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ABSTRACT

Pattern selection problems are found in a variety of phenomena.
Fluid dynamical systems and nonlinear diffusion phenomena give typical
examples of pattern formation problems in dissipative systems. In
some cases the dissipation reduces the effective dimension of the
system, and this fact leads to several strikingly universal behaviors
which were initially found in simple model systems with a few degrees
ot freedom.

Nonlinear wave equations themselves, however, describes systems
without dissipation in which the situation i .ore complicated. In
spite of this complexity, many completely integrable systems are known
in non iaear wave equations, where neither ergodicity nor chaos is
expected. With addition of small perturbation to completely integrable
systems, one can sae the growth of instability and the role of coherent
structures in the pattern selection problem. Two aspects are briefly

discussed in the following sections.
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I. NON-DISSIPATIVE SYSTEMS

Completely integrable systems are characterized by the fact that
all the scatterings are elastic, which is equivalent to the infinite
lifetime of each normal mode. In non-integrable systems, annihilation
or creation of coherent structures like solitons is caused by inelastic
scattering, which can cause the genesis of chaos. A computer simulation
resulL] shows that orbital instability in the phase space is originated
by the inelastic scattering of a soliton and an antisoliton in a per-
turbed sine-Goruon system. In this exampie, the phase space distance
of two orbits whose initial conditions are very slightly different shows
a sudden increase after the inelastic collisions. If one assumes
continuing collisions of solitons at finite density in the infinite
size system, this elementary process leads to positive Lyapunov
exponents. Actually, the initial condition sensitivity is most
prominent2 at the threshold initial velocity of colliding solitons,
below which a soliton and an antisoliton decay into oscillatory modes
after the collision. The final spatial pattern is quite different
when one changes the relative initial velocity of solitons arourd the
threshold value. This kind of instability, that is, chaos, appears

strongest for inelastic scattering of nonlinear, localized modes.

I1. DISSIPATIVE SYSTEM

If a dissipative perturbation is added to an integrable system,
the result may be quite different from the case of non-dissipative
perturbation, because the final state of the system often f{alls onto
a low-dimensional attractor. Because of the dissipation, only a small

number of modes or spatial patterns survive after the transient time.



In this case the final state can te described by a systea with a small
number of degrees of freedom, and universal properties of chaos of
simple systems may appear.

A characteristic problem in systems with many degrees of freedom
is that of understanding which modes survive selectively after the
transient time. indeed it is expected that many attractors are possible
candidates for the final state when the dissipation is small or the
system is large. Although the final state is described by a small
aumber of modes, the selected attractor may sensitively depend on the
initial condition and the system parameter. Similar sensitivity is
found also in systems with few degrees of freedom such as a damped
driven pendulum.3 The sensitivity becomes, however, incomparably strong
in the partial differential equations. Actually, some universal routes
to chaos such as the period doubling sequence seen in the damped driven
pendulum are not found and interrupt=d by a change of the basin. An
example of such a sensitivity is found in the system given by the

following damped driven sine-Gordon equation:

2 p - .
¢tt - CO¢xx + sing = Y¢t + A sin uit

- M sin wt[6(x)-6(x-L)]

Here y is the strength of dissipation, and A is the amplitude of
uniform driving force with frequency w. The system is also driven

by an ac field at the boundary of the system with length L and p is
the amplitude of this field, whick correaponds to the magnetic field
in the model of Josephson Lransmission line. I{ we fix other para-
meters and change the value A very slightly, the final spatial pattern

often experiences a kaleidoscopic change. Although the final states



are often periedic in time, the realized spatial patterns are quite
different even when one changes the parameters very slightly. In some
other cases, such a sensitive dependence leads to an intermittent
behavior between two spatial patterns. The problem in partial differ-
ential equations with dissipation is to find a rule to decide which
spatial pattern appears and how the pattern selection comes out. Thece
are interesting open questions. If we compare the results shown in
non-dissipative systems with the dissipative motion, chaotic behavior
found in non-dissipative systems can be interp-eted as the instability
associated with changes of the spatial pattern. The change of spatial
patterns is inhibited with increasing dissipation. 1In this sense the
most characteristic feature of chaos in systems with many degrees of
freedom is found in small dissipative cases.
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