
LA-lJR3ti=34’35 (btlf y 0/:’w (4- -/

LJ9 Alamcs P4al!onal LaDoralOFti 3 oDeraled byIhaUnwWllfy of Cnhfornla fOr Ihc UnMd SIaIos Oopmfmonl of Energy under Confracl w.7405. ENG Ie

LA-UR--9O-3495

DE91 001967

TITLE MONTECARLOMETHODSANDAPPLICATIONS IN ~uEAR PHYSICS

AuTHOR(S) J. Carlson, T-5

SUBMITTED T@ PROCEEDINGSOF THE INTERNATIONALSUMMERSCHOOLON THE
STRUCTUREOF HADRONSANDHADRONICMATTER,DRONTEN
THE NETHERLANDS,AUGUST4-17, 1990, GIVEN AS AN
INVITED SET OF TALKS

lNSX’l,AiMKR

“1’hiircp,rl W:IS ptt-pilrcd iI\ JIImXXIIIIIIIII w,)rk \pmsIIIc(l hy JII :IgCIICY id thr lIIIIICtl Stnfcs

( hwcrrlnwnl NrIIII(. I fhr 1111111,11\l.Ilr\ (;,, VCI,IIIWIII ,1,,1 ,,11, ;I~C,,{-V l}ll. rc,,f, ,1,,, ,,,,} ,,1 Ihclf
rlllldtlbrc\, ul,lht-\ ,Inv w:trf,lnf). rqprc\\ ,11 1111111, ,1, IM .IS\IIIIIC. ,IIIJ IcE.11 II, 111111,v III fr~pmw
hllll\ full thl’ ,1(,111,,, ,, \,)utlf)lrlrntx\, *II II\rlultlc ,11 .IIlb Inl,tlrl).lf,(tlj. ,Ipp;II.II IIf, lIIIMIII, l. III

Ill,. ,... ,11.. l,wil, ,)r :Cpl(.,,rfll,. IIIJI II. 11., *11111(1 ,1,,1 IHIIIII~IO pIIIIICl\ 41WIICII ,I@I1.. I(rf,-,

1.1114, 11( ’lrlll l,> .411$\l). vIflt 8tlllllllrlt 1;1 I p,tmluul, Illtn (.,,, ,,1 ,,., V,, (’ I)\ 11,,,11’,,,,,,,,,, l,,,,lr,,,,,, ~,
!ll,llllll ,1, Illlv, , 811IIlllrlvlw ,Iow.! 11,,1Iltn!’,,,,l ,1) t ,),,.,1)1,,1(. ,,, 1,,,,,1, ,1, ,.,,,l,l, .r,,, ~,,l, ,,,, ,,,,,
111(.ll,l,lll!lll,!)1I,l!!ll, ,lp ll\ It,,, I ‘!l,l (-,1 %1,,1,., I ;I,, r,,,,,,,.,,1 ,,, ,, !:, ,,p,,.,,, , n,,. ,(.,,l Ihr \trw.

.!1)41 ,Il,llltam, ,,1 tlllll I,l, t,vl,l,,,wll hrlvbll IhI 11111lIctv\\,Ir Il\ .I,IIv ,If Irllrt I III,IW ,11 thr
II, IIIIvI \t,Ilr\ (,atb Is II1lIlrf)l ubt .Ill\ l~rlltt Ihrlt,,lf

,., , !~,
... . ,. .;

‘,’1 “t’”l., i,’

~J\\v 1,) ‘) IW

lk)~~lla~~s Lo.Alamo.,NewMexi..87545 ,)
LOSAlamos National Laboratory ,

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



MONTE CARLO METHODS and APPLICATIONS lN NUCLEAR
PHYSICS

J. Carlmn
T5 }(ail Stop B2$3

Los .Alartios Sational Lab
Los Alarnos, X)1 37W5

Abstract

Monte Carlo methods for studying few- and many-body quantum systems
are introduced, with special emphasis qivmr to their applications in nuclear
physics. Variational and Greens function Monte Carlo methods are presented
in some detail. The status of calculations of light nuclei is reviewed. including
discussions of the three- nucleon. interaction, charge and magnetic form factors,
the coulomb sum rule. and studies of low-energy radiative transitions,

1. Introduction

In these lectures 1 will introduce \lonte (;arlo methods as applied to few- anli
many-body’ quantum systems, and in particular to few-body problems in nllclt*itr
physics, While 1 will not be ahlr= to go into some of the technical details, 1 hope
to provide you v’ith a basic understandiliq uf the principles involvmi. [ also hop~
to cunvince you that there are many intriguing questions that ran he addrmw!
I)y studying light nuclei, and that Jlonte (’arlo methods provide a u~eflll way of
attm.king these few-body problems.

I will discuss Variational’+ (Y MC) and (;rem’s function Monte (’arlo5””7(G F\lC).
\“\l(,’ and (i F\l C are fairly general; they are often used in condensed matter&” mnd
,~tomic phywcs “.’:’ in addition to their applications in nilclear physics. ~hcse mrth.
I)(Is ilre AISOclweiy related to the finitet.emprraturr nwthods used in both cc)n(lensml

II]attor and lattice QCD, Nuclear physics apl)licatious include hvprrnucki AII(Ivar.
IOIIS {“(JllStltUent ql!?rk TIO(k19 Ill a(hlltloll 10 ll~ht llu~h?i. :\tte[npts arc also I)vl[lg

II IaIIO to apply generalizations of these mf’thods to heaviw nur-lci, h~lt 1 will rmtrl(”t.
lll~W’[fh) feW-hOdY prohkm~ in thCW h! IIWS.

I will iil~() cowr the structure of thr grolln(l st,atm d light nllclri, inrl~l(linq IwI)-
I)()(ly (.orr(’l;itions,” IIlt’ importance of thr 11’nsor forrt’ , MI(I th(~ rlfect of tllrc’t’.fllll”l(k)ll

il]l,t’ractiotls, I will l)rwwnt ralcllla~imls tJf’I111’( ‘I)lllt)Illl)311111,011P of ttlr I)f’st f’xpwl

llwntill” ‘d irltlications 0( stmrlg (wrrr’lilli~)lls willlifl t.hl’ Ilucltw, In wlditi(m. 1 will
l~)lii.1]Ilpon mmkls of thr cllrrrvlts, ill(.llll!ill~ l,wo lIIIIiVl“~largeA[l(lcurrrnt. ol)f’rillllr~,
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and their importance in describing electromagnetic forr,i factors. FinallY, I will look
at Monte CUIO methods for calculating low-energy scattering; and in particular at
recent calculations of neutron radiative capture on 3He.

Fiwl. however, 1 will present the bajic Monte Carlo algorithms. Tt.e most im-
portaat principl- will be described along with the simplest practical algorithms.

These tools should z+.I1owyou to explole at least simple systems on your own. One
should always keep in mind, though, that for more complicated problems. better
\lonte Carlo methods (improved sampling techniques, etc. ) can be vital, making the
difference between a robust solution with good statistical accuracy and a result with
statistical errors so large as to render the calculation virtually meaningless. I hope
that the references will be sufficient in number and detail to allow anyone interested
to easily go beyond the rel.atlvely crude algorithms given here.

‘~ Nuclear Hamiltonian-.

Before studying the Monte Carlo algorithms, 1 would like to spend a little time
discussing the nuclear Hamiltonian and the difficultiu involved in determining its
eigenstates We ~ill employ the traditional description of the nucleus as a system
0[ non-relativistic nucleons interacting through strong spin- and isospin-dependent
nllclear ir;teractions, The solutions of the !%hroedinger equation

(1)

t.i~[l Ihen be used, along with an appropriate currmit operator. to determine many
~]ruperties of the nucleus. The potential is determined by fitting two- (and possi-
bly three- j body experimental data. It includ~ the onepion-exchange term at long
IIist antes, and in some cases is modeled as a set of one- boson exchanges at shortm
1’t lsta:lo=s. Clearly this model leaves out some interesting physics: internal degres of

frrwlom (such as the delta r~onance) have been suppressed and the efkts of meson
~~~[’]l;~ngehave been absorbed into the potential. Each of these simplifications pro-
I!IIIW important cthcts even in ground-state properties, as we shall we. Nevmthel_s,
~.u,II [Ilis sl[llple Iloll-relativistic treatment contains a great deal of physics.

I“hr I.w-lwdy interaction can he writt~n as a gum of spin-isoxpin d.qmldent
t)l]~’r;il~)r(.)$, multiplied hy functions of th~’ pair ~~paratlon ‘IJ:

( ):, =:(1,,7,lflJ,s,J,l. S,,,[,1S!,,l.~,,l./J~7,fl,}@{ltrir,} (:!)



spins of the nuckms, and ri and r, are similar matric- for the isospins. The tensor
operator S,J is 3~i t ~ijej ;ij-&im u, and L . SiJ is the spin-orbit interaction, where
L represents the relative angular momentum of the pair, and S the total spin. The
operators L . S~j and L~, determine the spin-orbit squared and angular momentum
squared dependence of the interaction, respectively.

All modern interactions ( Argonne, 17 ~nn,’a Nijmegenlg ...) may be written in
a similar manner. Terms up to first order in the momentum (L oSiJ ) are uniquely
indicated by the data, but the choice of the more non-local operators varies in dif-
ferent interaction models. We will concentrate primarily upcn the Argonne VI-1

interaction which employs the particular choice given above. It has been constructed
to minimize the importance of the non-local terns in the in ;eraction, and includes
a one-pion interaction at long distances, an intermediate range attraction with the
range of a two-pion-exchange, and a short-range phenomenological repulsion.

Some terms in the Argonne V14 interaction are shown in figure 1, for simplicity
I only present the central (momentum-independent) and tensor terms in the inter-
action. Two primtuy features that are common to all NN interaction models should
he Jtremxi. The most striking feature is the strong repulsive core at short distances.
This presents some difficulties to mean-field or pert urbative calculations, but it is
possible to treat the strong correlations induced by th- interactions with Monte
Carlo. In fact, I will show results from condensed matter physics for systems of fifty
to several hundred very strongly-interacting particles. The repulsive core in these
systems is e~en stronger, in relative terms, than that in the NN interaction.
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Figure lb) Tensor terms in the Argonne V14 interaction.

The secc nd feature, also crucial to nuclear physics, is the strong spin- and isospin-
dependence of the interaction. The potential can be quite different for different
combinations of total spin and iaoapin (note that the S,T = 0,0 and 1,1 central terms
occur in negative parity statea, and consequently always appear in combination with
L!, terms), Results are also very sensitive to the tensor force, in fact we find that
the tensor force provides ~bout 2/3 of the total potential energy in light nuclei,
(’consequently, any wave function which ignores the strong tensor correlations will not
reproduce any of tnc bound states. The strong state-dependence of the interaction
is also what limits our calculations to light nuclei, at least for the present, To
understand why, we will need to look at ttlc structure of the wave function.

Before proceeding to the wave function, though, I should mention the three-
I]ucleon interaction (TNI), The T,NI will be discussed in more detail in a later section,
ilt this point I would simply point out that the pr~ence of a thr= nucleon interaction

is mmntially required by the fact that we are suppressing the internal structure of
the nucleons. The importance of the three-nuchmn interaction (TNI) can be tmkm
M a Incasure of the importance of ignoring the internal d~grea of frmdom in the
nllcleml, the quarks, At long distances the form of the TN1 is assumed to aris~ from
pion I’xchanges and excitations to virtual deltas, its prm. ise strmgth is tit to I.IN*
t hrcr- body binding energy. 2 We will find that the ‘rl~l is much less impi)rtant tha[l
[he twO-l]llcl~n inter~tion, typically (k’,Jb)/(t{J) S fi’%0. Ihw?v?r, it do= Provkk a

~ig[lifican~ fraction of the binding enmgy in light I)llclei, M the binding em=rgy renults
from a srnxltive cancellation of Iargr kinetic MI(1potential energy tmrns.



3. Variational Wave Function9

Given the Hafiltonian of Eqs. 1-3, any wave function can be decomposd into
a sum over spin-isospin states times functions of the coordinates of a,ll particles:

The sum over states 1 runs from 1 to 2AA!/N!Z! for a system of N neutrons and Z
protons (A= N+ Z). The factor 2A comes from the spins (each of A spins up or down)
and a factor of ,4!/N!Z! from the isospin. The isospin factor is smailer because of
charge conservation, the total number of protons or neutrons remains constant. Note
that we are not exploiting good overall isospin, which could reduce the number of
components further at the cost of a more complicated basis, Calculations employ
a basis of definite third components of spin and isoapin for each particle. This is
discussed in more detail in the Appendix.

Solving the Schroedinger equation now entails solving many coupled differential
equations for the complex amplitudes @l(R). For A=3, Faddeev methodsa-az can
be used to solve for these amplitudes explicitly, although they of course employ a
different basis of states. As the number of nucleons increaaea, however, It becomes leas
and less fe~ible to solve dir4y for the amplitudes #l. (he possibility for going to
larger systen~ is to develop approximate variational solutions for the wave function,
this is the alternative we will discuss first. Note that the threebody nuclei provide
a very important test for any variational calculation since they can be calculated
‘exactly’ with Faddeev methods.

Any variational calculations proceeds by first making an ansatz for the form Jf
the wave function and then minimizing the expectation value of the Hamiltonian

(5)

wi~h respect to changes in the variational parameters {a} embtdded in the form - f
variational ( trial) wave function VT {a}. The important phyoica required in this case
imludcs ( I ) an accurate form for the wave function as two nucleons ue brought close
together. (2 ) a reasonable treatment of the spin- isospin correlations induced by the
illtfiraction, ad (3) the correct asymptotic wave function M one nuchmn is pulhxl
ilwav from the remaining nucleons.

:\ generalized JMtrow form for the wave function carI
all ii this physics:

()
l*r) =1$ ~F,, 10).

1<1

be used which incorporate

((i)

III this rquation, O is an anti-symmetrizml Slater determinant, the F’,, are ~,tate
tl~pm(lmt) two-hod y rorr~lalion op~ratcws, and S is a symrnetrization operato~. ‘rh~

5



symmetrization operator indicat- a sum Gver all orders of terms in the product, and
is required since the correlation operators between different pairs do not commute.

For light nuclei, it suffices to choose 0 as a spin-isospin vector independent of al]

spatial coordinates:

0(2H) = A[(n T)l(p T)z], (7)

0(3H) = A[(n L)l(n T)2(p T)3], (s)
4( 4He) = A[(n L)i(n T)2\p l)3(p T),]. (9)

In this notalion, A is an anti-syrnmetrization operator indicating a sum over ail
possible interchang~ of particles with appropriate signs. For larger nuclei ( A >4 ),
spatial degrees of fr~om must be incorporated into the 0. Here, however, we can
choose the pair correlation operators F’,j to give the correct asymptotic conditions
on the wave function.

We choose the pair correlations to have the following form:

F,, =
[( )]

~(rt,) ~ + ~ w(r,,,R)uk(r,,)O~ ,
k

(10)

where the sum over operators k runs over all momentum-independent operators in
the interaction ( Eq. 3). The pair correlations f’ and Uk are obtained by solving
two-body differential equations of the general form:3r4

(11)

where ,\(r) contains several variational parameters. In the qpin singlet cnannels, two
uncoupled equations are solved, one for T=(l and one for T= 1. [n the spin triplet
channels, coupled equations are solved for the central and tensor correlations. Once

the equations arc solved in the various channels, linear crtnbinations are obtained
which can be cast in the operator form of Eq, 10,

The function A(r) is a woods-saxon at short distances. The width and range of
the woods-saxon are variational parameters, At long distances its form is determined
hy reqlli ri,lg that the wave function have the correct asymptotic properties as one

IIIICleOII is removed from the ret. The separation energy which determines the
ttxpt~ncrltial decay is an additional variational parallieter, as is the ratio of the lensor
;ln~l (’rtltral correlations at long distance,

[’he Ul correl~tion in Eq, 10 is a three-body term Ivhich reduces the strength of
t INSl)pprator-dependent two-hod, correlations for some ccmfigurations of ,: ~ nucl~.
l)l]\, 1 It lh’l)~lld~ [lot only on the pair distance r,, but aho on the positions of a!i thr
1)1 hrr l);~rtit.ltw. iimpiriral]y, it h~ prowl useflll to parametrize U1as

ti ,(r,,, R) = r-1[ l- t-(
1

L)’) Pxp( -t,,l?,,k) ,
k#l,) I{,)k

t;



with
i?,lk = ‘lJ + PA + rjk. (13)

The values of tl, t2, and t3 are determined variationally. [n principle they could be
adjusted independent ly for each pair correlation operator (each k). but in practice
they are usually chosen to be the same in all channels.

The exact aeuteron wave function can be cast in the form of Eq. 6. In thi~ case the
three-body correlation U3 is replaced by the identity, and the function A(r) is simply
a constant, the deuteron binding energy. The functions y(r) is u(r), the s-wave part
of the deuteron wave function. The tensor term fi(r)us(r) i~, withir, a normalization

constant, w(r), the d-state component of the wave function. The deuteron’s wave
function is worked out in the 3rd component of spin and isoapin basis in the Appendix.
For the deuteron, of course, the amponents of the wave function are only functions
of one variable, so that calculating expectation valuea of any operator is relatively
e-y. For larger systems, though, this becomes progreaaively more difficult. Hence,
we rely upon ~Metropolis Monte Carlo to calculate the necessary integrals

4. Variational Monte Carlo

Given a parametrized wave function in the form of Eq. 6, (H) must be minimized
as a function of the variational parameters. Evaluating (H) involv~ computing
many 3A dimensional integrals, so we turn to Monte Carlo methods, in particular to
Metropolis Monte Carlo. Monte Carlo methods in general become more valuable ss
the dimension of the space ~ncre~es, and their efficiency depends to a great extent
on the quantity to be measured and also upon the care with which they are applied.

}fonte “Carlo methods as appliei here are described in some detail in a book by
Whitlock and Kales.23 I can only provide some of the kmcs here. Those interested
can consult this book and other standard references to determine optimum methods
for sampling various distribution functions, and also for more detailed discussions
of the Metropolis and Green’s Function Monte Carlo methods. Also, R. B. Wiringa
and 14 have written a bock chapter which contains quite
Variational Monte Carlo methods as applied to light nuclei

program.

\,, L“.MC’- Gencml Method

specific discussions of the
and also includ= a sample

\letroPoh Monte Carlo24 is designed to evaluate ratios of integrals such as:

(0) = J W’(R)(7( R)cfR

[ W’(R)cfR ‘
(14)

wi~er~ IV( R) is a positive definite function, \Vhile such a form may seem rather lim-
itmi, ill fart many inter=ting physics probl~ms can be written in this way, Classical
statistical mechanics is a primary example. If We take W(R) to be VXP(-3~) and U

7



to be an observable, we can use the Metropolis method to compute the expectation
value of 0 at an inverse temperature i?.

Quantum variational calculations can also be performed using the Metropolis

method. The standard choice is

W(R) = U+(R) WIT(R) (15)

and O(R) to be the operator acting on *T(R) at that point:

O(R) = II+(R) O WT(R)

NI~(R)*T(R) “
(16)

The wave functions are necessary for the case when 0 depends upon momentum,
and therefore includes derivative operators. For purely Jtatic scalar quantities, the
wave functions will divide out in this expression. Note that I have suppressed the
dependence of the trial wave function on the variational parameters {Q}. With
this chaice of W, the denominator in Eq. 14 is simply the normalization of the wave
function, while the numerator gives the expectation value of the operator 0. Initially
we are trying to minimize the energy in a variational calculation, so we consider the
case where 0 is the Hamiltonian. In nuclear physics, the Hamiltonian (and also
the wave function) will depend upon the spin and isospin of the riuchmns and the
functions W and O involve sums over all possible spin-isospin states. For simplicity,
however, we first consider the case of a spin-isospin independent interaction where
the wave function only depends upon the spatial coordinat- of the particles.

The Metropolis algorithm is based upon the fact that the ratio in Eq. 14 can be
evaluated as an average over a .5L >f points ~ distributed with probability distribu-
tion W’(R):

(17)

ill the limit of an Infinite sample of points this relation is exact, but in actual cal-
[.lllations there is a statistical error associated with finite sampie sizes. Under very

Keneral renditions, the central limit theorem states that the statistical error will go
like l/JT for large N.

The \letrGpolis algorithm allows us to obtain a set of points ~ for an almost
,lr})itri~rily complicz ted function W(R), This is important because our trial wave
[Ilnctions i:ontak strong correlations, and it is difficult to perform the integrals in
ii[)~ other way. In essence, the Metropolis method sets up an artificial dynamics mch
that the twlltilibrium distribution of points is proportional to W(R). The primary
illurf?(ll(’ill in the \letropolis algorithm is detailed balance, which simply rquir~ that.
t l~IJ[let tlux from any point R to any point
rrvrrse direction when equilibrium has been
t han is absolutely necessary, nevertheless it

i

R’ mu9t
r:’ached,
is a very

be balanced by the flux in the
Clearly this is more restrictive
vall]able technique,



A random walk algorithm can then be developed which satisfim detailed balance
and gives an equilibrium distribution proportional to an arbitrary W(R). Suppose wc
start at RI, and construct a random walk in which each step contains two elements,

a proposed (trial) move and an acceptance/rejcxt ion step. First, a point R~ is chosen
for the trial move wit h a transition probability T( RI ~ R,), and second, this trial

move is accepted with probability A(RI + Rc ). If the move is accepted R2 is set
to Rt, otherwise R2 is set to R1. The whole process is then repeatd (the next step
beginning from R2) until the walk has reached equilibrium and a sufficient number
of points have been generated to obtain accurate results.

A little thought will convince you that detailed balance imposes the following
condition on the random walk if it is to generate an equilibrium distriblltion propor.
tional to W(R).

W(R1)T(R1 ~ Rz)A(R1 - R2) = lV(R2)T(R2 ~ RI)A(R2 ~ R,). (18)

The left hand side of this equation is the flux from Rl to R2, it is given by the product
of the probability of being at RI (which we require to be IV(R1 )), the probability T
of proposing a move from RI to R2, and the probability A of accepting that proposed
move. The right hand side of the equation is the total flux in the opposite direction.

A very simple choice for T(R1 + R~) is a constant ( l/L3) within a 3A dimen-
sional cl..’Dewith side L. This transition probability is trivial to implement. For each
component i of the 3A dimensional vector, simply take:

R,, = Rl, + 2L(c, - 0.5), (19)

where the (, are random numbers evenly distributed between O and 1. V~ith this
choice of T, it is obvious that T(R1 e R2) is identical to T(R2 ~ RI). If R2 is
within the box centered at Rl, Rx is also within the box centered upon RI and
both transition probabilities are equal, but if R2 is outside the box both transition
probabilities are zero.

\k’ith this choice for T detailed balance become particularly simple. We can
satisfy Eq. 1S by taking

[1W’(R2)
A(R, ~ R2) = min 1,— .

\\ ’(R,)

Xote that the acceptance probability must always be between
function W is greater at the new point than at the old, the

(20)

zero and one. If the
move will always be

accepted. Othe;wise, it will be accepted with a probability equal to the ratio of the
functioils, Note that a total of 3A + 1 random numbers are needed at each step in
t,}w walk, :J.4 to choose a trial step and one to accept or reject it.

The r-ultinq algorithm. ~mploying a qt=neral transition probability T, can be
written dd,vn very simply:



1.

~.

3.

4.

Givena 3A dimensional coordinate ~,generate atrial coordinate point R,
with probability l’(~ 4 R().

Calculate the quantities WOW Z’(RI + R~), and T(R, +Rl), the
transition probability for the reverse step. The acceptance probability is given
by the expression:

WU)T(IL + W)
A(R1 ~ Rl) = min{l,

CV(R1)T(Rl 4 Rt) } (21)

Accept or reject the move with probability ~. lf the move is accepted, set ~+1
equal to Ri, otherwise set it to W.

Calculate all quantities of interest (the Harniltonian, etc. ) at ~+,, adding the
contributions to the average over all points (Eq, 17).

The random walk will only generate points distributed with probability W’(R)
after it has reached equilibrium. Convergence to equilibrium is an important con-
sideration that must be tested in each calculation. All results obtained prior to

equilibrium should be disregarded in the averages above. This is usually not a prob-
lem in light nuclei aa several hundred steps normally suffice unless one starts from a
pathdogicai initial point (one nucleon 20 fm from the othera, foi example). A good
way to test for equilibrium is to compute the average over ‘blocks! of consecutive
points in the random walk consisting of several hundred points to several thousand
points each.

Eventually, the averages within each block should settle down to a constant plus
a (hopefully small) fluctuating term. If the blocks are large enough, the averagea
should have a normal distribution centered on the true mean, and the error can be
estirr.ated from th,=m using the central limit thmrem:

where A(cJ) is an ~timate of the error in determining (0) and M is the total number
of blocks, The exprasicm involves the average of the square of the estimated operator
expectation value minus the square of the average, and the bars indicate averages
over blocks rather than individual points. The results in each block are themselves
ai”erages over a few hundred to a few thousand points in the walk. This error estimate
is only valid when the blocks are ‘large enough’ so that the central limit applies. The
size of blocks rquired must be tested in eac!l calculation, but this test Involves ~mly
A rc-analysis of the run Smaller blocks can be grouped into larger ones in order to
insure tlli~t the statistical error is independent of the block size.

I have not jet specified how to choose the step size L in the random walk. The
{imice of L strongly affects the efficiency of the calculation but should not affect

ttw final averaqe. For example, if L is very small then nearly all motes will be

I1)



accepted but many steps will required pel blcck to eliminate the correlations between
neighboring blocks, Similarly, if L is too large all InOVeS are likely to be rejected,
and again many steps will be required to gain independent samples. The general

lore holds that adjusting L so that approximately half the moves are accepted is a
reasonable choice, Numerical experiments testing the correlations between nearby

points in the walk car be valuable in optimizing L.
One can also imprcve the efficiency by making better choices for the transition and

acceptance probabilities. One popular alternative is to include information about the

first derivative of W’evaluated at RI in the transition probability T( R, - R,).23 In
this case the acceptance ,4 must involve the transition probability for the reverse step,
which in turn depends upon the derivative of W at Rr. The transition probability
T must be positive definite and normalized such that J Z’(RI + R,)dR, = 1 for any
R,.

Variational Monte CarlO -alculations are constructed so that they will be more
efficient for better trial wave functions. In fact, if the trial wave function is an
exact eigenstate of the Hamiltonian the energy-s statistical error will be zero. In this

ideal case every sample of H(R) (Eq. 16) will produce the same result, the ground
state energy. This is not true for expectation values of other quantities. Rapidly

arying functions, for example charge form factors at high momentum transfer, will .
have much larger statistical errcrs. In many cases it is possible to reduce the error
by using different weight functions IV, or perhaps by doing the integrals over some
coordinates with traditional numerical methods rather than by ,Monte Carlo,

Another very useful technique is called ‘reweighting’.23 Since we are initially con-
cerned with calculating the difference in energy between two wave functions, it is

more efficient to calculate this difference directly. For example, suppose we con-
struct an initial random walk using the square of the wave function ~~1 for the

weight function \V( R), The energy of this wave function can be calculated easily
from this walk. but we can also use it to evaluate the energy difference between two
wave functions. The energy difference can be written in the form of Eq. 17:

an,t compllted using any weight (unction U“, in particular the square of the originai

\VaV@flln(’thl *TI. (!f course, we wil~ now have to compute both the numerator and

{Ir[lominator separately (the denominator in the second term is no longer exactlv onv
tit. tm(:1 l.~]int), but the correlations between tl~~’two ralculltions can be exploiteii to
~r, B‘!V rwiuce the statistical errors. “[’his mctho(l is most useful when the differmces
1), Y*IIIIlt’ two wave functions are not too larfy=,

II



B. VMC - Applications to Lighi Nuclei

Variational Monte Carlo calculations of light nucleil- are somewhat more ~mpli.
cated than described above because of the spin-isospin dependence of the interaction

and wave functicn. In this case, the expectation value of the Hamiltonian can be
written:

where the sums over k and I run over all spin-isospin states. In principle. we could
use a weight function W which depends upon k and 1, and perform the sums as well
* the integrals by ,Monte Carlo. In general, though, this will produce large statistical
errors since the low-variance property for the energy described above only applies to
the full Hamiltollian acting on the full wave function. Therefore, w:! simply sum over
all k and i M each point in the walk, although this plac= severe practical limits on
the size of nucleus that can be studied.

One can choose W’ to be:

W’(R) = ~ W/(R) WI(R). (25)
1

[n fact we usc something slightly more complicated, md include a Monte Carlo
sampling of the ordt J of pair correlation operators implied by the symmetrization
operator S in the trial wave function ( Eq. 6). This entails choosing a weight functinn
which depends upon the order of operators in the left and right hand wave function,
and requires a calculation of the normalization of the wave function w well u (H).104
For (~xample, in a three-body nucleus:

(?6)

Lalwling thr ord~r of operators by p ad q (and suppressing the .spin-iso~pin indices):

(’,!7)

l’.!



positive definite. This also implies that one must calculate the denominator explic-
itly. For light nuclei, though, we have observed that the real part of the product

t(’JP Wq) is positive for reasonable correlation functions.
.Another complication arises when trying to compute the kinetic energy and the

momentum-dependent terms in the interaction. Because of the complicated matrix
structure of the wave function, it is very difficult to compute directlv the momentum
operators acting on the wave function. Consequently, all derivatives are evaluated
simply by re-calculating the wave function at slightly displad valu~ of the particle

coordinates, and fcrming the numerical derivatives:

V; UI(R} = [IU{R+cf; } - III{R- ci; }]/[’2t]

V;2W{R} = [Q{ R+ct; } + 4{ R-cF; }] -2 UJ{R}]/[C7. (29)

In thee expr~sions i represerits a direction (x, y or z), and j reprments the particle.
The expectation values of L2 terms are treated similarly, although in some cases it is
more convenient to use integration by parts so that only first derivatives are required.

Typically, twenty to thirty runs are required to optimize the variational param-
eters. !tlost of the calculations are difference calculations designed to compute the
cmergy difference of various wave functions (Eq. 23), Each run will require several
thousand configurations in order to obtain a statistical accuracy of a few hundredths
cf an \feV, Once the optimum wave function has bem determined, a set of \lonte
Carlo calculations should be undertaken to determine all of the expectation values.
For the three- body problem, ten to twenty thousand configurations seem to provide
re~onable statistical accuracy for the energy and onehody densities. Ten thousand
t:onfi,gurations takes roughly 30 minutes of cpu time on a one megaflop corr,puter,

“rypical results for the three-body problem are given in Table L and contrasted
wii.h the ‘exact’ Faddeev results, Variational results are always sn upper bound
to the true ground-state energy, for the triton the variational energy is typically
ilbo~lt 0.;3 - 0.6 YleV higher than the Faddeev. Wiringa2s has recently improved the
variational wave function by adding L . S,, two-body correlations and including thrce-
1)! ;.’ correlations, These improvements reduce the energy difference significantly.

So I]l)por hound property exists for operators other than the Hamiltonian, how-
l*vm. II) fact, while the error in energy is wwx.mdorder in the error in the trial wave
(Iln([.iu[l. the error in other observable Ii generally first order. Consequently, tw()

\;\rliitlo[),ll wave functions may give verv qinlilar mwrgitw but dilfermt values of olher
l)im’rv:~blw+, For ~xample, the puint rms r,a(iius of the nuclmms c,an change by 0,05 tu
[).I fln without signifil ,;ntly afiecti[lg t,hr ground state energy. ‘l’his uncertainty in thr

wave’ fll[l[ti~m, rfither than the statistical error associated with the Nlontc C’arlo ill-
t.(igriitio[l~, is tjftwl the Inmit import~ut ~liliiclllt,y with variational calclllaticms. ( ‘~)nl-
[)iirisol]s WI I,tI of,h~~r~lllantit;ns such M thr Ilmgnrtic form factors (discllss~l il. sect.i(m
I;) ill(li(’;~fr I I]ilt I Ilc variational wave fl]nrt,io[ls prt)vi~l~ a qoo(l iwfvall IIescrip’ ion ()[
I.llr slrl]~”lIlrf’ t~f light nuclri. ~pv,.rtll(sl{*~, l,lf.tll,,,j~ t,] ~ywt~tlll~tical]y illlprt>vv f 1]1*

J ilrialiol]ill wavv fllnctioll are ~xtrmnrly Villllal)lt’

I:{



Table 1: Triton Results - Variational and Faddeev

Interaction

~V14 + ‘1’N[
.4V14 + T!W
~ijmegen
LYijmegen
Reid V8
Reid V8

Method
Variational
Faddeev
Variational
Faddeev
Variational

Faddeww

Energy ( .MeV) (r~)’i’ (fro) ?%(s=3/~)

-8.42 (04) 1.68 (02) 9.9 (1)
-8.99 1.65 10.0
-7.25 (03) 1.86 (03) 7.7 (1)
-7.63 1.77 7.9
-7.06 (05) 1.82 (02) .
-7 59 1.76 9.7

Summary of triton results from reference 26. Energies arc given in MeV, distances in fm.
and statistical errurs are indicated in parentheses. The rms radii given are point nucleon
radii. The Iwst column gives the magnitude of the spin 3/2 wave function component:
except for very small P-state components this is equal to the D-state percentage.

5, Green’s Function Monte Carlo

Green’s Function Monte Carlo (GFMC) calculations project an exact ground or
low-lying state wave function *o from an initial trial wave f!mction *T, Monte
Carlo techniqu~ are used to calculate the operator exp( - kfr) acting on WT for large
imaginary times r. Expanding a variational wave function WT{a} in eigenstates of
H

w~{a} = ~Jm{a}ufm (30)
WI

we find
exp(-Hr)Or{a} = ~exp(-E. ‘)flm{a}~m, (31)

m

where 1 have included {a} to label the implicit dependence of I#r on its variational
parameters. For large r, only the state with the iowat energy eigenvalue will survive
You ~’vm.dd be aware that many similar algorithms are available that go under dif-
ferent names, including Green’s Function Monte Carlo (GFMC),*7 Diffusicm Monte
(.’arlo ( D\[C),J7 etc. I will not go into the distinctions here, but one should be aware
of their existence. Most of these algorithms are primarily rimigned to treat systems
without state-dependent interactions, Iilniting their applicability to nuclear physirs.

upon high- trrnperature or short-time ●xpmnsions of



Of course we I-10not know even the short-time propagator exactly; the exact
form would re{~uire imply a knowledge of all eigenstates. However. for short time
steps Jr we can construct accurate approximations to the propagator. The simplest

approximation 1s:

G(R’, RJ = (R’lexp(-H.3r)lR)

~ exP(-L’(R)Ar/2) (R’lexp(-TAr)lR) exp(-V(R’)~r/2), (33)

where I have split the Iiamiltonian into its kinetic (T) and potential (V) pieces and
usurnecl that the potential is local.

Green’s Function Monte Carlo is similar in many respects to a transport \lonte
Carlo simulation. The basic idea is choose an initial set of configurations with density
proportional to a trial wave function, and to use Monte Carlo methods to iterate an
integral equation:

~l+l(R~) =
!

dRG(R’, R) V’(R) (34)

until convergence to the ground state wave function. Each configuration is an in-
dependent copy of the entire system, and their “trajectories’ are followed as Eq. 3-I
is iterated, The kinetic energy term allows the sampled points to move about in
configuration space while the potential energy duplicates or destroys walks.

The Monte Carlo simulation mimics a diffusion process in which the kinetic energy
term governs the rate of the diffusion, since:

[1
(R’[ exp( -TAT)IR) = .Vexp ‘(4RL-A~’)2 ,

2m J

I “1



u you can see by expanding the exponential. However, the overall error is propor.
tional to ~r, = the total number of steps required to pro~agate a giver imaginary

time is proportional to l/~r,
CFMC methods are closely related to the finite-temper~ture simulations in con-

densed matter (Path Integra12e and Fermion \lonte Carlom J and lattice QCI). These

methods retain the complete history of the system over time (its world-line or path),
and evaluate

(0) = ~R(ROexp(-3ff)R)

~R(Rexp(-JH)R) “
(36)

to determine the expectation value of an operator 0 at an inverse temperature
3. Clearly, this e~pression is of the form of Eq. 14, and can be evaluated using
Yletropolis Monte Carlo to Iample over all paths. Note that the pattis are closed
since they begin and end al the same point R. The fact that the complete ‘time’
history must be retained typically limits thae methods to = 50-100 steps in inverse
temperature.

Here, however, we are particularly interested in projecting out specific quantum
stat=, We can use this to our advantage and build in our knowledge of the approx-
imate ●igenstates, The baaic technique is called ‘importance sampling.’ Jlultiplying
and dividing Eq. 34 by an Importance funclion *1, we obtain

WI(R’)W+l(R’) =
H

dR WI(R’)G(R’, R)-~
Q,(R) 1VOW’, (37)

where the quallt. ity in brackets is d~ignated the importance sampled Green’s fllnr.
tion, For bos(I I( ~ystems, WI is usually the optimum trial wave function ~r obtained
in a variational calculation. This cmstruction has the advantage that the ●nergy can
Iw obtained ~ an average of I#~lfWr/W)V~, and consequently there is no ~tatisti.
ral wror In the limit that the trial state is equal to the exact one. Also. using tlw
~l)wtral rrprmmtation of the Green’s function we can compute the total number of
~il[llpl~~ /(R) generatd by a point originally at R:

1(;



where Go is the fr~particle propagator for the A-body system, g,, is the tw~body
propagator including the interaction, and go,, is the two-body free propagator. The
free particle propagator? are just normalizd gaussians:

Go(R’, R) = .V exp[
-(R’ - R)z

4JrliJ/(?m) 1

!fJ ( ‘:J ~ ‘IJ J = .\’’exp[ *],
.

The lowest order approximation to the ratio of two-body propagators r~overs Eq.
33. The exact two-body Green’s function, though, can be cvaluaceci m an average
over all gaussian paths Iin.king r,, and r,. In finite-temperature studia of bulk liquid
helium, Cenerley and Pollock”’m have used this method to determine the Green’s
function of Eq. 39,

T3e simplest feasible GFMC algorithm can be describd as follows:

Begin with a set of points In configuration space distributed with probability
density VI W’. i+t the zeroth : eration, ~“ is the trial wave function *T (here
assured to be the same aa Wl), so the original set of points can be generated
with the Metropolis methods described previously,

For each point in the i’th generation R, generate a new point R’ in the 3.4
dimensional space by sampling from a normalized approximate Gr=n’s function
6( R, R’), In the simplest case, ~ can be taken to be the fr~ particle Green’~
function. ,4 better choice, though, is to include some information about th~
im@rtance function, for example by including the first derivative of VI(R) li~

(:,

,\ssign each configuration a weight equal to the ratio of the true importanrr
samph. ~ Grmn’s function to the al~proximate Grern’s function f;, ‘rhls ratw
is given by ( Fq. 39):

UII(R’)GO(R’, R)
II

glJ(r9)! fi, )
.

“ “ ~m ,<J g:J(rlJ&)

( ‘l][ll~ute all (~uantltiea of intermt at the 10~~tlOn R’, Ad lrlc!lll!? thrill

11)

II ,L

points, F“orexample, the ●wrgy at ~PWrALlull I IiII

-,u WhR;)lNIT(RJ
L

{1.!
t ‘~r(Rf)UIT(~)

t!te more general csae, both the numerator



and denominator

(44)

,5.

must be evaluated, and the energy is ,V/ fl,

Each weighted configuration is replaced by n copies of the configuration with
unit weight, n being chosen to replicate on average the original weight w,. For
example, if wi is 0.5, choose n to be 1 half the time and O half the time; if
w, is 2.1, keep two copies with 90 % probability and three copies with 10 To

probability.

Steps 2 through 5 are then repeated until convergence, each repetition repre-
senting one iteration of Eq. 37. ~ constant can be added to the Hamiltonian to
control the growth or decre~e of the population size. If this constant is such that
the ground state enwgy is precisely zero, the population will remain constant on
average. One almost never knows the exact energy ir,itially, but the constant can
he adjusted as the calculation proceeds. The growth estimate of the energy can be
calculated aa the logarithm of the ratio of population sizes divided by the time step
Jr since the ground state eventually dominates Eq. 31. [n fact, this provides a very
important consistency check on the calculation. The energy as determined by the
growth of the population should be consistent with that determined by averaging
over the individual points, as in step 4 above,

[t isn’t immediately obvious that the branching step above is necemary. Indm-i,
the rtaults obtained by merely retaining the weight factcrs would be identical, on
ih~crage. to those obtainal with branching, However, the branching process greatly
rmiucrs the statistical error, After many generations without branching the weights
~jf a f~w configurations will become much larger than the rest, and most of the
(.omputm time will be spent calculating quantiti~ that have very low weights, [~orl.
wvllwntlyq sllch a calculation will be very inefficient,

.\s I have mentioned, Grmm’s Function Monte (~arlo algorithm can be con.
+tr~l~’tml which eliminate all short time approximations, Such algorithms are sonw.
what II I(JW’ compiicatd but have proven to be extremely valuable in condensed mat-
Irr ptly~ltw, where they have been used to determine the ground state energy of buik

10 Some analogi~s ran be made which connmt 11~-1II(’ as a fllnction of the dmmity, .
lillll~ tIt I)IIM to nuclear physics, aa the h~lium. helium pot~ntial is vmy repulsive ;It
.Ilor: ~listancm (due to the pauli principle) ,and w~akly attractiv~ at large distanrrs,
I“llf. f; lJ\l(’ and experimental zero -tmmp~raturc rquations of ~tat~ Agree within ap-
l}rl}xllllat,~’lv(),I K over a wide range of densities mwompasming both the liquid and

w.1111r!’ul~~lt~.llt4ium is an Fxtremdy ~trungly illtmm.ting qIIi4tituln ~ystmli;and Llw
.~qrm’nwilt of IIIP lnany-body r~hwlations wilt} vxperimcntal r-lilts in very ilnprm
~IVP. SIIC}I lal(ulatl[ms lypicfdly wiiploy 50 tu IW ntomq rontilwd within a periu(lic
I}t)x, othrr qlh,~ntifirs, sIIch M the ~trtlctllr~ fllnrli[)n S(k), hav~ Also I)wI1 ror:lplltml

JIIII f’xtrllmil ngrmvlmnt Imtw,ml thti)rrt i{’al AIIIIt-wpmimmtal rmults is achievrvl.

IN



We now turn to fermion problems, which are considerably more difficult, In the
preceding discussions, I have implicitly assumed that the wave function is positive
definite. The ground state wave function of a fermion system, however, necessarily
involves both positive and negative regions because it must be anti-symmetric. In

some lattice problems. notably lattice QCD at zero baryon density and electronic
lattice problems at half filling, the fermion problem can be overcome by introducing
auxiliary fields which transform the problem into a bosonic equivalent.tw Here I will
c~~cern mYself only with continullm problems, however, .Naive]y, the anti-symmetry

can Le treated by writirlg the wave function as the difference of two functions, each
of which is positive definite:

~1 = ~+1 _~-~, (45)

Equation 34 can then be used to iterate each of the two components separately,
and the results combined to determine the fermion ground state. When determining
the expectation values, we will aiways take the overlap with an anti-symmetric trial.
function, hence eliminating
energy stat~ obtained after

any bosonic components in the calculation. The lowest-
many iterations will be the fermion ground state.

D-J
.,//

t’i~urv 2 ) ~ransimt ~~stimation GFMC for tho Iowvst anti .symmt?tric state in a 1.dimen~iond



well.~paratd since they are taken from the positive and negative regions of a trial
wave functio[,, As the calculation proceeds (middle figure), the two distributions
begin to overlap as they diffuse throughout the box. The signal we are interested in

is the anti-symmetric wave function, here represented by the difference in the two

curves.
As the iterations proced, the relative size of this signal (bottom figure) becomes

smaller and smaller, eventuaUy being completely dominated by stalisticzd noise. The
bosonic ground state is always lower than the fermion state for spin-independent
potentials, hence the growth in statistical error as the calculation proceeds. This
growth arises because any bosonic signal which is introduced through statistical
fluctuations incre~ at a f~ter rate than the fermion components of the wave
function.

For at Ieaat a few iterations, one can allow the population size in the GFMC
calculation to grow sufficiently to overcome this difficulty, This method is termed
transient ~stimation ’31and is very succmsful for some quantum sy~tems, for example
in studies of the electron gw’a and liquid 3He. ‘lON It is possible to prove that you can
obtain a series of decreasing upper bounds to the exact ground state energy, simply
IV projecting out the anti. symmetric signal for aa long as possible. The value of this

method depends upon the accuracy of the initial triaf wave function and upon the
difference in energy between the lowest symmetric and anti-symmetric solutions of
the Ham.iltonian. The computer time rquired grows exponentially with the number
of iterations. however, so it is not always practical to obtain a converged result,

Another variational method is also commonly used for fermion systems, the sm-
called ‘fixed- node’ method .’a’i1 In this case one defines two separate regions of con fig-
Ilration space, one for the positive configurations (those associated with W+), and one
for the rmgat ive. The positive configurations are r;ot allowed to diffuse into the neg-
,uive region and the negative configurations cannot diffuse into the positive region.
Separat illq the system this way is equivalent to solving for a modified Hamiltonian in
whl(.h ~11 I[lfinitp barr& exists along the nodal surface. This modified Hamiltonian
mselltially t:]rr,s the system into an approximately quivalent bosonic problem which
may he Yolved without difficlllty with GFMC,

‘1’lw solution is only approximate because of the possible discontinuities in the
IIrrivativt’ of the w~ve function at the mxlal s~Jrface. If the nodal surface is known
I-x,l(’[Iy, tlw fixed-node solution will yield the exact, fermion ground state. How-wr,
t Ilr ~’xatt nodal surface is usually only known in one-dimensional problems like tllc
<Illl,lrv WPIIexample above. In one dimrmion, the wav function is zrro whenrvcl
t w!) fl’rl])lons are at the same point, hut in many dimensions this condition is insllf

tirmut f1) wrnpletely determine the 3A-1 dimensional nodal surface. F4evwthdms,
wlri ,1~cllr;~tr upper hounds to the grollnd state mwrgy can often be obtained with
llIf tix(vl :IIJIIP II IMhoIl, ‘1’he ntxial surf.mr IS Iwually taken frmn the most ~(’~tlri~t~

aVcaIlld)lr v,~rlatlonal wave function.
,\ sy~lmll of str(mgly intmarting ‘lie ,ItUIIISprovi(hw a goml lrst ciue for S!iintr

:!()



Carlo algorithms. By employing periodic boundary conditions with different box
si’zes, one can simulat,e an infinite system of atoms and determine the ground state
energy as a function of dengity An atom-atom interaction mudel has been developed

by .\ziz,H which consists of a strongly repulsive core region and a weakly attractive
tail. The repulsive core arises from the fermi repulsion of the el~trons in the atom,
and the attractive tail is a result of electron re-arrangements and is dominamd at
long distance by the atom’s induced dipole moments.

The figure below compares the results of Variational and Green’s Function \lonte
Carlo calculations with the experimental equation of state.ll-H .4s can be seen in the
figure, the agreement between GF\IC and experiment is excellent; tile two curves
are within approximately 0, 1 ~ at all densities. The variational rmults are higher
than the GFMC by * 0.3 ~. It is difficult to go beyond an accuracy of * 0.1 K
In these calculations. because at this level finite-size effects and thre-atom forces
become important.

Figure J) tjround state rmcrgy per atom versus density f’orliquid ‘He. The ~quareg indicate

variation] \fonte (’MIo calculations, the circles fixed.node ~F\lt~, and the solid line the

,~xprrinll~ntal results.
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Figure 4) Two-body distribution function g(r) for liquid ‘He at experimental equilibrium
density, The statistical errors in the .Monte Carlo calculation are roughly indicated by the
size of the symbolz.

The GFh4C calculations for bulk 3He employ 54 particla with periodic bound-
ary conditions. This is exactly the type of thing we would like to do in nuclear
physics. The equation of state of nuclear matter (even at zero temperature) is a very
important quantity, as are measurements of twebody distl ibution functions. Due
to the complexities of the nuclear interaction. though, we are currently limited to
studying very light nuclei. GFMC calculations with state-dependent interactions are
described. in t~e next section,

B. GF,VC - ,~pplications to Light iv(idei

The primary complication that arises in nuclear physics GFMC calculations is
the state-dependence of the interaction. The potential, and hence the pair Green’s
functions ( Zq. 39), are operators in spin-isospin space. Consequently, we must
employ generalizations of the previous schemes to perform a Green’s function $lonte
C’arlu calculation. For example, importance sampling is more complicate qince the
wa,~e function is not a simple number. In addition, the weights in general will not be

ii singk= Ilumlxr (or e~en necessarily real), so branching techniques must be modified,
Explicitly evaluating even the pair Green’s function is a rather daunting task

given the fact that it depends upon so many variables, [n addition, the potentials
Iwtw(wn [lltf~rent pairs do not commute, so the pair approximation itself breaks
flown lmlch lnore rapidly in nuclear physics than in condensed-matter problems. For
lht=sc reasons, we construct approximate pair propagators by constructing ‘sub-paths’
Iwtwwn r,, aml r~, to ●valuate gi)(r,,, r:, ). These ~ub-paths are sinlply gaussian paths

,), )--



with fixed end-points, a particular path through points r~j, r~j, etc.
proportional to:

has a probability

(46)

where r~, is the fixed initial point and q; is the fixed endpoint. In the limit N=l
we get the original short-time approximation (Eq. 33), and in the limit .ti + n

we can reconstruct the complete pair approximation (Eq, 39). When ,V is a power

of two the path can be easily reconstructed by successive divisions, first sampiing
‘/2 and the erldpoints, etc. We typically user.v’2 and then subdividing between r

,V = 8, which is a compromise between accuracy and efficiency in calculating the
pair propagator. We also sample several paths hetwcwm ri) and ~j, incorporate ing
antithetic sampling techniques23 to reduce the varimce.

.4t this stage there doesn’t appear to be much logic in using sub-paths since
we could obtain the same effect by simply using a smaller time step i,l the original
equations. The oper~tor algebra enables much greater efficiency, however, when we
consider only one pair of particies at a time. If we fix the positions of the particles,
the momentum-independent operators in the interaction form a closed set and we can
trivially exponentiate the potential. ‘s The ratio of true to free particle pair Green’s

functions (Eq. 39) i~ approximated aa:

The operator algebra given in reference 35 can then be employed to
ratio in terms of the six operators

O: s {l,a,~J,r, r,,a, fl,r,. r,, S,,, Sl,rl r,}

approximate this

(IS)

ami associated coefficients, In forming the full .~-body Green’s function ( Eq. 3!)). we

Ilse a \Ionte (’arlo sampling to symmetrize over the order of pair Green’s functions,

Tht= nllriear interaction also contains three-nucleon and momentum-dependent
two mIrlHII~ iutertictionq. These interactions are relatively weak, hence the followinq
gvnerdi~ation of Eq. 39 can be employed:

l“hr (11’rlt,llIvf’opmators in the L oS,, operator act only on the free-particle Grmm’s

fllrlctmll. \l(m” mx:urate expressions for ( j are possible but difficult to implermmt. l;~lr
IIxalnplt=. (’~po[l~lltl,lting ~ie two-pion-~x(.]l(lllgc Lhrm-nuclemn interaction involvf=s a
,olll[)li(.,atmi Spin -i.x)spin ~tructure.



The remaining non-local terms are proportional to the square of the momentum
operator, and hence can be described in this method aa a direction-dependent ~ef-
fective mass’.= However, the fact that this effective mass depends upon spin and
isospin limits our ability to do GFMC calculations, since the basis of the method
is that the Gren”s function can be written as a free-particle Green’s function time

small corrections (of the order of AT). This is no longer true for terms such u LZ

and L. St, !wnce we solve for a simplified Argonne V8 model in which no such terms
are present. The Argonne V8 model is constructed to reproduce the deuteron ex-
actly, and to reproduce the full S- and P-wave interaction with the exception of the
coupling of P and F waves, The difference between the full interaction model and the
simplified V8 model can then be computed in perturbation theory. This perturbative
dkct is fairly small, approximately 0.15 MeV in the triton and 0.9 MeV in the al-
pha particle. Improved methods for treating state-dependent non-local interactions
would be extremely va!uable.

The basic GFMC algorithm deac.ibed previou~ly now goes through with a few
fairly straightforward generalizations, Each configuration now consists not only of
the coordinates of the particles, but also a set of amplitud~ in the various spin- isospin
channels. The amplitudes are productq of the hermitim conjugate of the tria! wave
function times the amplitude of the true wave function. At each iteration, we first
divide each amplitude by the hermitian conjugate of *T, hence reconstructing the
wave function. Then we construct an approximate spin-independent Grem’s function

G and sample a new point R’ from G(R’, R). One alternative is to choose G to be
the the fr~ A-body propagator tim~ the ratio of central correlations in the trial
wave function at the points R’ and R. This choice incorporates an approximate

importance 9ampling.
Given the init,ial and final points in configuration ip.ce, we then construct the full

Green’s function in operator form, and calcuiate its effect acting upon the wave func.
tion at the initial point. Finally, we multiply each component of the wave function
by the hermitian conjugate of the trial function’s component at the new point. This
completes one iteration of the Green’s function equation. Branching is incorporated
by using the absolute value of the sum of all amplitude in the various channels.

Within each run we iterate approximately 1000 configurations for several hundred
to a thuusand generations. Approximately twenty runs are required to accurately

tuwess the statistical errors, so the calculations are quite computer intensive. The
alpha particle calculations typically require 50 - 100 hours of cpu time on a Cray -

X \lP. It may be possible to speed them up by incorporating better approximate ions
10 the :\-particle Greens function. and hence allowing larger time steps and fewer
iteratiorls. The results obtained to date with both Variational and Green’s function
\lIJntt~ ( ‘,\rlo methodg are presented in the next s~ction,



6. Results

1 will first pr=ent results from a new set of CFYIC calculations for the alpha
particle with a lhree-nucleon-interaction (TNI).371M The convergence of the GFMC

calculation is demonstrated in figure 5, wh]ch shows the energy plotted as a function

of the total iteration time ~ (Eq. 31). At r = O, the enel gy is equal to the variational
result, and it quickly drops to the exact ground state energy. In fact, the plot covers
only the initial part of the calculation, up to a total iteration time of 0.012 JleV-l.
The actual calculation includes 5 times as many iterations, the horizontal lines in the
figure are statistical error bounds obtained by averaging the resultg betwctn 0.024
and 0.060 \leV -1. The convergence of the GFMC SCII‘ion is determined by the
accuracy of the trial wave function u well M the excitati~n structure of the nucleus.

In this cue the variational wave function seems to contain small components of high
energy (short-ranged) excitations, excitations which are rapidly projected out in the
GF\lC method.

;~
O.oa 0.009 0.000 O.oa O.ou

T (Mw”’)
.— —. .——...._— —..—— —— .

i;i~llrl’ .I, .\lpha Particle Ground State }lnw~v vs. iteration time r.

l“lw \.ariational wav,’ function used in this ralrlllation was taken from refer~’rim=
2[; aIIIl tv;is optirnizd for the Argonne ~’l.! plu~ [’rbana model 7 TNI. C’onscquentl!”.
II {iI)rs li~)t i)roville a very good &timate for the ground state energy with the rnodrl
+ ‘r.%1. Ivlll(”ll hms a stronger repulsive rompomwt And a weaker two.pion-~xchanq(~
t(~rln, ][tj~v[,vrr, r,hr rn~~ radius of this t;lal wave function is very near the Pxit “
r,,$lllt. ~l(-llt-eit rt~llllrm ~maller cxtrap~l~tions for the intimates of other propmtim.

I! ill a statist iral sense. and thm~fore grounfl( ;l:\l(l prwlucm a wave function {JII..t
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state energy expectation values other than the energy are extrapolated from ‘mixed’
and variational estimat~ via:

(.50)

The extrapolations required wit h the present variational wave function are generally

quite small.
The thre-nuclmn-interaction included in these calculations is the Argonne model

S.37 At long dis!ances, the operator structure of this interaction is assumed to be
that of the tw~pion-exchange T?JI ( Fig. 6). In this diagram, one nucleon is excited
through pion exchange to a delta resonance, which then d~ays by exchanging a pion
with a third nucleon, Such a diagram is clearly not included in any iteration of
two-body terms, and consequently must be represented, if we restrict ourselves co
nucleon degr~ of freedom, u a three-body force. The Urbana TN I has the form:~

[n addition to the twmpion-exchange TNI, the Urbana model contains a short-range
repulsive term proportional to Lro. This term has the range of a two pion exchange on
each leg, and can be motivated through dispersive corrections in the thr~-nucleon
system. The interaction model also gives reasonable predictions for nuclear matter
saturation properties in variational integral equation stud ies.39

.,..... ..

...”....._

Figure 6) Tw-pion-exchartge three nucleon interaction. Thr daohed lines represent Px-

rhanged pims, the heavy solid line a dclr.a resonance, and the thin solid lines represmt
nucleons.

‘[’here are, of course, many tiiagrarns that can rorltrlbutr to the TNI, rllaking it
t’xtr~m~’ly difficult to derive the three- hmly force in any furdamcntal way. ( ‘urlsfl-
(Iuelltly, we adopt a phenomcnological approach ~irlliiar to that USA to mmstrurt thr
irlttvmrdiate- and short-ranged part of the Y?i force, and adj~lst the ‘r?J1’s strength
to tit t lie three-body binding t=rwrgy. ‘1.tw paranmtcrs obtained arr in rmlgh agrrr-
IIwrlt wll.tl vxpfwtationq obtained hy t’ ?itlli~tillg the strtmgth of twtl-~)loll-~x(.h~~tlqf”

IIlagr:lms such ,as Figurr (i. I WI) III(I I 111111 You that the three- bmly force i~ ~l~llt~’
sllinil ro[llparrwi to the t wo- rlll(.lmln irl, i,u”t.iori, l)IIt the flill ‘1’NI provi[lm ,t-5 \lt’\’
of thr Y \fek’ total bi:ltling ill tlIf* alplia l)~lrficlf’,



We obtain a ground state energy of -29,20 + 0,15 MeV for the Argonne V8
+ TNI model 8 interaction, approximately one ,MeV overbound compared to the
experimental -2S.3 MeV. Employing perturbation thtmry to estimate the difference
between the Argonne V14 INNinteraction and the V8 model yields 0.9 \leV repulsion,

‘)8.3 + 0.2 MeV, in remarkably good agreement withyielding a total energy of --
the experimental result. One should be somewhat cautious because of our use of

perturbation theory in the difference between the V14 and V8 models; but it appears
that the same three body force can be used to produce very accurate binding energies
for three and four body nuclei. The Urbana ThII model 8 has been chosen to provide
a good fit to the triton binding energy, 40 Faddeev results give -8.45 compared co
rhe experimental .8,48 MeV. We have also attemptd to check cur perturbative

estimate using threebody nuclei, perturbation theory yields very good results but the
difference between V8 and V14 models is only 0.15 MeV for A=3. The expectation
value of the three nucleon interaction is a small fraction ( < 570) of the total potential
energy, so at this level there is no apparent re~n to introduce four- or higher-body
interaction terms. Other models ( Reid, ?Jijmegen, ,,. ) of the ?JiN potential give a

similar underbidding for the three- and four-body nuclei, hence it should be possible
to lit the binding energies of these nuclei as well with an appropriate T~l model.

The most accurate variational calculations to date~s underestimate the alpha
particle binding by approximately one JIcV. As always, the total binding energy

results from a qensitive cancellation between kinetic and potential terms. Each of
these terms is on the order of 100 \leV (Table 2), hence the T~[ reprewnts -
.570 of the twebody potential energy, but a large fraction of tile binding energy,
( ‘onsequentiy, accurate calculations are very important when studying the etf~~ts ~jf
the t}, re-nucleon intera~tion. We also present several other expectation valu~ ill

I’able 2. :\lthough the~e numbers are not directly at cesslble experimt’ntid]y, they (lo
~)rovid~ a useful guide to understanding light nuclei.

. .

“~able 0: Alpha Particle Expectation L’slurs

Energy ( \[cV )
(T)

(h/N)
(Vw)
(v,)
(~;)
(Ld)
(y,-,)
(~;-”m)
I-’) ’qjm)

10!).:! (!.2)
.1:1(3.3 (15)
Illls (1.0)
25’2,5 (’.!,5)
,),)q ,)-.-!.. (2,1)

0,75 (0.01)
.3,() ((),2)

1().H ((),2)

l.!: (0,01)



Of particular interest is the strong effect of the tensor interaction in the alpha
particle. With the Argonne ~~ interaction, the tensor components contribute ap-
proximately 2/3 of the tw~body potential energy in the alpha particle. Almost

exactly the same fraction is found in Faddeev calculations of threebody nuclei and
100.41 The entry V. in the table gives thein cluster Monte Carlo calculations of

contribution of the full one-pion-exchange term in the AV14 interaction, it is almost

equal to the total VN,V expectation value. The Argonne .?JFJinteraction can be writ-
ten as a sum of onepion exchange, short range, and intermediate (two-pion ) range
terms. As shown in the table, there is a strong cancellation between the intermediate
range attraction VI and the short-range repulsion V, in the tw~body interaction.

~\nother me~ure of the strength of the tensor interaction is the D state prob-
ability in the four-nuckm ground state. With the Argonne plus Urbana model 8

“1’~1interaction, the D-state probability is 16%, other models range from 12 to 17
‘%. These probabilities are nearly consistent with what one would expect based upon
the number of triplet pairs in the A=2, 3, and 4 body nuclei; a ratio of 1:1.5:3.
III ddition, th~ -ymptotic D to S state ratio of the alpha particle wave function
IS in good agreement with experimental results .J The remainder of the wave func -
r ion is dominated by the fully symmetric S-wave state, which haa a probability of
$?.S( 0,2)’Yo. In addition, there are small components of other symmetries, either S-
or P-wave,

I

1
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does not appear in the variational results. This dip appears in only a very small
fraction ot the total volume because of the ri phase space factor. Nevertheless, it
does have some consequences when calculating the alpha particle charge form factor.

In the impulse approximation, the charge form factor can be obtained u the fourier
transform of the on~body charge distribution.

[r. reality, though, the eFects of two-body charge and current operators can be
important even at relatively low momentum transfer. The effects of these two-body
terms must be included in order to obtain meaningful comparisons with experimental
results. Riskaa~ has developed a method for constructing models of the exchange
currents which satisfy the continuity equation:

with an essentially arbitrary two nuclean interaction ~). Terms in the interaction can
be identified which have the appropriate quantum numbers for pion or rho exchange,
The continuity equation can then be used to constrain the pi. and rho-exchange
terms in the current, which are called ‘model-independent’ because they are obtained
directly from the interaction. In addition, there arc transverse pieces in the current
( e.g. .VAy, prr~, and ~r~) which ~re not so constrained, The most important
t,wmbdy terms in the current are due to the pion:

J“(q) = -3i(r, x r,), [i~w(k,)if, (fl, ~k,) - (Ir(k,)a,(dl I k,)-
. .

++, k,fl, , k,)[i’q( k,) - i’, (k J]]G;(q),-.I J

wllvre k, is the Illomentllm transferred to nllrlwn i and i’Wi~ the fourier trnnsform

Ill(Pll*, [u t}II*Iiimt of point pions and IIuclcon9.
.

l{ixkm’wIIW hIMi ddxrminm fi. (k ) AII(I i’,,(k) (Iirm’tlv from thr in~crart ion. III fact,
Illis lll,~!ll,)(l [)ro(lu(.w nearly pnlllt-likr i)i- Aml rt)().i)r()[)mqatl)rs with the ,\rg(mtlc*

Il]tf’rm ! 11111.
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Figure tla) Magnetic form factor of ‘H, from Schiavilla and Risks.a Impulse approxi.
mation (IA) results are shown along with the complete results (IA+tVEC). Curves labeled

F,4D employ the exact Faddeev wave function, and variational results are labeled VAR.
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Schiavilla and Riska have computed the magnetic form factors of 3He and 3H
(Fig. 8) with this method, as well as the backward cross-section for the electrodisin.
tegration O( the deuteron, Several sets of curves are included in the figure, including
resulrs with the impulse currents alone and impulse plus two-body currents, [n addi-

tion, the form factors obtained with \~ariational \[onte Carlo and Faddev methods
are t-ornp,ired. ‘rhe two sets of calculations give very similar results, although there

iire s~me liit~crtinces in the region of the diffraction minimum and beyond, Clearly,
the contributions of the exchange currents are crucial to reproducing the experimen-
tal results, particularly the contribution of the isovectm exchange current operators.
SchiavilIa and Risks have alqo calculated the backward elect rodisintegration of Lhc
IIeuteron near threshold. This reaction is also very sensitive to the isovertor ex-
fhanqe currents, and is well reproduces in the calculations up to very high values of
1IN [mmwnturn transfer,

r}wy have also computed the charge form factors of the three-body nuclei44 and
(~t)[aln ~ood agreement with experimc’-.al rmults. Exchange corrections to the charge
\ jl~llri~(~)r,lrp Tllore qpv( llla~lve sinrc Lhev f“ontairl reliitivistic correct iuns4s iin(i are nut
(.(jllstrillfled bv the continuity equation. %[ne of these ambiguities are rlirninatwl in

I tw ,ilplla partlrle howrvc r (Iue to the fact that the alpha particle is an is~w”alar
+Vscf’l;l, IVF have combined the followlng lme-body ~’barge operator:

Pi(q) = [1 - -]+[(;~(q)+(f’}(q)rr]

–1 +; ~!fw)-W’,(d + [w(,) - :Gi’,(fd]n}.
ll]l”orl)tjr;lrlll~ ttlr [)flrwlf]-~ol(iy I.erln ill)(l ,1 $[11;1111, S corrrrtmn. with il l.V.’t)-l)t IIl\’
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Figure 9) VMC arrd GFMC results for one-body and pion contributions to the alpha
particle charge form factor

The full calculations are compared to experimental results in Fig, 10. The (;FNIC
calculation is in excellent agreement with experimental resul!s up to a morncntum
transfer of = 4.s fro-l, Beyond that point, the calculated form factor is significantly
larger than experimental results, Nevertheless, the overall agreemmlt is excellent
particularly at lower momentum transfers where one would expect the thtmrv rt)
work I)est,
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Another very important goal in nuclear physics hss been to obtain an experimen.
tal determination of the correlations of nucleons within a nucleus. Inclusive electron
scattering experiments can meuure the Coulomb sum, which provides a useful too]

for studving these correlations. The Coulomb sum is defined as:

(57)

where RL is the longitudinal response of the nucleus and GE is the proton form factor.
“rhe integral extends from energies just above elastic scattering to infinity, and hence
\ve can use closure to calculate the Coulomb sum as a ground state expectation value,

whf!re
1 + r,b

~A.(q)= exp(iq orh)[-] (5!))

if we Ignore small neutron contributions (which are included in the calculations) and
t wo-bocly terms, [n this approximation, the Coulomb sum is simply:

(60)

wtlrrr }’. is tllr charge form factor of the nucleus and pPP(q) is the frmrier transform
of the two-ht~t!y distribution function integrated over the pair’s center-of- maas,

(hulomb Sum

0
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Thecalculations arecompaed toexperimentd r-ults in Figure 11. ‘l’wo~veat,
should be noted concerning this comparison. First, the experimental results only
extend to a finite energy, and consequently must be extrapolated to deter~ne the
[,11]Coulomb sum, Schiavilla et al.4740 calculated the energy- and energy-squared
weighted sun-i ruk with a variatioaal wave function; assumed a functional form for

the response in the tail region, and fit this curve to the calculated moments. The

contributions of tt.e tail region in theexperiment.aregivenM the difference between
the points labeled ‘extr’ and ‘trunc’. The latter includes only the raponse up to the
experimental limit. As shown in the figure, the VMC and GFMC curves are nearly
identical, and both agree very weU with the extrapolated results.

Beckso has extracted pm(q) from the ●~perimental r-ults in the thr~-nucl~n
system, and obtained the curve shown in Figure 12. He combined the experimental
Coulomb sum and charge form factor, the r=ults of %hiavilla, et al. for the (small)
neutron contributions, and a slightly different extrapolation technique to produce the
results shown in the figure. Although th~ qualitative features of the experimental
and theoretical curves are similar, the experimental pm(q) is m’lch higher beyond the
first minimum. This would indicate even a stronger correlation in the p:otons than
is present theoreticaUy, but contributions of two-body operators to the Coulomb sum
should be included before strong conclusions are drawn.
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l’w) Imp{)rtant avenues are open for future research once a consistent piclurp
of light nurlri has been obtained, The first of these is calculations of the structure
M(1 proprrtlm of heavier nuclei. ~he lnethods I have (Ies(:ribed in these Iecturm
l.i~n 11P(Iirectly ~xtemied otily IIp h] appro.x)mhtely .4 =t~, and work in this area 1~
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currently under way, Beyond .+=8, better methods have to be developed to handle
the spin- isospln degrees of freedom in the nucleus. Important progress in this regard

has been made by Pieper et al.,$l who have employed a cluster summation technique
to study 150. To ciate, variational calculations with the ,4rgonne Vil plus T?iI

model 7 interaction (which is more attractive than m~~’le!8) give approx]mate]y 7

\(e\” binding per nucleon out of the experimental 8 Me~ . They are currently working

on improvements LOboth the variational wave function and the cluster summation
methods. [mpro~ements to the variational wave function incorporate two-body L” S
correlations N well as improved three-nucleon correlations

The other outstanding problem in the application of lfonte Carlo methods co
nuclear physics is the study of dynamic properties, a very ambitious goa!, The
primary successes to date have been in the study of low-energy scattering and elec-
tromagnetic transitions, as well as in approximate treatments of dynamic response

52’s3 I will concentrate on the former topic, and particularlyin electron scattering.
‘lie - a + ~ reaction,Ilpon the n +

L“ariational \[onte Carlo methods can be employed to study low-energy scattering
in a regime where only two-body breakup is energetically allowed. M The basic idea is
similar to R-matrix approaches, one studi= eigenstates of the Hamiltonian in which
there is no net flux in or out in any channel. In a onechannel Froblem this amounts
to specifying a boundary condition at a radius beyond the interaction region and then
perforrninq a variational calculation to determine the energy eigenvalue associated

with that boundary condition. The boundary condition can take the form of either
requiring the relative wave function to be zero at a specific radius,54 or more gene; ally

‘s Determining the eigenvalue M a func:ionrquiring a specific logarithmic derivative.
,~f tl~~ bo,~ndary condition is then equivalent to determining the phase shift M a
(Ilnct icw of energy.

In principle (; FMC methods can also he usd to study these !ow-energy scattering
l~rol~lmns, and consequently to systematically improve any variational rmu)ts. “rhi~
w.hmne can also be generalized to multi-channel scattering proceswa. but rtquires a
~{{”trr[lllllatiorlof the energies and relative amplitudes at the channel surfaces. The

[twchod’s practicality depends upon-the ability to cliagonalize in a small biuis ( 10. W
+1atISS)IISIIIqS[onte (.arlo methods, Preliminary results on small problems indicat{’
I I]at this should IM feasible, but multi-channel methods have not been testd on a
rf’iilisl ic ~jr(d]lem.

I{’(II\;LWIused this method to study tlw N + ‘ffe ~ n + ~ r~i~ctio~i.’s :\t th~vmi~l
f’rlf’rql(w t, his reaction is dominated the spin- 1 s-wave scattering d nrutr~ms on ‘11!’,

I{mvnt lntrr~t in this r~action has cmtmwl m its possibl? rclatiunship to the wmk
I’;qJr.11r~ prot-ca irl the four. nuckm svstmr. a rmct ion which produces the kiqhwt
1*1)11-!) I)II)t OIWrMovIwutrinos from thd still} I’lwre have hen spm-ulatiuns that thrsr
[l(~lltrl[l~]s11)11111 I)r II If*as II~F(l wparmt~ly Ill 11f~ltllrr solar rwutrino Ihwt-vatory. [n ttl(’

illll~lllw’ al)l)roxlliiatiofl,” tlie w~ak itIItj PIIWI r~m~agurtic l-apturr ~i~ \OIOWIV rFlii*(~l,

Ii



Our calculations indicate, though, that the radiative transition igdornjnated bY
exchange currents. We obtain a strong-interaction scattering length of 3.5 A 0.25 fm

for the spin one n- 3He state, which agrees well with experimental estimatea. Using
this scattering wave function and a variational ‘He wave function, we find that only

10 % of the experimental value (60 pbarns)w is obtained in the impulse approxima-
tion. The low value is to some extent understandable since the impulse cross section

is precisely zero in the limit where there is no tensor force, and consequently a purely
s-wave alpha particle.

Using the full exchange current models, we find a value of 110 pbarns for the
cross section, Including only the ‘model-independent’ terms in the exchange currents
gives 70 pbarns, in much better agrement with the experiment, ,A similar result is
obtained if we keep only the n exchange terms, as has been done in the n-d capture
calculations of Friar, Gibson, and Payne;sr and use a cut-off of 5,8 r masses in
the propagator. [n this case we obtain a total cross section which agrees with the
experimental value. Our results are quite sensitive to the scattering length, however,
a decrease of 0.25 fm in the scattering length would increase the calculated cross
sections considerably. We are currently investigating the application of th~ same

‘He. They have also recently beenmethods to the weak capture of protons on
applied to the d + d + a + y reaction. ss

7. Conclusion

\lonte Carlo methods provide a valuable tool for ~nderstanding the structure and
properties of quantum systems. [ have concentrated on applications to light nuclei
in rhese Iecturu, but these methods are equally applicable to other arem of nuclear

physics, includinq hypernucl~i and quark-model physics. In recent y~ars we have de-
veloped a remarkably consistent picture of light nuclei with the help of ilonte Carlo

and Fadd~v methods. Realistic nuchxm-nucleon interactions combined with plausi-
ble threnucltwxt-interaction models have b=n found to give a good descrip~ion of
the binding energy of three. and four-body nuclei, The ca.lcula~ions to date empha-
size the important role of the tensor force, a primary component of this force being
IiIIe to one-pion-exchange. When couplud with re~cmable models of two-body ●x-

[’hange current. and charge operators, these ‘traditional’ models also give remarlmhly
Mood dmcriptions of three- and four- bo{ly rkctromagnetic form factors.

I,ight nuclei combine the advantag~s of relative computational simplicity (mat]y

rva]istlc calculations are practical), with phy~ical complexity, “1’heydfer an impor.
fNI. Ialmratory for studying a wide w-wiety of nuclear propertim, including nuclmm

llllrlwm correlations, weak and radiativ~ transitions, rtl= procesrms otfcr a widt?
var irty of t,rsts for the nuckar Iianliltoni,wl AIIIIexchange currrnt IIIodels. I!rmvi(w

llllrh’i ~)l[rr tlw ~q)portunity for ~tu[lying ttw l~uclcar interaction in nrgative parity
~liit,m An(i vwv nmltrorl. rirh Ilurh’i, whwh ,wr important astmphysically throllKh
IIwir (’olllif%:tloll” with nf=utr[}ll *t firs,

:11;



The foremost challenge in the future lies in developing new methods to treat
quantum dynamics and incorporating relativistic effects in few-body calculations,
Some valuable progress has ben made in both of these areas, but much remains to

be done. Accurate microscopic calculations of the dynamic response of light nuclei

to electromagnetic probes is perhaps the most important goal of the next decade,
This work was supported by the U. S. Der . tment of Energy.
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Appendix

Monte Carlo calculations of light nuclei are performed in a basis of definite third

components of spin and isospin for each particle. Thus, the wave function at a given

point in space can represented as a set of 2AA!/(.~!Z!) complex coefficients. The

simplest case is the deuteron, where:

and
@d=(n TpT-p Tn ~). (63

The uncorrelated state @~, then, has only two non-zero coefficients and does not
depend upon the spatial coordinates of the particl~.

This basis of states is convenient bc -ause the spin-isospin operators take a par-
ticularly simple form. For example,

u,. u,=2P,; -l, r,, r,= 2P,; -1,

where P,f(r) is a permutation operator in spin (isospin) space. Therefore, the e, . a,
and r, . r, operatom acting on a state can be evaluated by only two multiplications
of a scalar time the wave function rather than by full matrix multiplications. The
permutation operators at,ove can e~ily be represented u bit manipulations on the
array indices within the computer. For example, the indices corraponding to the
spin states of the deuteron can be taken as

wherr the middle column is simply the binary representation of the spin st~tt~.
( ‘hmrly, P; acting on state 01 ( 1) gives 10 (2), etc.

III a similar manner, the tensor operator S,, = 3u, “?CJ“F - u,’ a, can be rewritten
I]siug:

u’+ = (7+?.. + m.++ +f7io, (64)

m+ = (fir + lfl”)/’2

f7- = ((7, - lflv)/’2

(7,, .= (7~

Fb = (.r t t~)/r

+. = (r - ly)/r

i,, = (:1/r.

II)



The operators a+ and a. do nothing but raise and lower spins, respectively. Note
that they differ from the usual raising and lowering operators by a normalization;
these operators give unit coefficient when they flip a spin. Just as the u, . UJ Ud
~i . r, can be represented through permutation operators, the tensor operator can be

represented as combinations of permutation and spin flip operators.
In this basis, we can explicitly construct the deuteron wave function. It is given

by:

$d = ~c(r)[l + us(r)(3i~ -l)][nlpl-pTnT]

+f(r)[us(r)(3~o++ -l)][n TpJ+nlp T-p~n J-p JnT]

+f’(r)[us(r)(3~~ -l)][nlp J-p Ln J]. (66)

Wave functiong for larger nuclei are easily constructed through successive operations
of pair correlation operators, The effect of the potential terms acting on the wave

function can he calculated similarly.


