variational wave function incorporate two-body $L \cdot S$ correlations as well as improved three-nucleon correlations

The other outstanding problem in the application of Monte Carlo methods to nuclear physics is the study of dynamic properties. a very ambitious goa!. The primary successes to date have been in the study of low-energy scattering and electromagnetic transitions, as well as in approximate treatments of dynamic response in electron scattering. ${ }^{52.53}$ I will concentrate on the former topic. and particularly upon the $n+{ }^{\text {J }} \mathrm{He} \rightarrow \alpha+\gamma$ reaction.

Variational Monte Carlo methods can be employed to study low-energy scattering in a regime where only two-body breakup is energetically allowed. ${ }^{\text {sh }}$ The basic idea is similar to R-matrix approaches. one studies eigenstates of the Hamiltonian in which there is no net flux in or out in any channel. In a onechannel problem this amounts to specifying a boundary condition at a radius beyond the interaction region and then performing a variational calculation to determine the energy eigenvalue associated with that boundary condition. The boundary condition can take the form of either requiring the relative wave function to be zero at a specific radius, ${ }^{44}$ or more geneially requiring a specific logarithmic derivative. ${ }^{35}$ Determining the eigenvalue as a function of the boundary condition is then equivalent to determining the phase shift as a function of energy.

In principle (iF.MC methods can also be used to sturly these 'ow-energy scattering probicins. and consequently to systematically improve any variational results. This sicheme ran also be generalized to multi-channel scattering processes but requires a Actermination of the energies and relative amplitudes at the channel surfares. The method's practicality depends upon the ability to diagonalize in a small basis ($10 \cdot 30$ thates) using Monte (Carlo methods. Preliminary results on small problems indicate that this should be feasible, but mult-channel methods have not been tested on a roalist ic problem.

Wi- have used this method to study the $n+{ }^{1} \mid f e \rightarrow a+\gamma$ reaction. ${ }^{3}$ At thermad - Illergirs this reaction is domillated the spin-l s -wave scattering of ncutrms on ' ll . Recout interest in this reaction has centered on its possible relationship to the weak rapture process in the four nucleon system. a reaction which produces the tighoat. rallomme rurgy nentrinos from the sun. liere have been sperulations that these ungtrinos could be measured separately in a future solar nentrino observatory. In ithe impulse approximation. the weak and clewtromagnetic "apture aie closely relis erel.

Our calculations indicate, though, that the radiative transition is dominated by exchange currents. We obtain a strong-interaction scattering length of $3.5 \pm 0.25 \mathrm{fm}$ for the spin one $n \cdot{ }^{3} \mathrm{He}$ state, which agrees well with experimental estimates. U'sing this scattering wave function and a variational ${ }^{4} \mathrm{He}$ wave function, we find that only 10% of the experimental value (60μ barns $)^{56}$ is obtained in the impulse approximation. The low value is to some extent understandable since the impulse cross section is precisely zero in the limit where there is no tensor force, and consequently a purely s-wave alpha particle.

Using the full exchange current models, we find a value of 110μ barns for the cross section. Including only the 'model-independent' terms in the exchange currents gives $i 0 \mu$ barns, in much better agreement with the experiment. A similar result is obtained if we keep only the π exchange terms, as has been done in the n-d capture calculations of Friar, Gibson, and Payne; ${ }^{57}$ and use a cut-off of 5.8π masses in the propagator. In this case we obtain a total cross section which agrees with the experimental value. Our results are quite sensitive to the scattering length, however. a decrease of 0.25 fm in the scattering length would increase the calculated cross sections considerably. We are currently investigating the application of these same methods to the weak capture of protons on ${ }^{3} \mathrm{He}$. They have also recently been applied to the $d+d \rightarrow a+\gamma$ reaction. ${ }^{\text {s }}$

i. Conclusion

Monte Carlo methods provide a valuable tool for understanding the structure and properties of quantum systems. I have concentrated on applications to light nuclei in these lectures, but these methods are equally applicable to other areas of nuclear physics, includinz hypernuclei and quark-model physics. In recent years we have developed a remarkably consistent picture of light nuclei with the help of Monte Carlo and Faddeev methods. Realistic nucleon-nucleon interactions combined with plausible three-nucleon-interaction models have been found to give a good description of the binding energy of three- and four-body nuclei. The calculations to date emphasize the important role of the tensor force. a primary component of this force being due to one-pion-exchange. When coupled with reasonable models of t'vo-body exchange current and charge operators, these 'traditional' models also give remarkably good dearriptions of three- and four-body rlectromagnetic form factors.
l,ight nuclei combine the advantages of relative computational simplicity (many realistic calculations are practical), with physical complexity. They offer an important laboratory for studying a wide variety of nuclear properties. including nucleon unclom correlations, weak and radiative transitions. These processes offer a wide: vaicty of tests for the nuclear llamilonim and exchange current models. Heavier unclei offer the opportunity for atulying the muclear interaction in negative parity tames and wery nentron rich malci. which are important astrophysically through harir comaretion with neutron stars.

The foremost challenge in the future lies in cieveloping new methods to treat quantum dynamics and incorporating relativistic effects in few-body calculations. Some valuable progress has been made in both of these areas, but much remains to be done. Accurate microscopic calculations of the dynamic response of light nuclei to electromagnetic probes is perhaps the most important goal of the next decade.

This work was supported by the U. S. Der .tment of Energy.

References

1. J. Lomnitz Adler, V. R. Pandharipande, and R. A. Smith. Nucl. Phys. A361. 399 (1981).
2. J. Carlson, V. R. Pandharipande. and R. B. Wiringa. Nucl. Phys. A 401. 59 (1'383).
3. R. Schiavilla. V. R. Pandharipande, and R. B. Wiringa. .Vucl. Phys. A 449. 이9 (1986).
4. J. Carlson and R. B. Wiringa. Los Alamos preprint LA-CR-90-411. to appear in Computational Vuclear Phisics, Koonin and Langanke ed., Addison- Wesley.
j. M. H. Kalos. Phys. Rev. 128. 1791 (1962).
5. M. H. Kalos, D. Levesque and L. Verlet, Phys. Rev. A9. 2178 (1974).
i. K. E. Schmidt. in Models .nd Methods in Few-Body Physics. Lecture Notes in Physics 273 (Springer-Verlag, Berlin. 198i).
S. K. E. Schmidt. M. H. Kalos. and G. V. Chester. Phys. Rev. Lett. 47. 307 (19s1).
!1. David.A. Huse and Veit Elser, Phys. Rev. Lett. 60. 2.531 (IJss).
II). M. I. Kalos. M. A. Lee. P. A. Whitlock and G. V. Chester. Plyss. Rev. B24. 115 (1981).
6. R. M. Panoff and J. Carlson. Plyys. Rev. Lett. 62. 1130 (1989).

1!. K. E. Sichnidt and J. W. Moskowitz. J. Stat. Phys. 43. 1027 (1! 366).
1.1. J. IV Moskowitz. K. E. Schnidt. M. A. Lee. and M. II. Kalos. J. ('hem. Phys. 77.319 (1982).
11. K. Dow, et al.. Phys. Rev. Lett 61. 1Filf (19N8).
15. S. I)yıınan, et al.. Phys. Rev. (38. 200) (1988).
16. K. 1: von Reden. et al.. Phys. Rev. (41. 1084 (1990).

20. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C33, 1740 (1986).
21. J. L. Friar. in , Vew Vistas in Electro-, Vuclear Physics, ed. E. L. Tomusiak, H. S. Caplar and E. T. Dressler, Plenum. 1986.
29. B. F. Gibson and Bruce H. J. McKellar, Few-Body Systems 3, 143 (1988).
23. Malvin H. Kalos and Paula A. Whitlock, Monte Carto Methods, Vol. I, John Wiley and Sons, lnc., New York, 1986.
24. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller. and E. Teller. J. Chem. Phys. 21, 1087 (1953).
25. R. B. Wiringa, to be published.
26. J. Carlson, Phys. Rev. C38, 1879 (1988).
27. D. M. Ceperley and B. J. Alder, J. Chem. Phys. 81, 5833 (1986).
28. D. M. Ceperley and E. L. Pollock. Phys. Rev. Lett. 56, 351 (1986).
29. E. L. Pollock and D. M. Ceperley, Phys. Rev. 30, 2555 (1984).
30. D. L. Scalapino and R. L. Sugar, Phys. Rev. Lett. 46. 519 (1981), and R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D24, 2278 (1981), and Phys. Rev. B24, 4295 (1981).
31. M. A. Lee, K. E. Schmidt, M. H. Kalos, and G. V. Chester, Phys. Rev. Lett. 46. i28 (1981).
32. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
33. R. M. Panoff, in Condensed Matter Theories. edited by R. Kalia, P. Vashishta. and R. Bishop (Plenum, New York, 1987), Vol. II.
34. R. A. Aziz, V. P. S. Nain, J. S. Cerley, W. L. Taylor, and G. T. McConville. J. Chem. Phys. 70, 4330 (1979).
35. J. Carlson. Phys. Rev. C36, 2026 (1987).
36. J. Carlson, Nucl. Phys. A508, Id Ic (1990).
if. J. Carlson, to be published.
38. J. Carlson, presented at the Symposium in Honor of Akito Arima, Santa Fe. IiM. 1990; Los Alamos preprint LA-UR-90-2258.
39. IR. B. Wiringa, V. Fiks, and A. Fabrocini. Phys. Rev. C38, 1010 (1988).
10. B. \mathbf{F}. (iibson, private communication.
11. Steven C. Pieper, private communication.
12. D. (). Riska, Physica Scripta, 31 . 471 (!!85).
43. R. Schiavilla and D. O. Riska, Phys. Lett. B244, 373 (1990).
44. R. Schiavilla, V. R. Pandharipande, and D. O. Riska, Phys. Rev. C41, 309 (1990).
45. J. L. Friar, Phys. Rev. C22, 796 (1980), and in Mesons in N:clei, M. Rho and D. H. Wilkinson, ed., North-Holland, 1979.
46. W. Kloet and J. Tjon, Phys. Lett. 49B, 419 (1974).
47. R. Schiavilla, A. Fabrocini, and V. R. Pandharipande, Nucl. Phys. Ai73, 290 (1987).
48. R. Schiavilla, et al., Nucl. Phys. A473, 267 (1987).
49. R. Schiavilla, V. R. Pandharipande, and A. Fabrocini, Phys. Rev. C40, 1484 (1989).
50. D. H. Beck, Phys. Rev. Lett. 64. 268 (1990), and U. of Ill. preprint (NPL)-90-006 (Panic XII invited talk, MIT, June 1990).
51. Steven C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Phys. Rev. Lett. 64, 364 (1990).
52. R. Schiaviila and V. R. Pandharipande, Phys. Rev. C36, 2221 (1987).
53. R. Schiavilla, P'hys. Lett. B 218, I (1989).
54. J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A424, 47 (1984).
55. J. Carlson, D. O. Riska, R. Schiavilla, and R. B. Wiringa, Phys. Rev. C 42, 830 (1990).
56. F. L. H. Wolfs, S. J. Freedman, J. E. Nelson, M. S. Dewey, and G. L. Grerne. Phys. Rev. Lett. 63, 279.1 (1989).
5i. J. L. Friar, B. F. Gibson, and G. L. Payne, to appear in Phys. Lett. B.
58. A. Arriaga, R. Schiavilla. and V. R. Pandharipande, U. of Ill. preprint.

Appendix

Monte Carlo calculations of light nuclei are performed in a basis of definite third components of spin and isospin for each particle. Thus, the wave function at a given point in space can represented as a set of $2^{\wedge} A!/(. V!Z!)$ complex coefficients. The simplest case is the deuteron, where:

$$
\begin{equation*}
\Psi_{d}=f^{c}\left(r_{12}\right)\left[1+u^{s}\left(r_{12}\right) S_{12}\right] \Phi_{d} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{1}=(n \uparrow p \dagger-p \upharpoonleft n \uparrow) . \tag{62}
\end{equation*}
$$

The uncorrelated state $\boldsymbol{\Phi}_{d}$, then, has only two non-zero coefficients and does not depend upon the spatial coordinates of the particles.

This basis of states is convenient be ause the spin-isospin operators take a particularly simple form. For example,

$$
\sigma_{1} \cdot \sigma_{J}=2 P_{, j}^{o}-1, r_{1} \cdot \tau_{j}=2 P_{1,}^{r}-1 .
$$

where $P_{1 j}^{o(r)}$ is a permutation operator in spin (isospin) space. Therefore. the $\sigma_{1} \cdot \sigma_{\text {, }}$ and $r_{t} \cdot \tau$, operators acting on a state can be evaluated by only two multiplications of a scalar times the wave function rather than by full matrix multiplications. The permutation operators aliove can easily be represented as bit manipulations on the array indices within the computer. For example. the indices corresponding to the spin states of the deuteron can be taken as

$$
\begin{align*}
& \downarrow_{2} \downarrow_{1} \mapsto 00=0 \\
& \downarrow_{2} T_{1} \rightarrow 0 \quad 1=1 \\
& \dagger_{2} h_{1} \rightarrow 10=2 \\
& \dagger_{2} \dagger_{1}-1 \quad 1=3 \text {, } \tag{i,3}
\end{align*}
$$

where the middle column is simply the binary representation of the spin statc. (learly, P_{i}^{o}, acting on state 01 (1) gives 10 (2), etc.

In a similar manner, the tensor operator $S_{1 j}=3 \sigma_{1} \cdot \dot{r} \sigma_{j} \cdot \dot{r}-\sigma_{1} \cdot \sigma_{1}$ can be rewritten using:

$$
\begin{equation*}
\sigma \cdot \dot{r}=\sigma_{+} r_{--}+\sigma_{-} \dot{r}_{+}+\sigma \dot{r}_{0}, \tag{6.4}
\end{equation*}
$$

wher

$$
\begin{align*}
& \sigma_{+}=\left(\sigma_{r}+\left(\sigma_{v}\right) / \underline{2}\right. \\
& \sigma_{-}=\left(\sigma_{r}-\left(\sigma_{v}\right) / \underline{2}\right. \\
& \sigma_{0}=\sigma_{t} \\
& \dot{r}_{+}=(. r+(y) / r \\
& \dot{r}_{-}=(r-, y) / r \\
& \dot{r}_{11}=(=1 / r . \tag{ti.7}
\end{align*}
$$

The operators σ_{+}and σ_{-}do nothing but raise and lower spins, respectively. Note that they differ from the usual raising and lowering operators by a normalization; these operators give unit coefficient when they flip a spin. Just as the $\sigma_{1} \cdot \sigma_{\text {, }}$ and $\tau_{i} \cdot T_{j}$ can be represented through permutation operators, the tensor operator can be represented as combinations of permutation and spin flip operators.

In this basis, we can explicitly construct the deuteron wave function. It is given by:

$$
\begin{align*}
\Psi_{d}= & f^{c}(r)\left[1+u^{s}(r)\left(3 \dot{r}_{0}^{2}-1\right) \|(n \uparrow p \uparrow-p \uparrow n \uparrow]\right. \\
& +f^{c}(r)\left(u^{s}(r)\left(3 \dot{r}_{0} \dot{r}_{+}-1\right)\right](n \uparrow p \downarrow+n \downarrow p \uparrow-p \uparrow n \downarrow-p \downarrow n \uparrow] \\
& +f^{c}(r)\left[u^{s}(r)\left(3 \dot{r}_{+}^{2}-1\right)\right)[n \downarrow p \downarrow-p \downarrow n \downarrow] . \tag{66}
\end{align*}
$$

Wave functions for larger nuclei are easily constructed through successive operations of pair correlation operators. The effect of the potential terms acting on the wave function can he calculated similarly.

[^0]:

