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1. INTRODUZTION

The formulation ncrmally used to calculate compressible Lagrangian
hydrodynamics in two dimensions is the following. First define a two-
dimensional mesh containing a set of Lagrangian cclls. Assign each
cell a fixed mass. Compute the acceleration of the mesh points and
mcve the points. The volume of the cell changes with the moticn of
the points. The changes in cvell densicty, Ccnacrgy, and pressure are
computed from the changes in volume. Difficulties occur when there
arc large distortions in tne flow that cause similar large distortions
in the Lagrangian cells. The usual solution {s to somehow adjust the
mesh as the calculation proceeds. This involves efther moving (n-
dividual mesh points or actually re-connectirg the mesh, In e{fther
case, it becomes necessary to rre-map the mass from the old cells to
the new, This necessarily produces some amount of undesirable numeri-
cal diffusion. When and how to adjust the mesh and how to accurately
re-map the mass and other variables 80 as to minimize numerical diffu-

sfon arc the prohieme.

One way to eliminate these problems Is to abandon the {dea of the
Lagrangian cell since it {s the distortion of the Lagranglian ccll that
{s the cause of all the outher problems. In the ncext section we will
discuss how the conservaclon equations can be solved dircctly without
resortin. to Lag-anglian cella. Next we will give some cxamples of
calculations using this methocd. Finally, we will gilve detafls of the

calculational method presently being used.

I1. SOLVING THFE CONSERVATION EQUATIONS
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The equatiors we are tryling to solve can be written
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D = 1

st U--3 NS [2.2]
De = _ P ¥ . ¢ n
BE - ” 3 v [2.3]
P = P(o.e) [2-"']

where ﬁ represents the vector velocity, p the density, e the specific
internal energy and P the pressure of the fluid. Equation [2.1] ex-
presses conservation of mass, [2.2] conservation of momentum and [2.3]
conservation of energy. The Lagrangian time derjivative, {.e., the
derivative fallawing the FlUld, io iundicdiLea Dy %E'

In a standard Lagrangian calculation only Eq. [2.2]), the momentun
eguation is sclved directly. The procecdure is to integrate [2..] over
some region of space to arrive at the acceleration of each mesh poin!.
The mesh points are then moved and the new cell volumes along with the
fixed cell mass determine the new density, hence, indirectly solving
Eq. [2.1]. The associated PdV work term upuater the cell enerrgy and
indirectly solves Eq. |2.3] and the new pressure is obtalned frem the

equation of state [2.4].

We proposce the following: Instcad of Lagrangian cella, we think of -
set of Lagrangian pointas which are embedded in and move with thre
fluid. There {3 no mass associated with theae points. They are junt
moving tracer points at which we will attempt Lo ketep triack of the
velocity, density, encrpgy, Aand pressure of the fluid. In ou~ later
example calculations we will show point poaltiona at varfoun times In
the calculation, At cach of these points, we know the denafly, encergy
and velocity of the fluid, bul we do not assocliale amy particulaor mans
with the point.

Looking now at Eq. ..} ], we note that to approximate the Lime In

tegral of the density change from time 't tn time U ¢ &L we nerd an
approximation to 6 - 0 at that pofntL, To solve Eq, [',0], we need an
approximation for 5r and for [.3] Wwe agaln need 0 . ﬁ. To abtaiw

these, we aclert a4 set of "representativeY nefghiborn. We then make .



finite difference approximation to 3? and 6 . ﬁ. using these neigh-
bors, and update p. ﬁ and e at each point. Each point {s then moved
the distance ﬁ 6t 2nd one time step is completed.

At the next time step the selection of a set of "representative"
nei ghbors may change, but this does not require any sort of re-mapping
of variables. It only means that a different set of points will be
used in the next finite difference approximation to 3 . ﬁ and VP.
Large distortions in the flow will produce frequent changes in neigh-
bor selection, but since there are no cells to distort and no re-
mapping to be done the calculation proceeds from cycle to cycle with
no difficulty.

111. SOME_EXAMPLE CALCULATIONS

3.1 Here we will give three examples cf calculations performed by the
code HOBD using the free Lagrangian method described herein. Tro
first test problem is the implosion o' a gaseous sphere. The initiul
condition i3 a sphere of perfec. gas with a gamma of 5/3. The gas is
divided into four regions as seen {in Fig. 2.1, Pressures are |n

megabars, density in gm/cc and dimensions in cm.
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The high preasurry in regfon 1V will drive a sapheprfical {mplonaion which
will Rreatly compresy reglon If1, 11, and particuiarly 1. Therr are
tWwo challengea Lo thia problem, the flral ia to malntalin a sphecticenl
ball while running the cealceculation in rylind={eal (r,2) goometry., 5in
snapshotn ol reglon 11 are shown in Flg. 31../. Region 2 {=a {nterfor to
region 11, The minimum volume of regien 1 occurs {in the fifth anap-

shot after whirh recginn | hegina In swynans Ua maee tnnn e v e s



cycles with 73 points in the radial direction and 64 points covering
180° of angle. The left half of the snapshot is a reflection of the
right half which was 2alculated.
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Fig. 3.2

The second challenge is the accuracy of the solution. For comparison
purposes we ran a standard one-dimensional Lagranglian code usirg B8c2
zones, 200 zones {in each region. In Figs. 3.3.a, », ¢, and 3. We
have plotted the average density and average specific internal energy
in regions I and II as calculated by HOB0 with 73 points in the racial
direction and the one-dimensional Lagrangian calculaticn witn 8202
points. We feel the agreement to be quite good. One notable :if-

ference is the time at which minimum volume i3 reached. HOBC 18
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Slow by about .0075 uysec or %g of the prob.em time at that point.
Since average density and energy are integral quantities we have
plotted one of the varjiables as a function of rsdius in Fig. 3.4. We
cnose radial velocity, but the agreement in all other variables {s
very similar. The plots are from slightly different times to compen-
sate for th2 time shirt just mentioned. The 1D Lagrange plot is at
2.125 usec and the HOBO plot is from 2.25 usec. Apart from the {n-
ability of the more coarsely zoned HOBO to resolve the shock front at
the radius 1.2 cm we feel the agreement is excellent. The time chosen
for the plot {s lave in the calcJlation when region Il has expanded
almos back to {ts original volume,
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Fig. 3.4

3.7, For our second test prublem we have chosen a Meshkuouv

ifnstabil 1tyl1]

bascd on thre geometry used {in one of Meshkov's
experiments, The initial conditicns are shown in Fig. 3.5. A piaston

driven ahocedk ts driven through » region of air and then helium, The
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air to helium density ratio is just over 7.

There is an initial per-
turbation in the air --

He interface which grows with time after the

shock passes through the interface. In Fi{g. 3.6 we plot several snup-

shots of the Lagrangian point positions in the air
plotted). For romparison

({the He is not
purposes we ran the same problem on a two-
dimensional Eulerian code with the cell size similar to the point

t=1U-2. t=1200.

separation used in HOBC., 1In Figs, 3.7a and b, we compare the size of

the perturbation 2s it grows in time,. In 3.7.a the {nitial perturba-

tion, 6, i8 .2 ecm and in 3.7.b it {s .4 2zm {n width.
between the two codes {3 excellent.

The agreement
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3.3. Our third test problem {s the penciration of a concrete plate by

a steel rod moving at an inftial velocity of ..V4i4 om/asec., Thr» rod

is 9,066 cm {in oiameter and U5 c¢m In length. The caonperete {a Ha em

thick. In Fig. 31.¢ we ahow six snapshots of ihe rod penctrating the

")
conurete, Incompressible lhc-or'yl"l predtetn a canatant Yime ratry of
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change in the length of the steel rod. The sound speed in the rod is
L4545 cm/uysec and (v/c)2 = .22, 30 this problem should not be too far
from the incompressible solution. AsS is shown in Filg. 3.9, the rzd
length as a function of time matches the jncompressible theory very
well. Calculations witn a two-dimensional Fulerian code producad an
almost identical result.
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IV. THE FINITE DIFFERENCE SCHEME

8.1 The pressure gradient

We want to approximate VP at the point k whose neighbors are the

points k1. k K Our neighbor selection guarantees at least

e "’ nmax’
three neighdbors for each point, the average is 8six and there {s n»s
maximum number. Clearly there are many methods that coulc be use3d to
approximate 3P. The following was arrived at through much trial znd

error and appears to work very well.

.k2 .k1
Pa Py
Ky Py .k Ps Ky
Py
Ky
Fig. 4.1

Consider point k in Fig. 4.1 that has five ncighbors. We construct o
polygon with vertices midway between the point and ea*h of {ts
neighburas. The position of the nth vertex is ;n - 1/2 [;(k) + ;(kn)i

< -

and the vector from ; Lto ;n is denotcd by d;n - xn - X

K The pres-

K*

sure at the nth vertex, P", is a welghted average of P(k) anc P(kn)

(Lo he described in scction U,3). We dassume a lincar pressure dis-
tribut.ion along eah edge of the polygox and Integrate the pressare
over the nurface Lo get o force F. W asnsume n constant density P
over the polygon to calculate n mass M, Then we have %E ﬁ - 5 . Now
et i; - ;h ’ |a£" and the preasure at the new vertex s Pé - Pk +
r(l'n . l'k ). Now ¢ and ™M are functions of o and wer compute



The resulting expression for the pressure gradient {s

x apy by, - ey ) ey g P (6x - &x

WP, - -7 —--nzl___.-hl o n___.pal ___.nZl [4.1]

where xXx and y are respectively the unit vectors in the x ard y direc-
’ - [
tions and dxn . axn X + éyny.

If the preceeding is done in c¢ylindrical geometry, the result is iden-
tical for 3? with x and y replaced by r and z. It is of interest to
note that {f the %15 i3 not taken, the result does not give a spheri-
cally symmetric pressure gradient in a spherically symmetric problem
using cylindrical coordinates.

There i3 an easler way to arrive at Egq. [4.1]) although the metho¢ just
described is how we originally derived it. Since it takes only three
points to describe a plane surface, each consecutive pair of neighbors
along with the point k defines a pressure plane to first order. If we
assign a weight to each of these approximations we have an approxima-
tion for VP. If the welighting function is the area of the triangle
formed by the three points, the result is the same as Eq. [(4.1]. We
have tried other weighting functions, 0 and sin® where © {3 the angle

between G;n and G;n both work fairly well, but area welghting ap-

+1
pears to be best at this time.

4,2 The divergence of the velocity fileld

In cartesean coordinates we represent the velocity at the point k by

ﬁk - U LI A A The divergence of the velocity field can be ¢x-
v

1 3y
v t
Referring back to Fig. 4.1 the specifl.: volume of the constructed

pressed as ¥ -0 - % where V is the specific volume of the fluid.

polygoen is proportion to the area of the poiygon given by

-y, )

A =172 Xn (x n+1 n

ner * Xp) Uy



Hence we CAN write

) - -
- s .5 .1 2an (aey ) (ony = vgd = ey v oxp) vy - vn)
A A ot~ _
E !no1 vn yno] xn
(u.2]

Equation 4.2 carn be derived directly trom Eq. 4.1 by noting that
4.1 implies a definition for the operators %; and %; and when these
are applied to 5 . ﬁ - %; + %% Eq. [4.2]) is obtained. Trus, we have

in effect three ways of deriving the same firnite difference approxima-

tion to the operators %; and %;. In cylindrical coordinates we

express the divergence of the velocity field as

1 d av u ou ov
AR SUORE ' A T

where —; + %% is calculated by Eq. [4.2] with x,y replaced by r,z.

In 4,1 we use a pressure Pn which is midway between points k an:Z kn.

Thies is not a numerical average. Consider the one-dimensional problem
depicted in Fig. 4.2.a.

+*

What pressure should we use for P1 - P;.1?

(P. + P2) the acceleration ait i+1 will be much greater than at {.

If we use the average, 17

However, we know that the velocity should be contiruosus across the
discontinuity. Given equal zoning the boundary pressure which gives

equal accelerations to points | and {+1 {s P. - (p P 1/

1 1 Piaen 1+ Py

(py * pyuq)-

It can be shown that the resulting finite difference approximation Px
- (PI - PI)’ix is second order accurate when the density {3

continuous.

Now consider the problem depicted in 4.,2.0,. Here we¢ have a heav

material on the left moving into a very light material on the right.



What should we use for U; - 01’1? If we use the average, 1/2 (U1 +
U”1). there will be a very large rate of compression in region 2
which is incorrect because region 1 i{s moving into a near vacnhum. Thne
quantity that should be continuous {is pressure. The velocity which
causes equal pressure increases at points { and i+1 is U = [(pc‘?)1 u,
. (°c2)101 u“,}/[(ocz)1 + (pc2)1’1]. This ascumes the sound speed c
is a constant. Again it can be shown that the resultant finite dif-

ference approximation to U! is second order accurate |{f pc2 is
continuous.
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The midpoirt pressure used in Eq. [(4.1] are inversec censity wecighted

and the midooint velocities in Eq. [4.2] are pc2 weighteoco,

4.4. The artificial viscosity
An artificial viscosity, q, is added to the midpoint pressaurce (n Fy,

fu,1]. It is quadratic {in fo . Let Uc be the closing rate between
points k and kn' i.e.



Then let q - nzpkug and Q - Izpk Ug. In the spirit of paragraph
n n

4.3, we inversre density weight the two to> get our expression for the
midpoint q, 1. e.,

2, 2
q, - 2a° U v/ (1/pk * 1/pkn) (4.3]

In all of our example calculations in section 2 we used 32 = 5,76. Now
Wwe must fold q into the internal energy equation in which we need to
evaluate (P =« q)V-ﬁ. Our approximscion for .0 1s given by Eq. [4.21].
Th2 q term is brought inside the summation sov that

Z L - 7 'y -
(P + 0)F-0 = n_Pu t 9n)un(rnos = Ynerd tn (Put 9n)¥a(7ner %a)
Z xn01 yn - yn'1 xn
n
[L&,42

4.5. Prevention of density striations
The method so far described has one remaining difficulty. By having
ali of the variablces centered {n space it becomes impossitle to deteact

a sawtooth type wave as depicted in one dimension in Fig. 4.3.
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scheme. To correct for this, we define an artificial velocity u' as

depicted in Fig. 4.3, We use our calculated V P to extrapolate from

point k to point kn giving P:’t

-

- P+ (ikn - %) - ¥ P, If the

:Xt - Pk . If they are not equal,
n n
there is a second drrivative in the pressure field which we attempt to

pressure field is linear then P

rejduce. Physically what should happen {s a velocity would be produced
at the midpoint as indicated in 4.3, which would decompress point |

and compress point {+1. This velocity aust be proportioned to &P =

ext

Pk - Pk + We chose to use u' = bz éP/pc. We then use pc2 weighting
n n

betveen points k and kn to arrive at

b &P (ck + ckn)
ur" . —__;'5_:____-_:—3_ [4.4]
Pk ®x * Pk K
n n

ul is added to u_ in calculating v-0.

.
In our present calculations b =« 1.4k, We further 1imit Iu'nl to be

less than 20% of the maximum of (Ck. C In practice, u' is a very

« )
small term, but an absolutely necessar: one. For example, in teut
prcblem 1, density striations of around 56% will occur without using
u'. We note also that 6P (s proportional to 6x2Pxx and thus {s quad-
ratic in nature. The similarity bctween q and u' is striking. The q
is an aritificial pressurec which smooth: the velocity field while u’

is an artificial velocity which smoothuy the pressure field,

4.6 Ncighbor sclection
The method rcquires a good selection of representative neighbors at
each point in time. ¥~ hrve found out that the neighbors whose bisec-
tors form the Vornol polygon[3] around the point Kk are an excellant
cholce. The k Vornoi{ polygon is defined as that region of space

th
which Is nearer poini k *han any other point.

V. SUMMARY
The partial differential Fqs [¢.1, 2.2, and 7.3}, along with the equa-
tion of state 2.4, which describe the Lime evolution of compressible

fluid flow can be solved without the us: oy a Lagrangian mesh. The



Bethod follows embedded fluid points and uses finite difference ap-
proximations to VP and § . 0 to update p, U and e. We have
demonstrated that the method can accurately calculate highly distorted
flows without difficulty. The finfte difference approximations are
not unique, improvements may be found in the near future. The neigh-
bor selection is not unique, but the one being used at present appears
to do an excellent job. The method could be directly extended to
three dimensions. One drawback to the method is the failure to ex-
plicitly conserve mass, momentum and energy. In fact, at any given
tinme, the mass {s not defined. We must perform an auxiliary calcula-
tion by integrating the density field over space to obtain mass,
energy and momentum, However, in all cases where wc have done this,
we have found the drift in these quantities to be no more than a few
percent.
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