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Introduction

In the present paper the flow fiel d over a class of t wo-dimensional lifting surfaces
is examined froin the viewpoint of inviscid, hypersonic small-disturbance theory
(HSDT). It is well known that & flow field in which tiae shock shape §(.r) is simzilar
to the body shape F(r) is only possible for F(r) = x* and the freestream Mach
nmmnber A/ = co. This self-similar low has been studied for several decades as
it represents one of the few existing exact solutions of the equations of HSDT.
Detailed discussions are found for example in papers by Cole3 Mirels®. Chernyi®
and Gersten and Nicolai® but they are limited to convex body shapes, that is,
k < 1. The only study of conenve body shapes was attempted by Sellivan® where
only special enses were considered. The method used here shows that similarity also
exists for conenve shapes aud a complete solution of the How Held for euy & > 4 ix
given. The effeet of varving & on (—(2':.-,- iy then detevmined and an optinmun shupe
is found. Furthermere, a wider class of lifting siufaces i constructed using vhe

Wt 2

. . R « (
siremlines of the basic How field and nunlysed with respect to the effect on b=,

We negleet viscons effeets nud nssue bonndary lnyers to be thin nnd nttnehed

* Postdoctoral fellow, Center for Nonlinenr Studies & Computer Researeh Gronp
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to the surface. The surfaces are considered to correspond to the lower compression
surface of a two-dimensinal wing. Since the pressure difference across the shock
induced by this surface is of higher order than that of the shock induced by the
upper expansion surface we neglect the contribution of the upper surface to the lift

or drag.

Simiarity Solution

This section is a formulation of our problem in the framework of hypersonic
small-disturbance theory. If we substitute the scaled variables y = % and r = 7.
with & = thickness ratio, together with the asymptotic representations for veiovity.
pressure and density into the equations of motion and neglect O(6?) terms we obtain
a reduced problem with the longitudinal momentum equation uncoupled fron: the

rest of the problem. This longitudinal momentum equation can iater be determined

using the Bernoulli equation.

For a slender airfoil we write for the body surface § = 6 F(z) with associnted

shock shape ¥ = 65(z). See figure 1.

Next, we change the (r, y)-coordinate system to the (r, ¥')-coordinate systew.
where ¢ is the stream function. See figure 2. We further change from (.r.1) to
(r,€) coordinates, where £ is the shock location £ = £, i.e. the r-location where
an incoming streamline crosses the shock. See figure 2 and 3. Note, that 1 nnd §

are related by 0(5)}}% = '-"?3' where 6(£) = %“ﬂ- can be deterniitzed by a sepnvnticn
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of variables argument together with the continuity and momentum equation as
8(&) = kag*~'. Also note that now the density can be written in terms of the

pressure using the entropy equation aad the shock conditions. Finally. we obtain

for our basic prol'~m:

29( ) 241 ap av-

Continuity " ”° EP + 3 =0 (h
Momentum 80 ¢ t2)
Shock conditions p°(£,£) = p§ = 6%(€) (3)
e*(€.6) = v§ = 8(8) 4)
Boundary Condition v*(r,0) = + ! di(:) (3)
where ¢? = %, J—v",p- _Hp“.
For the similarity solution we have
P'(I-E) =k2a212h-2"2ﬁ—?hR(”) (G)
and
v*(z,£) = kaz*‘p*~THTU(n) (7)

where n = ‘ is the similarity variable. Therefore we obtain , together with the
shock conditions (3) and (4) . R(1) = 1 and L(1) = 1. The boundary condition ()
can be used to determine the constant a. If we substitute (6) and (7) into equations

(1) and (2) we obtain

. 2y 2 2 dR 2 , U .
Continuity T+ 1 RS nf‘“’ T + (k e W+ m {
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Momentum ("L—T)R-l-n'——'——b'+n—- =0 1 9)

The initial value problem we obtained can be solved numerically using a Runge-
Ikutta method, where we are interested in the cases where £ > 1. Note that the

special case of the Newtomian limit ¥ = 1 can be solved completely analytically.

Evaluation of C}/?/Cp
At first we will study the case where £ = 0 which is the case of the original

power law shape. Qbserve that as n — 0 we find that
R(n) = cyp7r 2 U(n) = con™1%, (10)

The coefficients ¢y and ¢, are determined using equations (8) and (9). Fromn the
definition of the lift and drag coefficients and equations (6) and (7) we obtain the

following formula:
3/2

(11)

— 3%-2 o
= Vil

13/ ¢y

We find that a maximum value of —Cé— = 1.569 is attained at & = 1.13 for 7 = £.
This result agrees with a result by Cole and Aroesty* who suggested that body
shapes which are slightly more concave than a flat pla.te have superior performance,
Next, we wish to investigate the behavior of e f()r € # 0. The underlying
idea for constructing a wider class of lifting surfaces is to use the stremmlines of our
basic How fleld as the elemnents of the surface. Then the lifting surface is formed by
those streamlines that penetrate the basic shock surface through the points on the
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leading edge curve. See figure 1. Let us now define the lift and the drag coctficients

as functions of §.

—
E+1

4 P ] h]
Cre = '7—“020'6"‘" n~ ¥ R(n)dn

9
1 (12)

1

The integral in the last equation can be found by using the momentum equaticn.

Hence

4 ) 1 _ 2k— 3
Cun = e s e+ 0# (£5)

Similarily, we have for the drag coefficient

g ™
Co(e)=-(—7+—1)2’~"a’536”‘" /n:"'“R(n)U(n)dn

(14)

Using momentum and contiauity we can integrate and obtain

8 1 i} s
Cp(o = 7+ l)iksaaﬁam(f + 1)3" 2 <_£_)

() r(75) -2

Finally, we obtain for the formula for a general two-dimensional waverider

(15)
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3/2

at n = —i—l An examination of the behavior of C—;‘(ﬂ shows an increase of tle
¢)

maxima as ¢ increases while the & where the maxima are attained also uicrease.

3/2

The highest maximum value of C_:'T% is the limiting case £ — oc and kp,; — x

which corresponds to the body shape supporting exponential shock shapes. The
3/2
limiting value is -Cﬁ-’)- = 1.5795. This special case was worked out earlier by Cole

and Areosty!.

Concluding Remarks

It is my great pleasure to express at this point my gratitude to Professor J dian
D. Cole who suggested this problem to me and provided me with very helpful advice
and guidance.

Details of above investigations can be found in Wagner®. The analysis is part
of a study of optimum lifting surfaces using HEDT and will be used, in a subsequent
paper, to design three-dimensional waveriders supported by two-dimensional flow
fields. This represents a generalization of the idea by Nonweiler? to design three-
dimensional inverted-V wings supported by the two-dimensional flow field generated

by a flat piate.

This work was supported by the Air Force Office of Scientific Research mder

grant AFOSR 88-0037.
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Figure 1: Domain of BVP In dimensional coordinates
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Figure 2: Domain of BVP in (Y. x)-coordinates
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Figure 3: Domain of BVP in (£.x) - coordinates
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