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SMOOTHPARTICLE HYDRODYNAMICS: THEORY AND APPLICATION

TO THE ORIGIN OF THE MOON

Winy Benz
Los Alamos National Laboratory

Los AlamoS , N oM. 87S4VUSA

Introduction

Some may wonder what the origin of the moon has to do in a workshop on the use

of supercomputer in stellar dynamics. I am going to show that there is more in

common between both than just the use of supercomputers. In fact, if one uses

the so-called smooth particle hydrodynamics (SPH) method (Lucy, 1977, Monaghan
1985) which substitutes to the fluid a finite set of extended particles, the hydro-

dynamics equations reduce to the equation of motion of individual particles.

These equations of motion differ only from the standard gravitational N-body

problem insofar that pressure gradients and viscosity terms have to be added to

the gradient of the potential to derive the forces between the particles. The

numerical tools developed for “classical” N-body problems can therefore be readily

applied to solve 3 dimensional hydrodynamical problems.

It is beyond the scope of this paper to go in the detail of the origin of the moon.

I will only use it as an example of an application of the SPH technique. A reader

more interested in the problem should consult Hartmann et al. (1986) and Benz et

al. (1986),

The smoo~ particle-~ydrody nami~s method,

Since the pioneer work of Lucy In 1977 the SPH method was greatly improved nnd

ffot a more mathematical basis mahdy through the work of Gingold and Monaghan

(1982) and Monaghan (1986). One eafiy way of looking at it which i[i taken in

part from Lucy’s original paper 1s the following: Suppose we want to approximate

the function.

Jn(r) E W(r-r’;hj ~(r’jn(r+)dr’-. --

by Monte-Carlo techniques. We need N points ~j distributed in space according

to the probability density given by n(r)dr, then



is an approximation of Q(g).

suppose that we require that at all times

and let h (a measure of the width of the Kernel W) tend to zero. The result is

obviously
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SPH technique,

the number density by the mass of each
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Using ~(~) =‘~ for example would give an estimation of the pressure and so

on. Gradients ar~ easily taken, for example density gradient

N
~p(r) = ~ ~ mj ~.W(~-~j ;h) .

j=l

The gradient of the kernel is a known analytical function. If W was chosen so

that at least it’s first derivatives are continuous the forces will be continuous also.

Momentum and energy equation.

Applying the abo’. e formalism to the Navier-Stokes equation one gets the equation

of motion of the 1‘ti particle (See 13enz et al. , 1986 fcr details)
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The first term of the right side represent the pressure gradients. The second is

the gravitational term where M(rti ) is the mass of particle j within a sphere of

radius r of particle i (since all particles are spherically symetric), Finally the
U

last term stands for viscous forces i

The variation of internal energy is given by the well know first law of thermo-

dynamics

$= +d?-Pg ~

which writes using the SPH formalism:

(q= ’557j=i



dQ/dt represents the energy dissipated in shocks due to the artificial vicosity

(see Gingold and Monaghan 1982 for details),

The system of equations

we modelled solid bodies

rocks we used a form of

is completed with an appropriate equation of

ar.d strong shocks leading to vaporization of

the Tillotson (1962) equation of state (Benz,

state. Since

parts of the

et. al. 1986)

Practical considerations

a) Kernel

So far we did not specify the Kernel W(r,h). Several types have been proposed

in the literature ranging from gaussian to exponential and polynomes. In the

present moon computation we used the exponential Kernel originally proposed by

Wood (1981 ) which writes:

1 ● ‘ribW(r,h) ❑ —
87ch3

However,

based on

recently Monaghan

spline function and

and Lattanzio (1985) proposed a new form that M

that has the form

I (32
23- “2++”3

)
O<v<1

W(r, h) = ~. 1 (2 - V)3 1<V<2

[

nh” “
o V>2

where v = r/h,

The advantage of this Kernel is that it has a contribution only on a compact

support. By superposing a grid with mesh size 2h one can easily find the

nearest neighbors using linked list (Hockney and Eastwood, 1981).

b) integrator

We found that by using the leapfrog algorithm substantial errors can occur, We

therefore prefer using a low order Runge-Kutta-Fehlberg integrator (Fehlberg,

1969) , This allows also to compute the approach of the two body prior to col-

lision much more efficiently since we are not limited by the courant condition for

the timestep. In fact our code switches between the Runge-Kutta-Fehlberg in-

tegrator and a first order predictor-corrector scheme whatever ia more efficient,



Tests

Since the first time it was proposed the SPH technique was shown to do

remarkedly well in many different prwblems. It was shown to treat shocks cor-

rectly (Gingold and Monaghan, 1982), and to reproduce many known analytical

solution whithin a few percents. We run several test collisions computing the

same problem with a completely different code, the results always agreed to within

a few percents. Moreover, we confirmed earlier findings by Durisen et al. (1986)

that there is a ratio of 30 to 50 between the number of particles used in a SPH

code and the number of cells used in a classical finite difference code to achieve

same accuracy in the results. All this and taking into account the relative

simplicity of the method and the ease of programming malw the SPH technique a

very powerful tool.

The Origin of the Moon

There is no point reviewing in details all the theories of lunar origin. Let me

just say that they can be put into 4 main groups depending on the basic

assumptions made. These groups are fission, capture, binary formation and

planetary collision. The first three have well known problems with either

dynamical (angular momentum, dissipation rate) or chemical (siderophile

abundances, etc) observations or theoretical considerations. An Earth-planet

collision was proposed (Hartma n and Davis 1975, Camemn and Ward 1976) and

thought to take care of those problems. These simulations show for the first time

that this theory really works; therefore, transforming the giant impact fromi just

an idea to a plausible scenario.
With W, L, Slattery and A. G.W. Cameron we simulated the events taking place

between the collision of a projectile with the protoearth and the subsequent form-

ation of a disk around the protoearth; the evolution of such a disk to form the

moon has been discussed by Ward and Cameron (1978) and by Then’pson and

Stevenson (1983). Different impact velocities, impact parameters, and initial

internal energies were considered. Particular care was taken in the choice of the

equation of state to model as accurately as possible the thermodynamics of the

material during and after the collision.

The following assumptions had to be made to keep the problem tractable. We

neglected material strength. This is a fairly common hypothesis in hypervelocity

impacts and is certainly justified during the impact itself, but obviously wrong a

short time after. We do not think, however, that this assumption affects our

result for the following reasons. First, most of the simulations were started with

molten planets. Second, even when starting with solid planets the matefi put

into orbit became very hot and therefore molten. Taking material strength into

account would only affect the way the p~atoearth recovers its spherical shape



after the impact.

Radiative transfer and radiative energy losses were not included either. This

is justified by a timescale argument. The typical t.imescale for the shock to heat

the material is about half an hour, whereas the timescale to transport the heat or

to lose it by radiation is much longer. The resolution in the code is equivalent

to a chunck of material of about 1024 grams, so the time needed to cool such a

piece of rock greatly exceeds half an hour.

The equation of state we used is the Tillotson equation of state (1962). This

equation of state has 10 material dependent constants that are defined by fitting

the analytical formula to experimental data. The main property of this equation is

that for cold and condensed matter the equation allows for negative pressures

which simulate tension, whereas for hot and expanded matter the equation goes

asymptotically toward the equation of state for perfect gases.

The history of a typical collision h as follows. As the impactor approaches

the Earth it becomes deformed by the tidal field. Following initial contact it is
slowed down and there is a corresponding dissipation of kinetic energy into heat

in the strong shock formed at the interface. As soon as this shocked material

expands a little (in the jets for example) it turns into vapor. However, most of

this vapor becomes solid again since during subsequent expansion the gas cools,

and soon its internal energy is lower than the vaporization energy.

The evolution after that point depends strongly on the mass ratio between the

hnpactor and the Earth, Mr. For large mass impactors (Mr> O.17) less than half a

moon’s mass is left in orbit to fomn a disk. About the same amount escapes the

system in form of high velocity jets. The bulk of the material was slowed down

sufficiently that the Earth eventually accreted almost all of it. The disk left in

orbit has very little iron in it. The iron core of the impactor is completely

“swallowed” by the Earth and ended on top of the Earth’s core. For small mass

impactors (Mr<O.12) the collision is too weak to destroy the impactc.m in the first

hit. It gets into a very eccentric orbit that leads to a second collision after

one revolution. At this time, the impactor is destroyed and spread out into a

disk . The problem is that this disk contains almost ali the iron initially in the

impactor’s core (more than one moon mass), It is hard to imgine how to form a

moon which is severely depleted in iron out of an iron rich disk. So small mass

impactors are ruled out!

There is an intermediate mass region (O. 12<Mr<0,16) whero the mass put into

orbit is more than 1.5 moon masses, For Mr=O.14 (see Fig, 1) the simulation

ended with a clump in orbit having exactly a moon mass tagether with a disk of

roughly half a moon’s mass. For all cases in this intermediate region the amount
of iron in the disk or in the clump is very small, Indeed the iron core of the

impactor is separated from the granite mantle mm after the beginning of the

colhsion i Individually both the core and mantle clump together due to their self-

gravity. The iron core goes into a very eccentric orbit that collides with the



‘ Earth again. During this time the gravitational torque exer~ea on me maLeruu n

orbit by the Earth and the separated iron core t.rsnsfers angular momentum out-

wards. This transfer is big enough that the material in orbit never collides with

the Earth again. The subsequent evolution is not very clear: the clump may

again come inside the Roche limit and be destroyed and spread out into a disk.

The material put into orbit is hot enough so that all volatile elements are readily

lost either during the collision itself or during the subsequent disk phase.

Moreover, most (90%) of the material orbiting the Earth originates from the

impactor, accounting for the chemical differences between the moon and the

Earth.

f-

L

T= 0.184

..

F= 4,107

.,.
:,

~ *
,,

●,
●

.

\.

,,
, ‘,

T= 2,344

e’
,..

,.*...,,,..

T=23.036

After the collision, the hnpactor is partially destroyed and spread out in space,
Due to their own gravitational attraction, however, part of the debris clump together;
at 2.26 hours after the beginning of collision the iron core is completely
separated from the Eranite mantle, About 4 hours after the inmact the iron core
hits the Earth again- and is swallowed by it, leaving a granit~ &unp with almost
exactly a moon’s mass in orbit, The time spent since the beginning of the collision
is less than 24 hours! Since this clump is at the edge of the Roche limit subsequent
evolution is not clear, Gas drag may slow it down inside the Roche limit, leading to
its destruction and the formation of a prelunar accretion disk.
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