LA-UR -86-4356 OLN—F*E'/[E(-//\ - \

Los Atamos Natons! Laboretory I8 80.wated by hg Univerpity of Calfornig for the Unied Suter Depariment of Energy un@ier CO1irec! W-7425.EN5. 3¢

TITLE. EXPERIENCES AND RESULTS MULTITASKING A HYDRODYNAMICS CODE
ON GLOBAL AND LOCAL MEMORY MACHINES

LA-UR--86-4356

DEB87 003759
AUTHON(S) David A, Mandell (X-7)

SUBMITTED T0. 1987 International Conference on
Parallel Processing
August 17-21, 1987
St. Charles, Illinois

DISCLAIMER

This repart was prepared as an aceount of work sponsored by an agency of the United States
CGuvernment. Neither the United States Government nor nny agency thereof, nur any of their
cmjiluyces, mnkes any warrianty, express vr inplicd, or assunies any l=gal lability ar responsi-
bihty Tt the aceuvacy, completencss, w nsefulness of nny infurnmtion, npparatus, pnsdvet, or
process lischosed, o1 represents that its wse worthd nit infringe privately wwaed rights. Refer-
care berew tocany specific commercial podn), prs ess, ar service by toude anme, tendemnrk,
ntanulatarer, me wtherwise does it necrssanly constitute or imply 1it: ¢ndursenient, reavn-
mendationg, or fuvring by the United Stiates Cavernment o any agervy therot The views
und wpinions af authors expressed heron ala et necessarily state we rellect thise wf the
Unital States Guvernnient or any ageney theienf,

By 5000018020 of thig Brticie the publishat recopnises hat he U S Government relaing & Aonsrsiusive teyality-ires kesnes io Bybiish ¢ reproduce
N0 pUBNENQ form of 1S ContribVIOn. B¢ te aNOw BINEre 10 @0 00, tor U.S Oovernment purpeses

The Lus Alamag Natronat Laborsiery requestn That the pubhehsr igently This GFReie 83 WOrk POrormad Ungy! the suspiess of the U.8 Department o Energy

T
OS AIBIMMIOS Ao etk emzziy
S TN OF IS BSCURIEN T 1S ._n-n.xm(l%w'

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

EXPERISNCES AND RESULTS MULTITASKING A HYDRODYNAMICS CODE ON
’ GLOBAL AND LOCAL MEMORY MACHINES

by

David Mandell
Computational Physics Group
Applied Theoretical Physics Division
Los Alamos National Laboratory
Los Alamos, New Mexico 67545

ABSTRACT

A one-dimensional, time-dependent Lagranglian hydrodynamics
code using a Godunov solution method has been multitasked for the
Cray X-MP/48, the Intel 1PSC hypercube, the Alliant FX series and
the IBM RP3 cumputers. Actual multitasking results have been ob-
tained for the Cray, Intel and Alliiant computers and simulated
results were obtained for the Cray and RP3 machines. The dif-
ferences in the methods required to multitask on each of the
machines is discussed. Results are presented for a sample problem
involving a shock wave moving down a channel. Comparisons are
made between theoretical speedups, predioted by Amdahl's law, and
the actual speedups obtained. The problems of debugging on the
different machines are also described.

I. INTRODUCTION

In order to understand the methods required in multitasking on dif=-
ferent parallel procersors, a one-dimensional, time-dependent L&brangian
code was multitasked for a Cray X-MP/48, an Intel iPSC hypercube, an Alliant
FX/6 and an IBM RP3.

The Cray X-MP/48 has four processors sharing a common memory and the
Intel hypercode has up to 128 nodes (processors), each similar to an IBM
PC/AT, with local memory. Multitasking on the two machines is therefore
substantially different. One purpose of this work was to understand these
differences. The Cray multitasking was done using the Los Alamos
Multitasking Library and simulator [1]. The Los Alumos Library is a super-
set of the Cray multitasking library [2]). References 3 and 4 describe the
use of the Intel IPSC hypurcube and the Fortran implemented on the machine.

The Alliant FX/series of vector, parallel computers [5] : llow parallel
processing with very little effort on the part of the programmer. In this
case only a one line change was required to the UNIX* serial version of the
code.

The RP3 is currently being designed and built at the IBM Thomas J.
Watson Research Center. A general description of the machine is given in
Ref. 6 and the simulator, EPEX, 1s discussed in Ref. 7. Initlally, the RP3
will have 64 processors with the unique feature that the fraction of total
memory used as local memory can be specified at run time. The coupled hy-
perbolic partial differential equations for the conservation of mass,
momentum and energy are described by Richtmyer and Morton [8] and summarized
in the next section.

The Fortran changes needed in order to multitask on each machine are
then described. (The original code was a serial code written for the Cray.)
Finally, the results are presented and discussed.

BASIC EQUATIONS

The one-dimensional hyperbolic equations involve three equations for
four unknowns. The fourth unknown {s found from the equation-of-state of
the material, which is an ideal gas in this work [8]. The equations are

1Y))

=+ L FU) =0
ot ax
where
\/ -u
U« [u] and F(U) = vo[p]
E pu

#UNIX is an ATAT trademark

V = specific volume,
Vo- initial specific voiume; given,
u = velocity,

total energy,

pressure,

E
P
t time, and
X

position

V, uand E are found from the above equations and then p is found from the
ideal gas equation

p=(Yy-1)1I/v
where

I «E - % u2 and Y, the ratio of specific heats, is 1.4 in this case.

FINITE-DIFFERENCE EQUATIONS

The dependent variables (u, V, p, and E) are cell~centered and the
Riemann pressures and velocities (P12, and W12), obtained from the Godunov
solution [9], are at the cell edges. For the jth oell, where jJ is at the
cell center,

n+1 n _ At on+1/2 _ -n+1/2)
Uy =0y = o Faarzz = Fya1s2)

(Note, Ref. 8 has a sign error in this equation).

-H1ZJ¢1/2

Fyerr2 = Vo | P1344/2

(P12 . W12)y,, /5

L -
Where Ar is the initial distance between cell edges and P12 and W12 are
found by using the approximate Riemann solver given in Ref. 9.

CODE CHANGES
Changes fr-~m the Cray serial code, in order to mulitask on each

machine, are described in this section.

CRAY X-MP/u8

The code was multitasked by dividing the calculations of the serial
computational cells into a specified number of tasks in a self-scheduling
manner. That 18, the number of computational cells per task is determined
during execution. For example, with 100 computational cells which were used
in the base case runs tur this work, and four processors, 25 cells are
scheduled at a time.

Only a small number of changes vere required to the sequential code in
order to implement the Los Alamos Multitasking Library constructs. Tasks
are initiated at two points in the program for each cycle. First tasks are
started to calculate the new Riemann pressures and velocities at each cell
interface from the old cell-~centered variables. Since these calculations
cross task boundaries, they have to be completed before the secona set of
tasks are started, which calculate the new cell-centered variables.

The only significant debugging problem that occurred in creating the
Cray multitasking code involved two Fortran lines. In the serial code two
local variables were set only for the processor doing the first computa-
tional cells. The processor(s) doing the rest of the cells had undefined
values for these variables and the calculation became unstable. This
trivial error in the multitasked code, which runs correctly on one prcces-
sor, took a long time to find and illustrates the problems of debugging even
a small multitasked code.

iPSC Hyercoube

Two programs are needed for the cube, a host program that controls the
Job and does the I/0 and a node program which is lcaded on each node of the
cube that is being used in the current job. The node program does the
execution for a particular part of the calculation, similar to the task on
the Cray.

Since the cube is a local memory machine, in contrast to the Cray's
global memory, messages must be passed between nodes during each time cycle.
Each node needs to get its boundary conditions from adjacent nodes.

Fortran chariges to the serial code were required in order for the code
to compile on the cube. Namelist is not allowed in the cube. Also slashes
and double quotes are not acceptable in format statements. In order to
execute, the 1.0E-50s8 in a Cray code subroutine had to be changed since they
caused underflows on the cube. Underflow errors occurred at the point where
the solutions go to zero so checks had to be inserted and the values of the
variables were not allowed to be smaller than 10-°°., The Cray conditional
vector merge subroutine was replaced by a Fortran equivalent. These changes
did not effect the results,

Some problems occurred in debugging because the hardware and software
were new. It was necessary to write messages to a log flle in order to

trace the code flow and determine the location of execution errors.

ALLIANT FX/6

The starting point f'or multitasking on the Alliant was a serial version
of the code running on a VAX/780 under UNIX. 9nly two minor changes were
required. Double quotes in format statements had to be changed tn single
quotes and a single line directive had to be added to tell the compiler that
a subroutirie call in a DO loop d'd not have a dependency. The entire effort
to obtain a correct multitasked code on the Alliant was tri rial.

RP3

The serial code discussed above was multitasked for the RP3 simulator
by Dr. Frederica Darema-Rogers of the IBM Thomas J. Watson Research Center.
From the code 1listings, the changes appear very straightforward.

PESULTS AND DISCUSSION

The results of this work are a comparison between the machines of the
following:

1) The difficulty of oonverting the serial code to the multitasking

code;

2) global memory vs local memory;

3) debugging problems; and

4) speedups and efficiency.

The speedup, S, 18 det'ined as

time for nonparallel code to run (1 processor)

S - time for parllel code to run (NP processor)

It should be noted that the numerator is not the one processor multi-
tasked code time. The overhead due to multitasking, which may be
substantial in some cases, has to be considered as a penalty in the speedup;
and, thus the serial time should be used in the numerator. The efficiency
is the speedup divided by the number of processors

e = S/NP

The theoretical speedup can be obtained from Amdahl's law if the frac-
tion of the code that can be made parallel is obtained from a serial run.
This can be used to determine if it is worthwhile to multitask a given code.
Amdahl's law is

1

Se TTPTEANF

where

p is the fraction parallel
NP is the number' of processors
and S is the speedup.

The multitasking results obtained on the Cray X-MP/48 for 170 computa-
ticnal cells are shown in Table I. The'simulated results are in good
agreement with the actual results obtzined in a dedicated environment; that
i{s, with no other jobs running. As the number of processes lnoreased, vec~-
tor lenghts decreased. In order to see how big this effect was, the serial
and multitasked codes were rerun with the vectorization turned off. These
speedups were slightly higher than the veotor spesdups fcr four processors
and about the same for two processors, but the times for running the same
problem a number of times were inoconsistent so the vector/no veotor results
are insconolusive. For four processors the times varied as much as 18 per-
cent from the smalleat to largest times foi* a series of runs. The reason lis
not yet known, but it maybe due to operating system interactions.

Table II shows the hypercube results for 100 and 1000 computational
cells. Both actual results and predictions from Amdahl's law, with no over-
head included, are shown. For 1000 computational cells, the predicted and
actual efficiencies are in close agreement indicating that the overhead,
which consists almost entirely of node to nodc communication is very small.
For 100 cells, the overhead becomes a significant fraction of the total run
time. For 100 cells and 32 nodes the predicted efficiency drops to about
38 percent if the ratio of communication to serial time is added to the
denominator of Amdahl's law. Performance is obviously bad when the com-
munication time becomes a large fraction of the total time (about 44 percent
of the total time is in communication for 32 nodes and 100 cells).

Load balancing must be carefully considered in using the hypercube.
The first method of load balancing considered involved dividing the total
number of cells by the number of nodes and letting the last node do the
remainder. For example, for 300 cells this method results in 15 nodes doing
18 cells and 1 node doing 30 cells. Figure 1 shows that this method of load
balancing results in poor speedup when the number of cells is not close to a
multiple of the number of nodes. A better method of load balancing would be
to divide the cells so that no node has more than one cell more than any
other node. Flgures 2 and 3 show the efficlienciss as a function of the num-
ber of nodes (processors) and as a function of the number of cells. for
large problems the efficliency remains high even for 32 nodes.

Table III shows the Alliant results for one and six processors. As in-
dicated previously, trivial changes were needed to multitask the code for
this machine. A speedup of 3.87 on six procesaors was obtained for the 100
cell base case.

The RP3 is not yet running and therefore Table IV shows only simulated
results. The simulator was run on an IBM 3081 under VS Fortran. The serlial
time is the actual 3081 time and not a simulated RP3 serial time. The
speedups are thus relative values. The operating system can have problems
when the number of virtual processors is greater than the number of pnysical
processors (2). This can be seen in Table IV for eight prcroessors where the
effioclency exceeds the five processor value, which would not be expected.

A number of observations emerged from this work. The hypercoube with
only local memory required a substantial amount of additional ocoding for

message passing. It would be desirable to have at least global memory be-
tween pairs of nodes in order to pass boundary conditions from node to node.
This feature will be included in the RP3. It would also be more convenient
if I/0 could be done from the hypercube nodes rather than just from the
host. (1 am not considering writing from the nodes to a log file since this
cdoes not work if a system program has not been started.)

The automatic parallelization features of the Alliant save large
amounts of time and hopefully will be in other systems in the future.

Significant work 1s needed to make debugging easier, especially for
large production codes, which we are currently multitasking. Local memory
codes are easler to debug than global memory codes and are certainly easier
to think about during the development phase.

In summary, a one-dimensional, time-dependent Lagranglan hydrodynamics
code involving the solution of three coupled hyperbolic partial differential
equations has been multitasked. The Cray actual results are in good agree-
ment with simulator results. 'This allows predictions to be made for future
Cray-like machines with more than four processors. The effect of decreazing
vector lengths appears to be small, at least for the test case considered.
When communication times are included Amdahl's law gives an indication of
how many hypercube nodes can be efficiently used.

TABLE I

ACTUAL AND SIMULATED RESULTS FOR CRAY X-MP/u8
100 COMPUTATIONAL CELLS: VECTOR CODE

Number Actual Results Simulated Results
of Processors Speedup Efficiency (%) Speedup Effiolency
2 1.72 86 1.69 84.5
y 2.92 73 2.87 71.8
8 4.39 54.8
16 5.15 32.2
TABLE II
1-D HYDRO CODE CUBE EFFICIENCY
Number Efficiency (%)
of Maximum Pred:cted Actual
Nodes 100 cells 1000 cells 100 cells 1000 cells
2 98.96 99.14 93.4 98.0
y 96.95 97.46 81.2 96.2
8 93.15 94,26 68.1 93.6
16 86.39 88.46 49.7 87.6
32 75. U4 78.76 32.9 76.2

TABLE III

TIMING RESULTS FOR ALLIANT#

Number Time Time for One Processor Percent
of Processors (sec) Time Efficiency
1 72. 4 1 100
6 18.7 3.87 64.5

® These results were obtained by Dr. Olaf Lubeck, Computer Research and
Applications Group, Los iAlamos National Laboratory.

10

TABLE IV

SIMULATED TIMING RESULTS FOR IBM RP3*

Number of Time Serial Time Percent

Code Processors (sec) Time Efficiency
Serial 1 yy. y 1 100
Multitasked 1 54.0 .82 82
2 33.0 1.34 67
4 17.8 2.49 62

5 16.9 2.62 52.5

8 9.1 4.88 61.0

16 6.5 6.83 43.0

%Dr. Frederica Darema - Rogers, IBM Thomas J. Watson Research Center converted
the code for the RP3 simulator and obtained the above r-~sults,

1

REFERENCES

1.

E. Williams and F. Bobrowicz, "Speedup Predictions For Large Scientific
Parallel Progrums on Cray X -MP-Like Architectures,” Proceedings of the
1985 International Conference on Parallel Processing, St. Charles,
Illinois, August 20-23, 1985.

Multitasking User Guide, Cray Computer Systems Technical Note SN-0222,
Cray Research, Inc., Mendota Heights, Minnesota, (1984).

IPSC User's Gulide, Intel Corporation, Order Number: 175455-003,
(Octobter, 1985).

Intel Fortran-286 User's Guide for XENIX 286 Systams, Inte. Corporation
122196-001 (1985).

Aliiant FX/Series Product Summary, Alliant Computer Systems Corporation,
42 Nagog Park, Acton, Mass. 01720, June, 1985,

G. F. Pfister et al., "The IBM Research Parallel Proocessor Prototype
(RP3): Introduction and Architeoture," Proceedings of the 1985,
International Conference on Parallel Processing, St. Charles, Illinois,
August 20-23, 1985.

J. M. Stone, F. Darema-Rogers, V. A. Norton, and G. F. Pfister,
"Introduction to VM/EPEX Fortran Preprocessor,"” IBM T, J. Watson Research
Center, Yorktown Heights, New York, RC 11407 (#51329), September 30,
1985.

Robert D. Richtmyer and K. W. Morton, "Difference Methods for Initigl-
Value Problems,'" Interscience Publishers, New York (1967).

John K. DukcWicz, "A General, Non-Iterative Riemann Solver for Godunov's
Method," J. Comp. Phy., 61 (1985), 119-137.

12

Cube Time For 16 Nodes

L D L L L |
100 200 300 400 500 €00 700 800 900 1000
Number of Cells

Fig. 1 Effect of Load Balancing on
Rypercube Results

Efficiency (%)

CUBE EFFICIENCY

Fig. 2 Cube Efficiency vs number of
Nodes

Efficiency (%)

CUBE EFFICIENCY

—————
2 o _ - - s -%
P PUBRER
7 . o /”___’___
4,5(~ ’_,.——M——"“"“

32 nodes

T T T T T T T T T
01002003004005006007008009001000

Number of Cells

Fig. 3 Cube Efficiency vs Number of
Computational Cells

