LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the acaderiic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

Receiven hy OSTI

AUG 061990

HII OIPIMMIM IIYPERSONIC AIRFOII, WITH DOWFAR LAAW SHOCK WAVES

LA-UR--90-2437

AlJTIORA: :
B. A. WAC:NH:K

DE90 014903

SUBMITH:D III Jite Proceedings of the lat International llyperaonle Wiverldar symposilum, la he held III (:ollege P:ark, MI), (Detober, I990

Optinum Hypersonic Airfoil with Power Law Shock Waves

B. A. Wagner*
CNLS \& C-3, LANL B258

Los Alamos, N.M. 87545

Introduction

In the present paper the flow field over a class of two-dimensional lifting surfaces is examined from the viewpoint of inviscid, hypersonic small-disturbance theory (HSDT). It is well known that a flow field in which the shock shape $S(x)$ is sin: l lur to the body shape $F(x)$ is only possible for $F(x)=x^{k}$ and the freestroam Mach mumber $M_{\infty}=\infty$. This self-similar flow has been studied for several decades as it represents one of the few existing exact solutions of the equations of HSDT. Detailed discussions are found for example in papers by Cole ${ }^{3}$, Mirels. ${ }^{3}$. Chern!! ${ }^{\text { }}$ und Gersten nud Nicolai ${ }^{8}$ but they are limited to convex booly shapes, that is. $k \leq 1$. The only study of concave body shapes was attemptal by Sillirari where only special enses were considered. The method used here shows that similatit: nlso exists for concher shapes and n complete solution of the How field for muy $k>\frac{3}{1}$ is given. The offert of varying k on $\frac{\cos ^{3 / 2}}{\boldsymbol{r}_{11}}$ is then determined mad nu optimum shane is fomad. Furthermere, a wider class of lifting surfaces is constructed asing ine siremulines of the basir flow field and manlysed with respere to the cffect on $\frac{1: 3 / 2}{1 / 2}$.

[^0]to the surface. The surfaces are considered to correspond to the lower compression surface of a two-dimensinal wing. Since the pressure difference across the shork induced by this surface is of higher order than that of the shork induced by the upper expansion surface we neglect the contribution of the upper surface th the lift or drag.

Simiarity Solution

This section is a formulation of our problem in the framework of lypersonic small-disturbance theory. If we substitute the scaled variables $y=\frac{\bar{y}}{8}$ and $x=\bar{x}$. with $\delta=$ thickness ratio, together with the asymptotic representations for veion ity. pressure and density into the equations of motion and neglect $O\left(\delta^{\mathbf{2}}\right)$ terms we obtain a reduced problem with the longitudinal momentum equation uncoupled from the rest of the problem. This longitudinal momentum equation can later be determinorl using the Bernoulli equation.

For a slender airfoil we write for the body surface $\bar{y}=\delta F(x)$ with nssorinted shock shape $\bar{y}=\delta S(x)$. See figure 1 .

Next, we change the (x, y)-coordinate system to the (x, ψ)-coordinate systrim. where ψ is the stream function. See figure 2. We further change from (.r.1.) th (x, ξ) coordinates, where ξ is the shock location $x=\xi$, i.e. the \boldsymbol{r} - lorition where

of variables argument together with the continuity and monentum equation as $\theta(\xi)=k a \xi^{k-1}$. Also note that now the density can be written in terns of the pressure using the entropy equation and the shock conditions. Finally. we obrain for our basic prolirm:

$$
\begin{align*}
& \text { Continuity } \quad \frac{c^{2} \theta(\xi)^{\frac{2}{2}+1}}{p^{-\frac{1}{1}}} \frac{\partial p^{*}}{\partial x}+\frac{\partial v^{*}}{\partial \xi}=0 \tag{1}\\
& \text { Momentum } \quad \frac{\partial p^{*}}{\partial \xi}+\theta(\xi) \frac{\partial v^{*}}{\partial x}=0 \tag{2}\\
& \text { Shock conditions } p^{*}(\xi, \xi)=p_{S}^{*}=\theta^{2}(\xi) \tag{3}\\
& \iota^{*}(\xi, \xi)=v_{S}^{*}=\theta(\xi) \tag{+1}\\
& \text { Boundary Condition } v^{*}(x, 0)=\frac{\gamma+1}{2} \frac{d F(x)}{d x}
\end{align*}
$$

where $c^{2}=\frac{\gamma-1}{2 \gamma}, v=\frac{2}{\gamma+1} v^{*}, p=\frac{\lambda}{\gamma+1} p^{*}$.
For the similarity solution we have

$$
\begin{equation*}
p^{*}(x, \xi)=k^{2} a^{2} x^{2 k-2} \eta^{2 k-\frac{2}{i} T} R(\eta) \tag{0}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{*}(x, \xi)=k a x^{k-1} \eta^{k-\frac{1}{1}+\pi} U(\eta) \tag{7}
\end{equation*}
$$

where $\boldsymbol{\eta}=\frac{\mathbf{s}}{\boldsymbol{s}}$ is the similarity variable. Therefore we obtain, togethar wit! ther shock conditions (3) and (4) , R(1) = 1 and $C^{\circ}(1)=1$. The boundary conclition (:) can be used to determine the constant a. If we substitute (6) and ($\overline{1}$) into crinations (1) and (2) we obtain

$$
\begin{equation*}
\text { Continuity } \quad-\frac{2 \gamma}{\gamma+1} \frac{r^{2}}{R^{\frac{1}{4}}}-\frac{r^{2}}{R^{\frac{1}{1}+1}} \eta \frac{d R}{d \|}+\left(k-\frac{2}{\gamma+1}\right) U^{r}+\eta \frac{d l i}{d \eta}=(1 \tag{ふ}
\end{equation*}
$$

$$
\begin{equation*}
\text { Momentum } \quad\left(2 k-\frac{2}{\gamma+1}\right) R+\eta \frac{d R}{d \eta}-\frac{\eta-1}{\gamma+1} \zeta^{-}+\eta \frac{d L^{-}}{d \eta}=0 \tag{101}
\end{equation*}
$$

The initial value problem we obtained can be solved numerically using a Rungr. Kutta method, where we are interested in the cases where $k>1$. .iote that the special case of the . .ewtomian limit $\gamma=1$ can be solved completely analytically:

$$
\text { Evaluation of } C_{L}^{3 / 2} / C_{D}
$$

At first we will study the case where $\xi=0$ which is the case of the original power law shape. Observe that as $\eta \rightarrow 0$ we find that

$$
\begin{equation*}
R(\eta)=c_{1} \eta^{\frac{2}{\eta+1}-2 k} \quad \quad C^{\prime}(\eta)=c_{0} \eta^{\frac{2}{\eta+1}-k} \tag{10}
\end{equation*}
$$

The coefficients c_{0} and c_{1} are determined using equations (8) and (0). Fronn the definition of the lift and drag coefficients and equations (6) and (7) we obtain the following formula:

$$
\begin{equation*}
\frac{C_{L}^{3 / 2}}{C_{D}}=\sqrt{\gamma+1} \frac{3 k-2}{(2 k-1)^{3 / 2}} \frac{\sqrt{c_{1}}}{c_{0}} \tag{11}
\end{equation*}
$$

We find that a maximum value of $\frac{C^{3 / 2}}{C_{D}}=1.569$ is attained at $k=1.13$ for $9=\bar{\vdots}$. This result agrees with a result by Cole and Aroegty ${ }^{4}$ who suggested that booly: shapes which are slightly more concave than a flat plate have superior performnare.

Next, we wish to investigate the behavior of $\frac{C_{1}^{3 / 2}}{C_{0}}$ for $\xi \neq 0$. The underlying iden for constructing a wider class of lifting surfaces is to use the streanlines of out basic flow fleld as the elements of the surface. Then the lifting surface is formach those streamlines that penetrate the basic shock surfnee through the prints on the
leading edge curve. See figure 1. Let us now define the lift and the drag roctficiouts as functions of $\boldsymbol{\xi}$.

$$
\begin{equation*}
C_{L(\xi)}=-\frac{4}{\gamma+1} k^{2} a^{2} \delta^{-2} \xi^{2 k-1} \int_{1}^{\frac{1}{\zeta+1}} \eta^{-\frac{1}{\gamma+1}} R(\eta) d \eta \tag{12}
\end{equation*}
$$

The integral in the last equation can be found by using the momentum equation. Hence

$$
\begin{align*}
C_{L(\xi)}=\frac{4}{\gamma+1} k^{2} a^{2} \delta^{2} \frac{1}{2 k-1}(\xi+1)^{2 k-1} & \left(\frac{\xi}{\xi+1}\right)^{2 k-\frac{2}{\gamma+T}} \tag{13}\\
& \left(R\left(\frac{\xi}{\xi+1}\right)-U\left(\frac{\xi}{\xi+1}\right)\right)
\end{align*}
$$

Similarily, we have for the drag coefficient

$$
\begin{equation*}
C_{D(\xi)}=-\frac{8}{(\gamma+1)^{2}} k^{3} a^{3} \delta^{3} \xi^{3 k-2} \int_{1}^{\frac{f}{4+1}} \eta^{\frac{\gamma-3}{\frac{1}{+1}}} R(\eta) U(\eta) d \eta \tag{14}
\end{equation*}
$$

Using momentum and contizuity we can integrate and obtain

$$
\begin{align*}
& C_{L(\xi)}=\frac{8}{(\gamma+1)^{2}} k^{3} a^{3} \delta^{3} \frac{1}{3 k-2}(\xi+1)^{3 k-2}\left(\frac{\xi}{\xi+1}\right)^{3 k-\frac{1}{7+1}} \\
& \left(U\left(\frac{\xi}{\xi+1}\right) R\left(\frac{\xi}{\xi+1}\right)-\frac{U\left(\frac{\xi}{\xi+1}\right)^{2}}{2}-\frac{1}{2} R\left(\frac{\xi}{\xi+1}\right)^{\frac{2-1}{\imath}}\right) \tag{13}
\end{align*}
$$

Finally, we obtain for the formula for a general two-dimensional waverider

$$
\begin{gather*}
\frac{C_{L(\xi)}^{3 / 2}}{C_{D(\xi)}}=\sqrt{\gamma+1} \frac{3 k-2}{(2 k-1)^{3 / 2}} \sqrt{\xi+1} \\
\frac{\left[\eta^{2 k-\frac{1}{1+1}}(R(\eta)-U(\eta))\right]^{3 / 2}}{\left[\eta^{3 k-\frac{1}{1+T}}\left(U(\eta) R(\eta)-\frac{\left[(\eta)^{2}\right.}{2}-\frac{1}{2} R(\eta)^{\frac{2-1}{?}}\right)\right]} \tag{i}
\end{gather*}
$$

at $\eta=\frac{\varepsilon}{\xi+1}$. An examination of the behavior of $\frac{C_{L(c)}^{3 / 2}}{C_{D(6)}}$ shows an increase of the maxima as ξ increases while the k where the maxima are attained also increase. The highest maximum value of $\frac{C_{L(1)}^{3 / 2}}{C_{D(1)}}$ is the limiting case $\xi \rightarrow \infty$ and $k_{\text {mix }} \rightarrow x$ which corresponds to the body shape supporting exponential shock shapes. The limiting value is $\frac{C_{L(S)}^{3 / 2}}{C_{D(t)}}=1.5795$. This special case was worked out earlier by Cole and Areosty ${ }^{1}$.

Concluding Remarks

It is my great pleasure to express at this point my gratitude to Professor J dian D. Cole who suggested this problem to me and provided me with very helpful advice and guidance.

Details of above investigations can be found in Wagner ${ }^{9}$. The analysis is part of a study of optimum lifting surfaces using HSDT and will be used, in a subsequent paper, to design three-dimensional waveriders supported by two-dimensional flow fields. This represents a generalization of the idea by Nonweiler ${ }^{2}$ to design threedimensional inverted. V wings supported by the two-dimensional flow field generated by a flat piate.

This work was supported by the Air Force Office of Scientific Research muler grant AFOSR 88-0037.

References

1. Cole, J. D., Aroesty, J., Hypersonic Similarity Sol.ttons for Airfoilo Supporting Exponential Shock Waves, AIAA. T. Feb. 1970, pp. 308-315.
2. Nonweiler, T. R. F., Delta Wings of Shapes Amenable to Exact Shock Waue Theory, J. Roy. Ae. Soc., Jan. 1963, Vol. 67(625).
3. Cole, J. D., Newtonian Flow Theory for Slender Bodies, J. of the Aeronantical Sciences, Vol. 24, 1957, pp. 448-455.
4. Cole, J. D., Aroesty, J., Optimum Hypersonic Lifting Surfaces Closer to Flat Plates AIAA, Vol. 3, No. 8, Aug. 1965, pp. 1520-1522.
5. Mirels, H., Hypersonic Flow Over Slender Bodies Associated with Power. Law Shocks, Advances in Applied Mechanics, Vol. 7, 1962.
6. Sullivan, P. A., Inviscid Hypersonic Flow on Cusped Concave Surfaces J. F'uid Mechanics, Vol. 24, Part 1, (99), 1966.
7. Chernyi, G. G., Introduction to Eypersonic Flow Academic Press, New York and London, 1961.
8. Gersten, K. and Nicolai, D., Die Hyperschallstromung um schlanke Körper mit Konturen der Form $\overline{\boldsymbol{R}}=\overline{\boldsymbol{x}}^{\mathbf{n}}$, Deutsche Luft- und Raumfahrt Forschungsbericht 64-19, Juli, 1964.
9. Wagner, B. A., Hypersonic Similarity Solutions for Airfoils Supporting Power Lav Shock Waves, RPI Math. Report No. 168, July 1088, Rensselaer Polytechnic Institute, Troy, NY 12180-3590.

Figure 1: Domain of BVP in dimensional coordinates

Figure 2: Domain of BVP in (ψ, x)-coordinates

Flgure 3: Domaln of BVP in (ξ, x)-coordinates

[^0]: * Posudoctoral frllow. Conter for Nonlinenr Studies \& Computar Resemeh Gromp

