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LIGHT-FRONT NUCLEAR SHELL-MODEL

.\Jikkel If. Johnson

Los Alamos ,Ya fional laboratory
Los .4 larnos, .Yew Mexico &7.54.5

Abstract

1 examine the effects of nuclear structure on high-energy, high-momentum trallsfcr

proccsscs, specifically the EMC effect. For pedagogical rmsons, a fictitious but simple
two-body system consisting of two equal-mass particles interacting in a harmonic oscilla-

tor this tov nuc]cus, I utilize a wiric]v-used link l)ct\~~cntor potential has been chosen. . . .
instant-form and light-front dynamics, formulating nuclcal structure and deep-im’lastic

scattering consistently in the laboratory system. Binding eflects are compared Ivithill
conventional instant-form and light-front dynamical frametvorks, \vith appreciable difTcr-

enccs bring found in the two cases.

I. Introduction

In recent years we have seen a growing awareness of the importance of light-front concepts in

nuclear physics [1], This haa been stimulated in large part by the deep-inelastic scattering (DES)

on nuclei made available by the Ehf C and SLAC collaborations. Light-front variables are natural

for DES because of the large momentum transfer Q? of the .;.tual photon. But 1 believe that there

is additional motivation for this interest, namely the perception that high. energyt high. momentum

transfer proccsaes of all types will be of increasing in importance aa a source of information about

nuclei. This implies that the relativistic many-body problem will play an even greater rrde than

it haa in the psat for nuclear theory, and the light-front formulation of nuclear dynamics is one

approach to this problem that may have special advantages.

The foundation of light-front dynamics wsa laid down by Dirac [2]. He showed that relativistic

dynamics, formulated using the Poincare group, may be realized in any one of several ways. This

includes the familiar instant form of quantum mechanics, in which the system is quantized at equal

times t, but also includes the a~called light-front form, in which the system is quantized at equal

!ight. front time t+ = t + 23 (for simplicity we will refer to ‘light-front time” simply ati “time” in

[his paper), where z, represents the Cartesian compmwmts of the position of n particle.

Since Dirac’s original paper, there has been some development of light-front mvthud$ in l~uclcar

physics within the ccmtext of the fcw-l)ody problcm, !%minal work by Tm-mt ‘m and his rrdlab.

orators [3-v] have occurred akmg these lines. Thmc methods II;IVC applivd to various few. body

prohlcms [7,8] mmuming that the IIUCIWIIS interact through two-bmly potcntids, Aside from this

work, three hu been Iittlo norirms ~ttvnticm given to developing Iight. front mnny-h(]dy mothm-ls

for nur]oar pr~d>lcms starting from an lIanliltnnian oxprmwd in tvrms of thv r]hs(’rvaljh~ I]ary(m

aIId ttwlfm variahlcs. ‘1’hi~ line of rcwmrch is important and miIy provide tlw tllost np:tr{q)rliitv

r(mnl’rti(m Imlwovn nurhmr slructurr nnd high -orwrgy oxpcrimvnts such ,u tho rwwl Ilroll }“m I

tl](l;lsllr:’till’tl[s [!1] on nur!oi,



I will report hereon the formulation of a light-front shell model that 1 have rvcently wurlmd out

with Leonard Kissinger [IO]. This is part of the Iargcr problcm (Jf developin:~ a light-front many-

body theory. The lack of such a theory is in part due to the technically a~vkivad Iight. frout variables

in dealing with angular momentum and cl=sifying nuclear states. TIIQ larger picture that I have in

mind twgins with a two-body interaction between nuc!cons, obtained from fin appropriate meson.

nucleon l[ami!tonian using, perhaps, the folded-diagram methods 1 briofiy (Iiscusscd in Ref. [1 ]],

Then. if one is then to develop nuclear structure based on many-body perturbation thcnry. it is

necessary to adopt an unperturbed Hmiltmian HO describing the interaction hctwen a nuclecm

of the nucleus with the average field of the other nucleons. One of the purposes of II. is to provide

a set of basis states for ew.lusting corrections to energy eigenva.lucs and other ohscrvah]cs in tcrnls

of the two-body interaction. As usual in many-body theory, there is some freedom in choosil~g tile

interaction t? in Ho, because the same t’ that is added in HOis also subtracted from the inturartion

ill the Hamiltonian. The object is to make the the many-body perturbation (the di%rence Lctwmm

{I’ and the two-body interaction) as small as possible. The interaction t~ may be dcfinerl in a

Hartree- Fock sense, or it may be a more phe~iomenological shell-model type interaction. One.

of course, hu an eficient theory if HO proviaes a gocd lowest-order description of the nuclear

properties. Here I will not be very specific about how this many-body theory will implemented.

1 will concentrate rather on the starting point of the theory, namely on the choice of a possible

unperturbed shell-model interaction.

The light-front Variables (p+, p-, PA) for a free particle given by

P+=m+P3 , P-= JFGLP3 , p.. (p,,~) . (1)

The variables p+ and p- have simple transformations to p+’ and p-’ for boosts in the z-directicn,

For a collection of particles of total momentum .D+ = ~i p*(:), this transformation may be ex-

pressed M

p+ ’(i~/P+’ = p+(i) /P+ , and p-’(i)/P-’ = p-( C)/P- , (2)

One finds it convenient to introduce the variable ~i = p+(i) /P+’, which is invariant under boosts,

The transverse momenta p(,)l also do not change by making SIICII a boost.

In this paper, I develop the “sheU model” for a simple but fictitious system of two particlm

of equal mwwes, where in thie c~e U is the same as the two-body interaction VII. 1 will compare

results in the instant. form descriptions and its translation to the Iigh; .frmt in this simple systcm

to dvvvlop an intuition for the differences between the two formulations that will arise in the nlany -

body cast’, This two-body system will tie referred to M a “nllclcus’” and the cfmstituwlts of t his

IIIICIWIS w ‘“nuclcorm,” although the conncctirm to a real ~ystcm is ofily suggostwl. \Vr lin~,l th:~t

rwiults for thr t~lantic form factor and twpwially the drwp-inolwtic strurturp function arv (!ilr~lr~~~lt

in ttm familiar instant .fnrru dwwriptions an(i in this particular Iigtit-fr(mt dvsrriptilm, Kisslingor

and I arc extending thc~e idms to th~ mm rcalintic situation, hut I witl tmt rrpnrt ;Iny O( thrsv

fin(lings hor~.



For two bodies of equal masses m, the Hamiltonian may be written in light-front variables as

(3)

where 1“12is the two-body potential, PA = x, P,L! and .~f~~ is the square of the mass op~rator for

two free particles.

3.{;2 =
p2+m2= p~+m:

X1X2 :(~_z2) “ (4)

\vith

P1 =zlp2L-rJpl L . andz=rl-zl=l-2xj =ZZI-I , (5)

defining the relative variables. According to the prescription of IIamiltonian Iight. front dynamics

[3], the potential ~’1: is a local function of the relative wiables in ErI, (,5).

In the center-of-m=s system, the eigenfunctions of H are the same as the eigenfunctions of

the square of the perturbed mass operator, ~lf~z + mvl~,

Furthermore, because the perturbed rnw operator is a function only of the relative “~riables, the

eigenfunctions of If separate into two factm ? one for the motion of the relative coordinates, and

one for the center-of.m=s coordinates as follows,

* = ticml. (Pi, p+)lb(pl,r) . (7)

In Eq. (6), Mn coincides with the eigenvalue of H in the nuclear rest frame.

It was recognized in the early work of Terent’ev [3] that one can obtain a solution light-front

dynamics by making a chang~ of variables and making a hfelosh transformation M on the spin-angle

degrees of freedom,

o~’)(p~,z) = MVI~’)(pL,~(Z, pL))lO) , (8)

where 10) is the spin of the nucleus. The relationship between the relative variables z and pl and

~ is

~(z,pl)
‘*

(9)

‘f ’he rmuit of the transformations can be seen explicitly from Eqs. (.1) and (6). III this case the

oquivalrnt cigenva.luc equation in instant-form dynamics takes the form

(lo)



The operators for the angular momentum are more complicatwl in the light-front frarmwork

than in the instant-form. However, it is a consqucncc of having nladc the Mdnsh rotation in

Eq. (S) that one may construct the wave function in instant-form quantllm n]cchw,ics, The \lclr,ch

rotation is given explicitly tJy 31 = 1’1rl, wlwrc L’, is dcfinml as

1111

CJ, is a short-hand notation ior

opposite for particles 1 and 2.

the antisymmctric tensor (3,,, and whcru I.IIP ~iql in Eq. i I I ) is

The normalization condition on the wave functions is

where J is the Jacobian J the transformation from the variablns (IJI, p:. IYlJ to (p:. z),

~=d’
(13)

(l- Z2 )2/2 .

Sote Lhat we do not use a covariant normalization on the right-hand 6ide of Eq. (12). Our norm is

needed to assure that the orthrmormality condition is the same as that for the three. dimensional

harmonic cucillator in instant-form dynamics. h is somcr.imcs convenient to think of the light. front

wave function ad

t’m(pl, r) = tiv:qp~, z) , [14)

but we prefer to write the Jacobian ●xplicitly in order to ●void problemn when changing coordinate

systems,

11. Harmonic Oscilhtor Model

\Ve will work entirely in momentum spa ,’. where the harmonic mcillator potential has the

form

(15)

where pand p’ are the relative momenta in ; l~tant-form djnamics, p = ~(pi - p:) ●nd p = m/2

is the reduced rows. The purpose of the two.body potential L\l, is 16 cunflne the nuclmns in

the vicinity o: the nucleus. In this case the eigmtsnluticms of Eq. ( 10) are vxprmsed in tmms of

Ilmnitian polynomials with the eigenvalucs give by

flfi)

l[Jw4wl nsci!lator std~. Whll”ll ffJr lhr in~tant.fflrm dowriptifm

[

b2
L“’” (pl,p~,p l)= Y Oxp - # +

I

is

1p:*p;), [l Till



and for the light-front description is

where

The corresponding eigenvalue is
3 .\12
~ha=-&-m .

(lib)

(]s)

In comparing the charge radius and deep-inelaslic structure function (Sect. III), Jvc \vill Ivant to

use instant-form and light-front descriptions whos~ wave functions have the correct asymptotic fidl-

off in coordinate space. The oscillator parameters should therefore be chosen to obtain agreement

between the empirical binding energy EB and theoretical binding energy. This condition gives for

the instant-form description

and for the light-front description [see Eq. (19)]

3h2 (EB+2m)2
~= ~m -m.

(20)

(21)

Equations (20) and (21) p:ovide the followirg connection between the light-front b(L) and the

instant form b(f) values [to lowest order in (rob)-’]

3h2
W)=w)+- . (22)

For the purpose of comparing the elaatic and deep inelastic form factors the following integral

is needed. with ti given in Eq. (17 b):

where we have kept terms to lowest order in 7-1, where ~ = mb.

To evaluate the charge radius wc calcu!ate the t-htic form factor FI (q2 ),

(23)

l{:. = -12 Iim l~,(q~) ,
,1~ -0 i~qj

!?!))
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The factor of 12 results from the fact that we have used the relative variables in the exprcssi,m for

FI in Eq. (24). If our two-body system is in its ground state, so that its wave function is given b-v

Eq. ( 17L). then the integral in Eq. (2-!) becomes

~l(q~)= ,$’?
/ —’e”p[-:(p’l::~’)l’O’M+M’O’d2p1dz

(2T)3

‘ex’[-:(pil::~’)l~ (26)
tvhere

Pi = “L - ;(1 -r)q~ . (27)

Taki Ilg first tllc derivative of Eq. (M) and then the limit as in Eq. (2.5), \ve find the follo~ving

integral to be done

(2$)

which is easily performed by making rather straightforward changes of variables. Using Eq. (26),

we find for the charge radius, to lowest order in l/(rnb)2,

[(Rc(L)2 b(L) : 1+
h2

)2(mqL)): ‘

where b(L) is given by the solution of Eq. (21). The corresponding radius Rc(l) is given by

where we have used Eq. (22). “Uompanng Eqs. (29) and (30) gives

[

b(L) 3 h
JZc(l) - RC(L)2 ~ -

2 (YnqL))i ‘

(29)

(30)

(31)

showing that the RNIS radius of our nucleus in the inetant. form description is somewhat larger. A

similar behavior may be seen in Fig. (1) of Ref. [8].

111. The EMC Effect

I IIOW want to consider the result 01 DES from our two-body systcm. One traditionally ai)plics

convolution formul~s to rdatc the structure function of the nurl~on to the structure function of the

I,llcl(’lls, F,]r 3 [lPrivation Of the cor~v~lution formula in ]ight. front quantum mrchanirs, SW, e.g.,

Rcfs. [13.14]. In in~tar:t-forrn quantum mechanics, there have been two approaches to the dcriva-

tiun 0( convolution formulas, a fcur-dilnenoional one, e.g., Rofs, [1s,16]. and a three.dimensional

npprrmrh [ 17]. Tho Iattvr was ohtaincd by a dwivation para!lel to thr one nlia(l~)in Ilcf, [ 13]; the final

6



expression for the structure function is given by a time-ordered, linlwd-ciustcr expansion analogous

to that that enters the Goldstone expailsion for obscrvables in nuclear many-body theory.

It is the purpose of this section to compare the el%cts of binding on the deep-inelastic structure

fllnction F’:A(z) in the instant and light-front formulations. \Ve will utilize for this purpose the

method of moments employed by Frankfurt and Striliman [lR].

Let us assume that the convolution formula h= the following form.

Franlii’urt and Strikman suggest expanding about z = 1, at which point J.v1.A(z) is expected to

peak. They then show that K:A(z) has the form

F:(z) = F~v(z)ll + ZF;’V(Z)IZ + [@’(Z)+ z2F;’v(z)/2] 13 + . . . , (33)

~vhere the three morneuts 11, 12, anti 13 are defined ~

(34)

In the notation of Frankfurt and Strikman, fN/A(z)/2 = zPA(z), so the convolution formula in

Eq. (32) has the correct number of factors of z. Frankfurt and Strikman point out that in some

treatments of the E\fC effect, the .Voller flux factor (which, in the case of the deuteron, is respon-

sible for the forward-backward aaymmetry of the spectator yield “ the deuteron breakup) h- been

omitted, and that consequently the wrong normalization occurs. The omission of the hfoller flux

factor is equivalent to ~suming a point-like target [15]. T’ie correct normalization is

a. Light-Front Con vdu t ion Formula

The convolution formula in light-front dynamics [13] gives the simple result

(35)

(36)

whine : = A p~/P+. Here FtA is the structure function of the nucleus, F2N is the structure function

rJf ttle nucleon (we assume that each nucleon h= the same structure function), .4 is the numtmr of

nllclonn constituents of the nllc]eus, and p(pl ) is the density of one of the nuclw-ms,

p’qpl) = 2
I

~3P2 *( L)(p,,P?) 2 .

(21r)3
(37)

7



It is understood that delta functions conserving the center-of-m~s momentum occur - needed.

The factor of 2 arises because there are two nuclwns in the nucleus. Clearly, p(pl ) is normalized

so that

I

~3pl JL)(P,)
~

=2. (38)

The Nelosh rotation has bwn ignored, which is proper for unpolarized scattering measurements

from a spin-zero target. \Ve will assume that our two-nuckm system is spinless.

\Ve introduce the distribution function for nuc!eons, SN1.4(s) as

which is normalized according to Eq. (35). Using Eq. (37), this becomes

I d2 p~dz ~
JN/A(z) = 2 —

(2%)3

where we have used Eq. (5) to set

Using Eq. (34) we have

and from Eq. (23), we find

b. Instant-Form Convolution

ApJ
p+

24(2-3–1) 9

:l+Z .

11=1,
1

12=0, IS=—.2,2

Formula, Four-Dimensional

(39)

(40)

(41)

(42)

(43)

The form which has been used to

[15,16] is

F:(z) =

obtain !}inding effects using instant-form wave functions

J1A
dz ~2N(Z/Z) ~~/A(z) ,

Zo
(44)

and ? = {D + (p2)/(2m), with CD the binding energy of the tw~body system and (pa) the average

relative momentum of the two nucl~ns. Clemly, \,V/A(z) does not exactly satisfy the normalization

of Eq. (35) if integrated over the interval from O to 2, but as we shall see below, there is very little

mistake, Performing the integrations over the delta functions gives

(46)

8



where q = 2( m - Z)/MD, where we have dropped the relativistic correction p+/ ~~ fo]]owing

31iller (Ref. [16j) and where we have used our normalization ccmvcntions. In this fornl, tIlc rcsll]t

is practically the same as that of Frantifurt and Striliman [1S].

For a Gaussian wave function the integral in Eq. (46) may be performed. giving

.~fDbe-(.\fD/2)aba(.-n)2 .
“v’’(:)=7

Using Eq. (34) and Eq. (23) and taking 1- q s d = ({D/.\]~) + ((~Jz)/m.\fD), \Ve find

Evaluating Eq. (48) gives

(.17)

(4s)

(49)

which is unity M long as .tfDb6 S O and MDb > 1. These conditions are satisfied for the physical

deuteron, and we assume the same to be true for our system. Under this condition, and assuming

that i\iD = 2m, we obtain

(1+)12=6=~+g and 13= *+(1 -q)? . (.50)

Note that 13 is the same in the instant and light-front forms, but unlike the light-front result, f? is

nonzero,

c. Instant-Form Convolution Formula, ThreeDimensional

An off-shell extension of an amplitude is usually found to be necessary when one embeds

the amplitude ;n a medium. This situation occurs for the deep-inelastic structure function. The

derivations of convolution formul- using four-dimensional approaches have the drawback that

knowledge of the dependence of the nucleon structure function on m, the fourth component of the

momentum of the struck constituent, is not known. The off-shell extrapolation of the structure

function must therefore be dropped in these approaches, aa stressed by Jaffe in Ref. [14]. In

Ref. [17] it waa noted that the off-shell extension could be accomplished without making any

arbitrary assumptions if one works within a three-dimensional formulation.

The instant-form convolution formula thus derived in [17] is given by

where z’ is a shifted value of z defined aa

z’

(

.2+ --”D
2m

)
9

(.51)

(-,2)

9



and p(pl) is

P(l)(Pl)=~ J d’p? ~(r)(pl,pz)12 ,

(2X)3
(53)

which h= the same normalization as Eq. (35). One also ;ntroduccs the quantity Jcvlz(:) related to

P[f)(pl) as in Eq. (33), giving

where

(.54)

(55)

wi:h ~(z, pL) given as in Eq. (9).

The value of z in F’+ is shifted because the excitation energv in the residual nucleus reduces

the energy a~.ailable to excite the nucleon by a smali amount. This reduction in ener~ takes the

structure function otT-sheU, and it w- shown to be possible to account for this in Ref. [17] by

shifting the energy of the photon in the expression for F~”. The information needed to make

the off-shell extrapolation of the structure function of the nuclear constituents can therefore be

determined from experiments performed on a free constituent, i.e., the separate dependence of F;

on the energy and three momentum of the photon.

The dependence of ~~(x) on the moments given in Eq. (34) in this case follows very closely

the light-front result of Sect. 111.a; that is, it is given by Eq. (33), except that we must make the

replacement

F*N(i)(z) + ; F2’”(i)(z’)

where Fy(i)(z’) means the i“ derivative with respect to z’.

same value as given in Eqs. (43). [Although in principle one

9 (56)

The integrals Ii therefore have the

must uae b(l), Eq. (20), there is no

difference between u~ing b(l) and 6(L) to lowezt order in l/y2.]

It haa already been noted that the shifted value of z in Eq. (51) arises from the off-shell

extension of the structure function of the constituent. It is perhap6 worth mentioning that gauge

invariance is preserved because the energy-shift is applied uniformly for zdl photon momenta in

FM’, including these that occur in the tensora that relate FM” to F1 and F?, where F~v is the

structure function for the nuclear constituent. Thus, there is a close connection between gauge

invariance and the overall factor of z’/z that occurs when #’aA is projected gut of F;” using the

projection operators in Eq. (2b) of Ref. [17], This same projection procedure aho leads to a factor

of z (the Moller flux factor discussed in Ref. [18]), which cancels against the fa-tor of 1/: in Eq. (3)

of Ref. [1 7], thereby giving rise to the correct normalization, Eq. (35). The appearance of this

l/z was criticized (and does not appear) in the otherwise quite similar instant-form convolution

formula of Ref. [19].

10



IV. Summary and Conclusions

I have discussed the light-front shell model and compared results for a toy Inorlel consisting

of two equal mass particles interacting through a harmonic-mcillator potential [10] in instant-form

and Iigllt-front dynamics. The oscdlator parameter W= fixed by the requirement :hat the binding

energy of the ground state be the same in both c=es. 1 have been particularly interested in the

electromagnetic form factor znd the deep- inclaatic structure function. The R\l S charge radii \vcrc

shc m to difler in the instant-form and light-front descriptions by small relativistic corrwtions, on

the order of 1/12, where y = mb with m the mass of one of the constituents and b the \’aluc of

the oscillator parameter. (1-.’sing values corresponding to the physical deuteron, ~ s 10, and the

differences of the charge radii are on the order of a few percent. ) For the deep-inelastic structure

function. however, mucit more substantial differences were found.

The relationship between DES and nuclear structure is expressed in our work by conventional

convolution formulas. The - ructurc function is then characterized in terms of a moment expansion

sumcstcd by Frankfur; and Strikrnan [18]. The differences in the instant-form and light-front -

formulations snowed up in a comparison of the first three moments /,. Corrections linear in the

binding energy appeared in instant-form and were found to be much larger than the relativistic

corrections that characterize the difference in charge radii, We regard these differences as a serious

matter, because they Iepresent conflicting aasessn:ents of the role of binding effects in explaining

DES data. This in turn influences the conclusion itbout the role of non. nucleonic contributions in

nuclei.

\\’hat is one to make of these diflerent results? I personally believe that they relh:ct the omission

of various higher-order corrections to the theory, which would naturally arise in a systematic many-

body description in both the light-front and the instant-form description. The convolution formul~

from which we obtained our results are based on the impulse approximation, whose criteria of

validity are different in the light-front and instant-form descriptions, u stressed in Ref. [20]. A

certain clam of the many-body corrections were discussed in Ref. [17] in instant-form dynamics.

In addition to these, there would be corrections analogous so familiar exchange currents in nuclear

physics, Undoubtedly corrections would alao ariae in a complete many-body theo~y in light. front

dynamics, although the classification of these would surely be different, in part due to wrll-known

diflcrenccs in the role of vacuum excitations. The crucial tasks for the future are to to obtain a

deeper understanding of these differences and thereby d~vclop a well.founded connection hctween

nuclear structure and DES obaervables.

1 would like to thank the organizers of this conference, particularly Profcssrw Xi-Jun Qiu, for

their invitation and hospitality,
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