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EQUATION OF STATE FOR DETONATION PRuLDIUCTS

W, C. Davis
Los Alamos Nationa! Laboratory
Los A'amos, N.M., 87545

The concepts of hydrodymanics and thermodynamics as they apply
to equations of state for explosive products are collected and
discussed. The physics behind the behavior of dernss gases i
considered. Some ideas about applications are presented.

This paper is intended as an intraduction to the subjec* of
equation of state for detonation praducts.

I. INTRODuCTION

b+ vp *Aa0 (2=2)
The concepts and foraulas that
are pertinent to the development and .
use of an equation of state for explo- -1 (2-3)
sive products gases, taken from hydro- (;-. 'uz) + vipu) = B
dynamics, thermodynamics, and the phy- \ 2 x

sics of gases are collected and discus-
sed in this paper. Perhaps having

them (ollected in one place will help
clarify the confusing subject usually
called “"equation of state™ by thoze

who work with explosives.

The second and third sections are
devoted to the equations of hydro-
dynamics and their 30lytions. The
fourth section prasents thermodynamics
for use with hydrodynamics, and the
fifth a discussion of incomplete equa-
tion- of state as they are used for
explosives. The sixth section presents
the simple physical principles that
determine the genarsl form tor an
equation of state. Sections seven,
eight, and ning discuss enginegrin
applications, the choice of a fitting
form for an equation of state, and the
caliobration of the fitting form.

This peper is intendea td be an
introduction to the mysteries of the
subject, and is certain'y not the final
description of all the iIntricacies.

II1. FQUATIONS OF HYDRODYAAMICS
The equations for the conserva-
tion of mass, momentum, K and energy,

for flow 1n One dimengion, can de
written as

® - vu =0 (2-1)

where v is the specific volume, u is
the particle velocity, p is the pres-
sure, ard E is the specific internal
energy. The dot denotes the total
time derivative such that v = sv/at +
u av/ax, and u. = du/ax i3 a partial
dcrixativc. In €Eq. (2-3) the term E +
1/2u® 1s the sum of the internal and
kinetic energies, and is the totai
specific energy of the fluid alemant.
The term A in Eq. (2-2) reprcsents
nongequiliprium processes that transfer
momentum, usually viscous effects.

The term B in Eq. (2-3) represents
nonequilibrium processes that transfer
energy, usually viscous and thermal
diffusion processes.

In addition to these equations,
there is an equilibrium equation of
stete for the material
E = E{p,v) (2-4)
that describes the equilibrium material
properties. The equtlibrium equation
of stete can be used to expand the
term in £ 1n Eq. (2-3) as
E = Epo . Evo . (2-5)
where

Ep - (aEIap)v . Ev. (aEIn)p . (2-6)

STRIBUTION, OF THIS DOCUMENT 1S UNLIMKTED
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Equation (2-3) can be written, after
doing the indicated differentiation

and substituting terms from Egs. (2-1),
(2-2), and (2-3), as

v(Ev +p

)]
p - -——Bg;——- (piv)? = (vIEp)(u\ + B)Iv .

(2-7)

The coefficients that describe the
material properties have their own
special names. The coefficiunt
{v/Ey) 1s called the Gruneisen gamma
and QS represented as

VIEp - T . (2-8)

The coefficient v(E, *p}/pEp 1s

called the adiabatic gamma and {is writ-
ten

v(E, ¢ p)IPE) = v . (2-9)

With these definitions, Eq. (2-7)
becomes

Ip = yviv = [ (uk * Rjfpv . (2-10)
The conservat.on equations, Egs.

(2-1), (2-2), and (2-3), can now be
replaced by

v -vu =0 (2-11)
u e vo, * A =0 (2-12)
PIP * vviv = [(uh = B)ipv . (2-13)

A1l the description of the matertal is
given in the two derivatives, r and T.
If the two derivatives are given as
finctions of p end v, the equaiions
are a complete set of three equations
with three dapendent variables.

ITI. SOLUTIONS OF THE EQUATIONS

The equations of hydrodynamics
nave simple sclutions for special
cases, and these solutions allow some
insights into the physical meaning of
the various terms in the equatigns.

Let us ftrst consider the tmportant
case of a steady shock wave propagat-
ing in the material. Steaoy mears
independent or time, and thus the par-
tial derivatives with respect to time

in Eqs. (2-1), (2-2), and (2-3) are
all zero. The equations become

uv, - vu_ =0 (3-1)

vu, ¢ vp A a0 (3-2}

uEl . uzul *vup, * vpu = B . (3-3)

The first equation can be immediately
integrated to give v/+ = corstant, If
we require that thc shock wave bhe
localized near x = 0 with the material
flowing in the positive direction from
negative values of x at velocity ug,
and set the specific volume in the
undisturbed material at v,, then the
solution is

U/V = uolvo . (3-4)

For the solution of the next two equa-
tions more information about A and B
is needed. In the Navier-Stokes
equations,

Av = - 1 413y (3-5)
2 .

Bru = (volug) 35 [(ar30uun, = 5,](3-6)
Equation (3-2) can be written, using
Eq. (3-4) .nd (3-5), as

) N
(ugrvghu, = 0, = 33 [(43uu,] = 005,

and immediately integrated to give,
with the becundary conditions impgsed,

P - Py = oouo(uo - u) * (4/3)uu,  ,(3-8)
where oo = l/vy,. After dividin?
by u, and using Eq. (3-1) to eliminate
uy/u, one can write Eq. {3-3) as

* * *
El uu Vpx Dvx

- vyl = [(‘I3)uuul . “T,]- (3-9)

and this cen be integrated to give,
with the bowvndary conditiong {imposed,

(E * pv) - (E

- 17 2 2
o " Po¥) = ?("o - oY)

* (rolug) [Wrdhwe, <1 ] L a1

Far from the shock in the region of
large poittive x, the terms in Eqs.
(3-8) ana (3-10) containing derivatives
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have decreased to zero, and the Egqs.
(3-4), (3-8), and {3-10) can be written
as the usual jump conditions for a
steady shock wave. These are

vlvo - uluo (3-11)
or
vlvo -1 . (uo - u)Iuo (3-12)

for the conservation of mass, from Eq.
(3-4). Equation (3-12) 1s writven to
correspond to the more familiar form
in laboratory coordinates, where the
mass vrlocity 1s (uy - u). Equation
(3-8) becomes

P - Py = nouo(uo -u) (3-13)
tdlready in its familfar form, It can
also be written, using Eq. (3-12) to
eliminate (ug - ul}, in its Rayleigh
1ine form as

2 2,
°u°(v -v) . (3-14)

P =Py =0 o

Equation (3-10) can be written in its
several familiar forms a-

e . 1 2 1 2
(E*p-) - (E *p vy) = 7 u§ - 7 u‘(3-15)

E-E, = % Cug-42? * D (vgy-v) (3-16)

U, -
£ - Eo -3 (p Do)(vo-v) . (3-17)

Equation (3-16) 1s obtained f.om (3-15)
by svbstityting p = p, *

(u/vH{ug = -1), which s cbratned

from Fgs. (3-13) and (3-11). Equation
{3-17) 1s obtained from (3-16) by sub-
stituting for one of thg .erms

{ug - u) from Ec. (3-13}, and for

the other ¢ne in tne squared term from
£q.(3-12). These equations describe
the conditions far .rom the shock wave,
relating the properties on the two
sides of tne wnocCk.

The adetetils of thre ghock 1tself
can be obtained by inteyrating Eus.
(3-8) and (3-10), considering them as
the diffarential equaticons that des-
cribe the shock 1tself. Some addi-
tional assumptioni about the equation
of state ard the values of the shear
vigcngity » and thermal conductivity k
are required. The prodblem 1s we'l
treated by Hayes (1).

The jumg in entropy is also iater-
esting. The equations show that the
entropy is increased by the dissipative
procasses in the shock. From the first
law of thermodyrnamics

TdS « dE *+ pdv , (3-18)
on: can write

TSx «E, TPV, . (3-19)

Using Egqs. (3-7) and (3-9) to substi-
tute for terms on the vhs, one finds

s, = - (v 3, [(r3)ug, ]

f . >
o (vgru ) (UT) & [(4i3)|.uu,l ka](3-20)
The equation can be simplified to

boueS, = (413)ulu )T « (M) (1)) .

(3-21)
Integration then gives

k Ty |*
0gug(S = 351 = v 177)
*o

[ 5% @D -

2

X (ul)
. f (413} —F— ax . (3-22)
*o

Wiile the firgst term on the rhs is
zero tar from the shock, the twd inte-
gral terms are positive contributionsg
to the entropy.

At thiz point, although it has
n~thing to do with finding srecial
solutions to the equations, let us
look briefly &t the viscous teras :n
the equationy, represented by A and
pa-t of B in Eqs. (2-2) and (2-3) or
(3-2) and (3-3). Often writsrs use
the term -vigcCus pressure,” utvally
denoted by q, and 1t {s identitied
with the tarms in Eqs. (3-5) and (3-6)
as

Qe - (43)uu, . (3-23)

For numgrical solution of the equa-
tions, artificial vigscusity 's used to
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mak2 the solutions of the eguations
stable to perturbations by numerical
noise. Many different forms have heen
used for q. We see that q has the
dimensions of pressure, and that the
coefficient of u, in Eq. (3-23) must
be a product of acnsity. velocity, and
digtance. The important distance for
numerical stability is the mesh spac-
ing ax for the calculation, and the
density o must be the locai density,
but the valocity term can be chosen to
make the numerical oscillations dawmo
in optimal fashion. Some popular
choices are the Landshoff form

a~ - ocaxu, (3-24)

using the sound velocity, the
Ricntmyer-von Neuman or quadratic form

q~ - p(Axul)sxul (3-25)

using axu, as a velucity, and the
Harlow or PIC form

qQ~ - suldxu, (3-26)

using the local particle velocity. In
a numerical caiculation all three forms
may be used in linear ccmbination,

with dimengsionless multipliers chosen
for optimum damping.

Now let us tu-n away from the
strong shock wave, ard loox for solu-
tions corresponding to the propagation
of an infinitesimal disturbance, a
sound wmave. We wish to consider a
uniform medium with no strong gradi-
ents, so the viscous and heat conduc-
tion terms are negligible. we use
Egqs. (2-11), (2-12), ars (2-13), re-
written here as

v-ovu =0 (3-27)
w* v =0 (3-28)
PIP * yviv =0 . (3-29)

We look for sclutions for infinitesixal
waves mOoving at constant velocity ¢
without change of shape, descrited by

vV, . llf(l-Ct) (3-30)
ueO* ufix-ct) (3-31
P =py * P flxect) (3-32)

where 71, U], and pj are very small.
Differcntiating, and neglecting teras
higher than firgst order in the small
perturbations, we find

Voa- TRE (3-33)
u, = uyf (3-34)
v - - cu,f (3-35)
b, = pyf’ (3-36)
P = - cpyft . (3-37)

Sunstituting these values into the
original differential equations gives

cvy . Yo' = 0 (3-38)
Cuy = ¥oP = 0 (13-39)
Py * Lypgiv vy =0 . (3-40)

From Egs. (3-3b) and (3-39) we fing

2 2 ;
€ = - vopy Iy (3-<1)

corresponding to the usual definitian

c? - vz(inllv)s (5-42)

1f p) ard vy are infinitesimals.
Using Eqs. (3-40) and (3-41) we “ing

2,0, a
v clogrg (3-43)

corresponding to the usual deflinition,
after we subst'tyte from Eq. (3-42),

Y = = (vlp)(wln)s . (3-44)

Thus we have shown that our equations
describe a medium that trans.its sound
vaves and the y, defined by Eq. (2-9),
it simply the square of the dimension-
fass snund speed.

In Eqs. (3-27} tarough (3-23° the
Jdisgipative termg A and were r -
glected. Inclusion of these terms
allows for Jissipation of anergy, and
therefore attenuation of scund. For
most cases of physical interest, the
damping is small. The sound velocity
remaing that for the rondissipative
case. Discussions of the damping ara
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given by Bend, Watson, and Welch (2),
and by Lighthill (3).

Iv. THERMODYNAMICS FOR HYDRODYNAMICS

Compressible flows usually contain
large regions where the flow is ap-
proximately isentropic separsted from
other isentropic regions ky small
regions wi.ere the flow is strongly
nonequilibrium and nonisentropic. The
natural thermodynamic potential to
describe such flows is thy specific
internal energy E, written as

€ = E(S,v) (4-1)

where S is the specific entropy and v
1s the specific volume. For the
regions of isentropic flow the poten-
tial € i, a function only of volume,

Tne gifferential expansicn of Eq.
(4-1) is

dE = T dS - p dv (4-2)
where

T - (aEIlS)v and p = - ()Elav)s (4-3)

The independent vartianles S and v, and
the variables obtained from the first

partial derivatives, are the variables
of thermodynamics.

The derivatives of these variables
can be cxpressad as second derivatives
of the potential. There are thrae
injependent second Zerivatives, so all
the derivatives can be expressed in
terms of three independent second
gerivatives. In what follows, we use
the subscript notation for differen-
tiatizn, so tnat, for example,

\AJ

£, = (el (a-4)

and tne independent variable neld con-
stant 1s obvious from the context.
The definitions used ncre are

v « vE /D = - (vip}(aDlav)g (4-5)
MNa - VESVIT - - (VIT)('TI.V)S

- - (vlT)(nlaS)v (4-6)

9 nvEss!T2 - pviC T . (4-7)

These three partial derivatives form
the standard set for nydrodynamics;

a1l other thermodynsmic first deriva-
tives can be written in teras of them.

The meaning of these second dori-
vatives that form the standard set for
hydrodynsaict may be mide clearer by
considering the following expressiens:

y == (3 1np/r1n v)g (4-8)
Fe-(31nT/s nv)g . (4-9)

Now suppose that y and I are congtants,
Then one can integrate to find, on an
isentrope, that

pvY= constant (4-10)
vl o constant . (4-11)
Similarly, one can write -

I(TS/pv) = (2 1n p/2 1n 8}, (4-12)
g{TS/pv) = (2 1n T7/2 1n S), (4-13)

and integrate these tc get expressions
on the curves of congstant volume.

(The factor TS/pv enters because we
did not use S when we maue the second
derivatives dimensionless.) Since we
do ndt measure S, perhaps the ratio of
the two,

TT/p9 = constant (4-14)

on a curve of constant volume, is more
useful,

In the real physical case v, I',
and § are not constants, yet the ex-
pressions obtained this way are tan-
gents to the real curves at points
where the exponents have the chosen
values.

Thermodynamics books usualiy use
another standard set of derivatives,
obtained from the Gibbs potential, 6 =
6(T,p), defined as

cD - ‘TGTT (4-15)
B = GTp" 14-16)
K - - Gpplv . (4-17)

The reason for this choice is, of
course, that many experiments are done
with either T or p held constant, and
6(T,p) is the natural potential, This
usual standard set can be expressed in
termg of the hydrodynamic standard set
as follows:
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€p = (BVIGT)v/ (v - réig) (4-18)
8 = (r/gT)iiy - Tig) (4-19)
<r = plly - rlig) . (4-20)

The denominator in each expression can
be shown to be - (v/p)(ap/av)y, and

it must De positive to ensure mechani-
cal stapility {4). For an ideal gas
the denominator s one.

The choice of symbols 1s hopelessly
confusing., Various authors use various
symbols; worse still, they use the same
syabols with gifferent meanings. Until
some standardization takes place,
readers will just have to resign thea-
selves to being very careful to check
the definitions Perhaps the most
pothersome is our definition of the
adiabatic gamma. The symbol vy has
been widely used for many years to
denote the ratio cf specific heatis;
sur definition, coamon in hydrodynam-
ics, is given by Eq. (4-5). The adia-
batic gamma and the ratio of specific
heats are identical for an ideal gas,
but not for real gases, as can be seer
by combining Eqs. (4-7) and (4-18).

One higher derivative is important
in the context of eapirical equations
of state. It is called the ~fundamen-
tal derivative of gas dynamics® oy
Thompson (5), and i1s defined as

G .,} v+ 1 - (vindCaviavyg] - (a-2l)

fFor ordinary materials, 6 is positive.
Its importance is that when G 1s posi-
tive, compression shock waves form,
If G 1s neqative, rarefaction snocks
form, For the purposes of this papar,
one must be care‘ul not to choose forms
for gamma that lead to G less than zero
unlcss rarefaction shocks are degsired.
G can 130 be written, using the nota-
tion of £qs- (4-5) through (4-7) as
6 = - vE
v

wi2E,, - (4-22)

It 1s often glibly said that the con-
dition for compression shocks to form
is that the sound speed must incCrease
with prassura. Really tne condition
is that higher pressure waves from
behind must overtike tne front, and
thay travel at velocity u * ¢ rather
than ¢, and v als0 increases with
pressire. The aifference can be made
especially clear by relating G to these
derivatives. It can be ihown that

(13

) ° (6 - 1}/oc , (4-23)

s0 the sound velocity increases with
pressure only if G is greater than 1.
However,

ii!a%—ﬁl - Gloc (4-24)

on the characteristics behind the
snock, 50 compression shocks will form
as lnang as 6 1s greater than zero.

Y. JNCOMPLETE EQUATION OF STATE

E =« E(S,v) 1s a complete equation
of state. All thermodynamic deriva-
tives can be obtained from it. € =
E{p,v) 1s not a complete equation _f
state, but is very usefu! for hydrody-
namics.

The relationship between E(S,v)
and E(p,v) 1s easy to see. If one nas
E(S,v), then - E, = p(S,v). In
principle, at least, this expression
for p can be inverted to give Sin,v),
and then S can be eliminated 1n E(S,v)
to give E{(p,v). However, there is nc
way to go backward; that is, cne cannot
get back from E(p,v) to E(S,v).
fherefore, Eip,~} is incomplete.

Most of the experiments in hydro-
dynamics are mechan:ical experiments,
Their variables are p and v Tempera-
ture anc entropy are not measured
quantities, and they cannot be {uferred
from E(p.v;. On the other hand, the
variables that cannot be =easured myst
not Le really neaded, or they could be
measured. F,r many purposes the in-
complete equation of state E = E(p,v)
is adequate.

The differential of this incom-
plete equation of state is

dE = Epdp . Evdv . (5-1)

If we use Eq. (5-1) to find the deriv-
ativea with raspect *to v a% constant §S
we get

(iEIav)s - Ep(ipl:v)s . Ev ; (5-2)
but we know that
(aEIn)s = - p (5-3)

and using thig we can rearrange Eq.
(5-2) to qgive

- Oplav)g = (e, p)IED . (5-4)
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Comparing this result with Eq. (4-5)
we find

v = v(E, * p)/pEp . (5-5)

Similarly, taking the derivative
with respect to S at constant v one
can show that

(ap/as), = T/ep . (5-6)

Using this result with Eq. (4-6) one
finds that

r=vig, . (5-7)

The incomplete equation of state
E(p,v) thus gives the adiabatic gamma
and the Gruneisen gamma. As shown in
Sec. II, it is adequate for simple
hydrodynamics.

From the incomplete equation of
state, g cannot be determined; however,
a differential equation for g can be
obtained, and g is thus determined,
except for a constant, along an isen-
trope where y and I are known. The
differential equation is obtained by
requiring that the partial derivatives
of E(S.v? do not depend on the order
of differentiation, so that Egyg =
Essy. Egy and Ecg are given by
Eqs. (4-2‘ and (i-?). Some manipula-
tion gives the differantial equation

(vig)(ag/av)g
= '+ 1 -y - (rp/g)(ar/ap), . (5-8)

A differential equation for the tem-
perature is also available, so temper-
ature can be determined, within a con-
stant multiplier, along an isentrope.
One form of Eq. (4-6) is

(viT)(aT/av)g = -T . (5-9)

If T is known, this can be integrated
immediately, except for the constant.

Expressions for T and g are especially
useful for detecting flaws in the
choice of a form for an empirical
equation of state. One may not know
exactly what to expect for T or g, but
one can expact them to be smooth, pos-
itive, and monotone on the isentrope.

VI. PHYSICAL PRINCIPLES

It was shown in Section Il that the
sdiabatic gomma and the Gruneisen
ganma are the important features of

the equation of siate for hydrodynam-
ics. In Section 111 it was shown that
the adiabatic gamma is the square of
the dimensionluss sound speed, or

Y= czlpv . (6.1)

Here we ask what we know about the
behavior of the adiabatic gamma and
the Gruneisen gamma as functions of
specific volume along an isentrope.

Molecules interact with each other
when the distance between their centers
is a few tenths of a nanometer. 1In a
gas at room temperature and pressure
the average distance between molecules
is about rm, s0 most of the time a
molecule drifts at thermal velocity,
unaffected by any other wolecule. A
disturbance, such as a sound wave, is
transmitted through the gas by mole-
cules traveling at thermal velocities,
and the velocity of a sound wave is
about two-thirds of the average thermal
velocity. Collisions are rare events.
The details of the molecular interac-
tion have a trivial effect on the vel-
ocity of sound.

If the gas, originally at room
temperature and pressure, is compressed
a thousandfold, so the number of mole-
cules in a crgic centinetsi increases
from 27 x 10 to 27 x 10¢l, the
average intermolecular spacing de-
creases from 3.3 nm to 0.33 nm. The
effect of a disturbance, a sound wave,
is transmitted by molecules that drift
a short distance and then collide with
another molecule. The motion 1s then
transmitted through the mjlecule by
the electrical forces at nearly the
velocity of light. Then there is
another thermal drift, but only for a
short distance. Thus when the inter-
molecular spacing is of the same order
as the molecular size, the speed of
sound incCreases above the low density
value. The change takes place, for
ordinary explosive products, at a den-
sity near one ?rln per cubic centi-
meter. The adiabatic gemma, the
square of the dimensionless sound
velocity, changes markadly with
specific volume in this region.

As compression is continued up the
isentrope, the sound velocity con-
tinues to increase. 1Its value depends
in detail on the exact form of the
molecular interaction. The adiabatic
gamma, however, levels off at nearly a
constant value. This happens because
we have defined gamma by normalizing
with respect to pv, as shown in Eq.
(6-1). Because of the energy in the



Davis

-molecular interactions, pv/RT increases
to large valuas. For most reasonable
forms for the molecular repulsion, the
adiabacic gamma seems t; be neariy con-
stant at small specific volume. It is
easy to show that if the repulsive po-
tential for the interaction energy of
two molecules varies inversely as the
nth power of the separation, there is
an upper Ltound for the adifabatic gamma,

y<l+n/3 . (6-2)

A schematic plot of the variation of
gamma with specific volume is shown in
Fig. 1. It always has this general
shape, but details of the potential,
and effectsfrom phase changes and phase
separation can cause small perturba-
tions in local regions.

It should be mentioned that this
discussion is to be applied to the tem-
peratures and volumes of interest for
explosives. That is, regions where the
thermal energy of the molecule is much
less than its fonization energy. When
there is appreciable ifonization and
dissociation, new effects are impor-
tant.

The Gruneisen gamma has behavior
very similar to that of the adiabatic
gamma. At very large specific volume,

r=vy-1, (6-3)

so it has a value near 0.3. It in-
creases as the volume decreases, and
levels off at 0.6 or 0.7 'at small vol-
ume. Figure 1 shows a schematic dia-
gram of the usual behavicr of the
Gruneisen gamma.

VII. ENGINEERING APPLICATIONS

The preceding sections have been
devoted to the properties of the ther-
modynamic equation of state of detona-
tion product gases. The words "equa-
tion of s3tate" are often used to denote
something very different.

Explosive systems are usually de-
signed with the help of computer pro-
grams that soive the hydrodynamic equa-
tions. Often the computed systam dif-
fers markedly from the actual physic:l
system. For example, the shape may be
idealized by neglecting glue joints,
small voids, or plastic potting com-
pounds. The initiation is usually ide-
alized in important ways and not com-
puted in detail. The chemical reaction
zone is not modeled properly. The pro-
perties of the material bein? driven,
perhaps metal or rock, are simplified.
And in the interest of getting things
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Fig. 1. The dependence of the adja-
batic and Gruneisen gammas on
specific volume.

done, sometimes the mesh size is made
large and the computer does not give
an accurate solutiun of the equations.
A1l these defects are accommodated by
adjusting the "equation of state."

A system designer, then, cannot use
a real, thermodynamic equation of
state. What he needs is an approximate
form that will allow him to design a
first approximation to the required
system using his computer, with all its
defects. Then he must test his first
design. and use the results to change
the "equation of state." Then he must
try again. If the requirements have
tight tolerances, this fteration can be
very expensiva and time consuming.

One of the problems with the fit-
ting forms in common use is that they
have so many adjustable constants.
There are too many ways to adjust the
“equation of state" for a good fit to
the experiment. An "equation of state"
with just one adjustable parameter pro-
vides all the necessary adjustment, but
still allows the user to make system-
atic changes: so much positive for
this defect, so much the other sign for
another, etc.

The one adjuscable parameter for a
fitting form will probably not be one
of the constants in the form but some
real physical parameter of importance
for the system being designed. For
example, for reproducing the results



. Davis (S-018)

of a cylinder test, the important par-
ameter is the cylinder wall ensrgy at
large expansion, and this is the one
that must be adjusted. The constants
in the fitting form must be varied so
that the other calibration paraseters
are held fixed, and only this energy
is changed. For a shock wave in air,
the low pressure expansion is impor-
tant, and for an overdriven or conver-
gent detonation the high pressure
region is the one to adjust. The vital
thing is to adjust only that important
region, and to use only one parameter.
In this way, a systematic understand-
ing of the adjusiments that correct
for various defects can be obtained.

VIII. DESIGHING A FITTING FORM

The usual approach, and the one
discussed here, is to find a fitting
form for the incomplete equation of
state discussed in Section V,

E =« E(p,v) . (8-1)

It is convenient and customary to
choose a particular isentrope, usually
the principal isentrope that passes
through the Chapman-Jougquet point, and
find » fit for 1t. Because it is a
particular isentrope, any function on
the isentrope can be expressed as a
function of volume only. Thus on the
isentrope the specific internal energy
is

Eg = Eg(v) (8-2)

where the subscript S is used to indi-
cate that the subscripted variable is
to be taken on the particular isen-
trope. The definition of the Gruneisen
gamma, given in Eq. (2-8), fis

r = v/ep . (8-3)

s0 in the immediate neighborhood of
the isentrope the energy may be ex-
panded as

E(p,v) = Eg(v)*(v/T){p-pg(v)] . (8-4)

To make a useful equation of state, it
is assumed that Eq. (8-4) applies
throughout the region of interest, and
that the Gruneiscn gamma s a function
of volume only,

rer(v) . (8-5)

These two assumptions are not as bad

as trey might seem, because the entropy
produced in shock processes in
explosive-driven systems is never

large, and the region of iaterest is a
narrow strip always close to the
principal isentrope.

Perhaps physicel intufities is best
for the ferm of the adiabatic gamma on
the principal isentrope, as was dis-
cussed in Section VI. If its form {s
chosen, one has

vg = vglv) . (8-6)

The definition of the adiabatic gamma,
Eq. (3-44), can then be written as

dpgipg = - vgdviv (8-7)

and then integration gives

Pg = pglv) . (8-8)

The internal energy on the isentrope
can be obtained from the first law of
thermodynamics with the entropy held
constant,

dEs - -psdv . (3—9)

Each integration introduces a constant
of integration; the one from the pres-
sure eqiation, Eg. (8-7), allows one
to choose che particular isentrope,
making it pass through a chosen p,v
point, and the one from the energy
equation, Eq. (8-9), sets the zero of
energy, usually taken so the energy is
zern at infinite volume.

The program outlined here seems
very simple, but when one attempts to
carry it through, it quickly becomes
apparent that the integrals cannot be
expressed in closed form if yg(v) is
chosen with enough complexity to give
a reasonable representation of its
real form. One response to this dif-
ficulty §s to 1et the integrals be
expressed as intarpolations in tables
obtained from numerical integration,
or as series expansfions. Anather pos-
sible response is to divide the volume
into small intervals with simple fits
in each interval. Anrd a third response
is to start with the energy represented
by & sum of functions, so that

Eg(v) = Za,é,(v) . (8-10)
Then by differentiation one fiuds
pg(v) = - Tagb. (v) (8-11)

and
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vg(v) = v I aéi(vV)/Zaé(v) . (8-12)

This form for Yg can then be fit to
the chosen form for Yc(v). The
widely used JWL equation of state is
of this type.

A form for the Gruneisen gamma
must also be chosen. ¥any workers
have chosen i1t to be constant. It
seems that a better choice is to give
it the same form as the adiabatic
gamma, hut with values near those
discussed at the end of Section VI.

An expression for the adiabatic
gamma off the principal isentrope is
obtained by using the definition of
gamma, E3. (2-9), and substituting in
the partial derivatives obtained from
Eq. (8-4). After simplifying the
result by substituting from Eqs. (8-7)
and (8-9), the result is

v(p,v) = (95/9)15
+ (l-ps/p)(r*l-d In I'/d 1n v). (8-13)

This expression makes it clear that a
discontinuity in the slope of the
Gruneisen gamma will lead to a discon-
tinuity in the adiabatic gamma itself,
Similarly, Eq. (4-21) shows that a
discontinuity in the slope of the adi-
abatic gamma will lead to a discontin-
uity in G. Such discontinuities are
nonphysical, but it isn't clear what
spurious effects might appear in a
calculation where an equation of state
with discontinuities in the slopes of
either of the gammas on the isentrope
was used.

Expressions for new isentropes,
above or below the principal isentrope,
are obtained by integrating Eq. (8-13).
Huganjot curves are obtained by using
the equation of state, Eq. (8-4), and
the Huconiot relation

E-E, = Plig- v) (8-13)

and eliminating E. Particle velocities
on the isentrope are obtained by inte-
grating )

dpidu = # c/v = » (yp/)V/2 | (8-15)

Even for simple choices of functions
for the adiabatic gamma, the integra-
tion almost always has to be done
numerically.

IX. CALIBRATION

The calibration of a fitting form
for an cquation of state opens oppor-
turity for prejudice and personal pre-
ference. There are no absolute rules.
The importance of various measurements
to the calibration depends on the
application.

Calibration of an equation of state
begins with tke Chapman-Jouguet state.
A subscript j denotes that state in
what follows. First there is the re-
quirement that the principal isentrope
pass through the point ps, vs. Then
there is the additional requirement
that the Rayleigh 1ine and the Hugon-
int curve be tangent at that point
(the Chapman-Jouguet condition); this
requirement is met by requiring

Py = 0g03/ vy + 1) (9-1)
and
vJ/vo = YJI(VJ +1) . (9-2)

One might proceed, for 2xample, by
measuring the detonation velocit: and
the CJ pressure. Then y4 can be
obtained from Eq. (9-1),  and vy from
Eq. (9-2).

The problem with this approach is
that apparently no one knows how to
measure CJ pressure. One need only
thumb through the seven Detonztion
Symposium volumes to see that there
was no more agreement in 1981 than
there was in 1951, and that the
discussions get more and more complex
with time. For czlibrating an equation
of state, one need only realize that
if it made a 1ot of difference, it
wonld have been measured by now. For
many purposes the exact value is not
very important. This fact has led to
the development of "rules for gammu",
that give the value for the adiabatic
gamma at the CJ point simply in terms
of the initial density of the explo-
sive. A simple rule that works
satisfactorily is

vy - 1.6 + 0.8 o, . (9-3)

The inftial density and the mcasured
detonation velocity can then be used
with Eqs. (9-1) and (9-2) to find Py
and Ve

The second thing to get right in
the calibration of an equation of state

10
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is tne amcunt of energy available for
the sy<tem under consideration. For
almost any system there is a “cut-~-off
pressure”, where once the explosive
products have expanded to the volume
where the pressure reaches this value,
11ttle additional work is done On thne
system. Either the metal or rock
breaks, allowing the jases to escape,
or the time 1s too long and the addi-
tional acceleration too late, or some
other external condition makes the
energy remaining in the products use-
less. For metal cystems driven by
explosive, the cut-off pressure is
about 0.1 GPa 'n many cases, It has
becoms customary to fix the energy
delivered for an expansion dowr tO
that pressure witn a calibration ex-
per iment. Pernaps the best known ex-
periment 1s the cylinder test (6). For
nigh-density, nigh-energy explosives
tne cut-off pressure comes at an ex-
pansion of six or seven times the {-~i1-
tial volume, and tne cylinder test 1s
cesignea to measure an appropriate
valuye. For other explosives and other
uses, alternative tests nave been used.

Tne Jacobs engine and tne Fickett-
Jacobs cvcle described by Fickett and
Davis (7) make it easy to understand
tnis calibration, Figure 2 1s a dia-
gram of tne cycle; it is cescribed in
the caption. The area between tne
base line, the Rayleign 1ine, ani the
principal isentrope 1S egqual to the
maximum useful work tnat couta be ob-
tained from tne explosive, Some of
tnat energy is not useful, pecause tne
pressure Is toc low for tne applica-
tion. Tnerefgre, the diagram myst be
truncated, as shown in Fig. 3, at the
iimiting useful pressure. For tne
useful ehergy zalipration, the area to
the ieft of tne truncation line must
re made proportional ts the energy
obtained from the test. Several ryles
far an approximate calibration have
been used. The total area is E,,
anad the area to the right of the trur-
cation 11ne is Eg, so tne rule fis

Etest ~ Eo = ES ° (9-4)
The equation of state paramet -s are
aajusted to satisfy *tnis rela onsnip.

A third calibraticsn point 1s to
set tne total energy, E,, equal to
tne calcuiated chemical energy of the
explosive. Altnough 1t is astnetically
satisfying to have the work available
equal tn tne chemical energy, it is
not ar. impo. cant calibration point.
In the first place, tnere is no appli-
cation of explosives where the energy

Fig. 2.

Fig.

3.

o

The Fickett-Jacobs cycle.

The initial state, urreacted
explosive is at point 0. The
CJ state is at point 1. The
product gases expand against
a piston from point 1 to
point 2, doing useful work,
The gases are cooled so they
contract from 2 to 3, and
this energy is lost to the
system. The gases are
reacted from tc 0, back
into the criginal explosive.
To get all the gas uniformly
into the CJ state, work must
be done on 1t, zrj this work
is rapre-ented by the arza
0-1-4, The maximum usefyl
Jutput work is the area 0-1-2.

| |

In most application, of ex-
plosives, the product gasas

do useful work only when their
pressure 1s above some Cut-
off pressur2, shown here at
point 5. The useful work is
then represented by the area
0-1-5-6-0.

n
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at low pressure is important; if low
pressure could do the work, one
wouldn't use explosive. And in the
second place, heat energy of the ex-
plosive is not used (sce the segment
2-3 in Fig. 2), and is rejected to the
surroundings. Therefore, E, is not
equal to the chemical energy. It is
really more important to get thes sound
velocity about right at low pressure
than to worry about adjusting for *ie
total energy.

These calibrations dertermine the
principal isentrope. The remaining
calibration 15 for the Gruneisen gamma,

at influences the values for states
vitv the principal isentrope. Over-
driven, colliding, and convergeat
detosiations provide the data for de-
termining Gruneisen gamma. So far,
there have been no definitive calibre-
tions. If overdriven detonations are
important in the application of the
equation of state, Gruneison gamma
should be adjusted to fit the data.
Otherxise, the choice is not important,
and a simple form or even a constant
value cai. be uced with little effect
on the calculatinnms.
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