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LOW-DIMENSIONAL BEHAVIOR OF THE PATTERN FORMATION CAHN-HILLIARD EQUATION
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Bruno Scheurer N "
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and Universite Paris-Sud (Orsay), France

We investigate the fourth-order Cahn-Hilliard parabolic partial
differential equation which describes pattern formation in phase
transition. Neumann and periodic boundary conditions are
considered for a domain in R, 1< n < 3. This equation is
characterized by a negative (backward) second order diffusion and
multiple steady states for the appropriats range of parameters.
We establish compactness of the orbits in H (2) and convergence to
some steady state. We demonstrate that the Cahn-Hillfard equation
admits an intrinsic low dimensional behavior: in R", the number
oglfetermining modes (in a Galerkin expansion) is proportional to
L ; where L, the diameter of the domain, is also proportional to
the number of unstable modes for the linearized equation. Similar
results hold for n = 2,3.

1. INTRODUCTION

We investigate the low dimensional behaxior of the Cahn-Hilliard equation with
a quartic homogeneous free energy, in R, 1 < n < 3:

g% = div [M(u) V (-Au + au3 - Bu)]
= div [M(u) V J(u)] in QCR®
u(0) =uy 6 HX(Q) , @ >0 and B>O ; (1.1a)
the following hypotheses are made for the mobility coefficieat M(u):
M(u) > 0 , monotone non-increasing in |u], c!
and M(u) > M(() exp =Aful , A >0 ; (1.1b)

the boundary conditions on 30 (boundary of the pattern cell) are either of the
Neumann type or periodic (periodic cell structure):

du
v

aJ

z 0 y

=0 , (1.1c)
v
an

an

or
u(x + Leit) = u(x,t) 1<1i<n , (1.14)

L being the size of a typical pattern cell.



Eq. (1.1) is in fact a normalized form for the claassicsl Cahn-Hilliard
equation [2,5,9]:

dc

3o = div [M(u) V (-Ac + b 2

2c + b3c

2 eitker > 0 or < 0, b3 <0, ba >0 , (1.2)

with the same boundary conditions. As shown below (1.2) reduces to (1.1) by a
sipple trsnslation c(x,t) = u(x,t) + c*, c* constant.

3
+ bloc )] ’
b

Eq. (1.2) is a continuum model for pattern formation resulting from phase
transition. It is associated to a classical Landau-Ginzburg free energy [1]:

; = f (’g(VE)2 + f(¢)) dx , fcdx = c(x,0) dx = ct , (1.3a)
Q Q Q

vhere the homogeneous free energy f(c) is a quartic polynomial whose
derivative is:

f _ 2 3

3¢ = bzc + b3c + bac , b3 <0 , ba >0 . (1.3b)
Steady-state solutions of (1.2) are given by critical points of the non-convex
functional F. The corresponding Euler-Lagrange equation is:

-AC + bZE + b362 + baﬁa =ct , (1.3¢)

plus appropriate boundary conditions.

The influence of the homogeneous free energy function f(c) appears in the sign
of b2 and the parameter B [9]:

by

b= -—=—p . (1.4)
(

Ib,Ib,)

If b, <0, there is a "negative viscosity” destabilizing wmechanism somewvhat
linifLr toc the one observed in the Kuramoto-Sivashinsky equation for unstable
flame fronts [6-8]. The gzero solution is unstable and this regime is referred
to ss "unstable subspinodal.” The special limit case b2 z 0 is called the
"spinodal regime.”

If b, >0 and ?2 > 3, the cubic §£ defined in (1.3b) possesses two distinct
extréba. 1{ B" <3, b, > 0, it {s well known that gzero is a monotonically
stable attractor [5,9]° zA Novick-Cohen and L. A. Segel [9] have extensively
studied the case 3 < B" < » in a one-dimensional geometry. They have
cpecified the fua} set. of equilibrium solutions. They have also established
that for 4.5 < B~ < », the basin of attraction of zero is bounded, whereas

there exists Qt lesst another nontrivial equilibrium with its own basin of
sctraction. B” = 4.5 is the distinguished ''binodal’ case.

H! investigste some g.obal dynamical properties of (1.2) when b, > 0 and
¥ >3, or bq € 0. Either case reduce to the normalized equation (?.l); set.:

u(x,t) = ¢(x,t) - c* , (1.5a)



| where

ck = -b3/3b4 >0 , (1.5b)

and is such that

5, .
* = ’
8c3 c=c
through the translation (1.5), the cubic g{ is changed into:
b2
3 _ .13 3
ac-c + [bz 3 ‘.] U"'b‘.u . (168)
We define
o= ba >0 (1.6b)
1 %3
B=-lb2-5—al y B>0 (1.6c)

indeed B2 > 3, b2 >0 implies B > 0. Injecting (1.5) and (1.6) into the
Cahn-Hilliard Eq.“(1.2) yields the normalized form (1.1), with M = M(c* + u),
and u, = c(x,0) - c*,

In Section 1, we verify boundedness of orbits in HI(Q) and the existence of
Lyapunov functional. Althqugh the above is implicit in the llterature,
compactness of orbits in H (12) has not previously been established, to our
knowledge. This is done in Section 2, and enables the correct application of
a8 classical thological dynamics theorem of Hale [4]: all orbits strongly
converge in H' () to critical points of the non:convex functional (1.3a).

However, the most important results are found in Section 4; we establish the
intrinsically low-dimensional hehavior of the Cahn-Hillard equation.
Essentially, we project any orEit onto the linear manifold of the first
m-eigenmodes of the biharmonic A™. Suppose that the m-dimensional projected
orbit converges to some m-dimensional fixed point; we will sey that thc first
m-eigenmodes are determining if this implies convergence of the infinite
dimensional orbit.

Following ideas developed in the Navier-Stokes context by
Foias-Manley-Temam-Treve [3], we ©prove that for the onv-dimensional
Cahn-Hilliard equation:

m > ct L:‘V2 ,
vhere L is the pattern size.

L is alro proportionsl to the number of unstable modes of (1.1) linearized at
u 2 0; indeed the eigenvalue spectrum is:

A= B2 AR BB ko1,
L R



'and

e aIn >0 = (1,

wvhere [a] is the usual integer part of a. So for the determining modes:

m > ct (# unstable llodes)3/2 ;
in some heuristic sense, the impact of the nonlinearity is reflected orly
through the exponent %. Similar results hold for n = 2 and n = 3, periodic
boundary conditions.
To simplify the technical derivations, we restrict ourselves to

M(u) = constant; the general case is easily disposed of, as soon as one
obtains an estimate such as:

o |luG,0ll ,  <K;
t-o L (Q)
then from (1.1b)
0 < M(0) < M(u) < M(K)
2. BOUNDEDNESS OF ORBITS IN Hi(Q): THE LYAPUNOV FUNCTION
We consider the normalized problem:

du ©N -
3t AJu) =0in Q , (2.1a)

3

J(u) = -Au+ gu” - pu ,aend B >0

u(0) = uy € 1 (Q) (2.1k)
with either

- periodic bnundary conditions , u(x + Lei, t) = u(x,t), 1 <i <n

(2.1c)
(L being the size of a typical pattern cell) or
g%an'g_ilan'o . (2.10)

In this section, NQ Rn, 1<n<3.
First we have the:

- - - 1
Lemma 2.1. u(t) ® u(0), where u(t) is the average J u(x,t) dx and
[ = mess Q. i



Remark 2.2. The previous lemma implies that Poincaré-like inequalities hold,
as u can be renormalized to a function of null mean value. From now on, we
set

Hull = (f u? a)?
unless specified otherwise.

We now look for a Lyapunov function associated with (2.1). Multiply (4.1) by
J(u) and integrate by parts over (}. With either set of boundary conditions:

F 83 e+ @I ax =0 (2.2a)
0 0

and injecting the explicit form of J(u) into the first integral:

2 (5 [ (Vu)? dx - g Julax +d g u“dx) + f(W%ax=0 . (2.2b)
9] 9] 9]

Let us define V(t) as:

v(t) = % f (Vu)2 dx - g J uldx + % J uadx . (2.3)

0 Q 9]

Then (2.2b) implies:

d ' 1

3t V(t) <0 . (2.4)

To eltablish]that V(t) is a Lyapunov function, we must showlthe boundedness of
orbity in H {Q) and that V(t) is bounded from below in H (Q). Remark that:

Ve =y f (vu)2dx ! ol 2. ;35)2 dx - gazlﬂl ; (2.5)
now

v(t) € V(0) (2.6)
s

N

ln.f(Vu)zchH‘I(’/%uz'-L_)zdxi'n.f(Vuo)2 dx+j(=l£u§-‘L_)2dx
Q 0 2Ja Q Q 2Ja

This proves the

Theorem 2.3. Eim |IVu(t)|| < F(uy), where

t 4o



ol

Fug) = (11Vadl] +2 f (

ug - --E:)2 dx)lj . (2.8)
Q

2Ja

Corollary 2.4. £im ||ul] , s bounded.
L

o
Proof. Use the continuous imbedding
R @est’@ , o<
or specifically Eq. (2.7), together with Poincaré's inequality.

Corollary 2.5. V(t) is a continuous, bounded frow below, Lyapunov functional

on Hl(Q).

Remark 2.6. All (f the above results are valid if we consider the more
general equation (1.1) with the coefficient of diffusion M(u) given as in
{1.1b). Indeed:

du _ )
3¢ - div M(u) VJ() =0

multiplying by J(u) and integrating over Q:

S8y ax + fuw @D a=o
0 9]

and we gtill have
d
gt V() <o,
with V(t) same as in (2.3).
3. ASYMPTOTIC BEHAVIOR OF ORBITS.

We wish to establish some kind of convergsnce of the orbits u(x,t) to the
critical manifold M of fixed points u(x) of:

Ai+add-ph=y (3.1a)
J 4 dx = [Qlu(0) (3.1b)
1Y)

du - - .

55'80 = 0 or periodic boundary conditions . (3.1¢c)

To apply classical topological dynamics {esults of Hale [4], we first need the
relative compactness of orbits u(t) in H'(Q):



Theorex 3.1. 2im ||D2u|| is boundod(z), for either periodic boundary condi-
o

tions (2.1c) or Neugann cgnditions (2.1d) if Q C.Rl;

cornditions if Q€ R” or R”.

and for periodic boundary

The proof is technical and will be outlined bﬁlow. Theorem 3.1 ensures the
relative compactness of the orbit u(t) in H (1); hence, the w-limit set
associated tc u, is nonempty, compact, invariant and connected. Using a
classical theorem for such flows with Lyapunov functions (4], namely that V(t)
is constant on w(uo), we deduce:

Corollary 3.2. As t -»», fLim dist |Ju(x,t) - M| = 0 in HI(Q), for either
boundary conditions if 1 C Rl, and for periodic boundary conditions if QC R2

or R3.

Remark 3.3. Problem (3.1) usually admits multiple solutions, whether one
considers B or L = diam () as a bifurcatioa parameter [9].

4
Proof of Theorem 3.1. Multiply (2.1) by 25 3 25" U integrate by parts
ax, 1 ox_ O
1 n

and take the sumation over all 6 = (61, ceay 6n) such that |6] = 2; we get:

y oo 10funi? it - pipuli? =z o f su? 0% ax

161=2
= I (60 f ulvu]? D%% dax + 30 f u? Au D%0y ax) . (3.2)

16]=2

Apply Cauchy-Schwartz and Cauchy-Young's inequalities to the R.H.S. of (3.2):
2 4
y 52 10%ali? + o) a1 < B 1D%uli? + ce) § oo o

+cCe) S u® aw)? ax (3.3)

from now on C(e) will be s generic symbol for any constant depending upon €.

We will estimate:

1= 5 e ot e, (3.4)
3, = Ju* (an?ax . (3.5)
(1) For brevity, we set IkauII2 = 2 IIDaullz.
lal=k



" We will a<ed the Agmon inequalities (for functions periodic and/or with zero
mean value):

vl Y 111, ifn=1

)11, < Jy @M Ism©?* , if0=2 (3.6)
L

@Y Hnawnd , if o=

We also need the following general interpolation inequalities:

+ - +
D% upy < 0% ug /3 pk*2y) 273 (3.7)
- +
o%apt < 115 Yag 1 ¥ 0K ¥ (3.8)
. Wb, A b, _
Also, as H'cpL (n = 2) or &L  (n = 3), we will need:
1IDullfe < Lipull? 11D%ll , m=2 ; (3.92)
'
11Dul e < 11Dul 12 110%11¥2 0 =3 (3.95)

which are obtained by interpolation of H& (resp. Hi) between L2 and Hz. We

will give explicit technical details only for n = 2. The case n =1 and n = 3
are similar.

In (3.3), we first consider the term

B||D3u||2; from (3.7) and using
Cauchy-Young’'s inequality with p = 3/2, q = 3:

10%l12 < 0%l 1®/3 11?3 11 < e 110%12 + c(e) 11Dul)?

e 110%11% + ce) , (3.10)

\r

since Zim ||Vu]| < F(uo) (Theorem 2.3).

t>

Now estimate Jl in (3.4):

4
£ w¥Wu)ax < 11al1? 1wull?,
" L4

using Agmon’s inequalities (3.6) and the interpolation inequrlity (3.9a):
3, <ce llull [1D%all 1IDull® 1ID%l)

and from Theorem 2.3:
3, < ce 110%ull 1I0%ll < ce 11D%l)?

(using Poincaré’s inequality) snd
J

1
following (3.10).

<e |ID%]12 + ce) (3.11)



Now estimate J2 in (3.5):

4 4
fut @n? axc< Nall® g,
L L

using Agmon’s inequalities (3.6):

4 4,4
3, <ce sl Hn%all 1e*1* < ce 11p2ug) 1iotuly

(using Corollary 2.4); now using the interpolation inequality (3.8):
4 i
3, < ce 1pall® 110%l1® 11al) < ce 1D%u® 1D

but from the interpolation inequality (3.7):

1/3 2/3

4
Ho%ul1 < 1wl 1Y 110t ;

§0:

3, <ct [pal 1M/ pipta 42

and using Cauchy-Young's inequality with p = 3/2, q = 3:

3, <e [ID%112 + ce) Imeli®

2

'

We nov collect all terms in Eq. (3.3), applying (3.10, 3.11, 3.12):

IA

e 110%112 + c(e) . (3.12)

IA

2

% 5o 110%l1? + (- 3¢ - ge) 11%11? < c(e) . (3.13)

We conclude with the help of Poincaré's inequality and Gronwall's Lemma, that:

Zim |ID%u|] <= . g
too

4. NUMBER OF DETERMINING MODES

This section gives our main result, namely an upper bound of the number of
determining modes for any solution of the Cahn-Hilliard equation (2.1) with
periodic boundary conditions. This bound is formulated in terms of L.
Although we give the detailed derivation for space dimension n = 1, analogue
results can easily be derived for n = 2 and n = 3.

CQnsider u,v two solutions of (2.1), corresponding to two initial data (in
H"(Q)); set w = u-v. Due to the periodicity of u,v, we can use a Fourier mode
decomposition of w and set:

Pax,t) = I w(b) expg%E k.x (4.1)

Ikl<m

where k € Zn, and wk(t) is the kth Fourier coefficient of w(x,t). We will
glso use:

QIn wix,t) = (I - P-)w(x,t) . (4.2)



Definition 4.1. We say that the first m Fourier modes of w = u-v are
determining if:

lim IIP (u(t) = v(t))II = + lim |Ju(t) - v(t)}] =0 . (4.3a)
t-+0 tom
Remark 4.2. For Neumann boundary conditions (2.1d), we use the appropriate

eigenfunctions of (A2) as a Galerkin basis in (4.1 - 4.2).

Remark 4.3. If = is a compact positive invariant set under the semi-flow
defined in Section 3, then from (4.3) we deduce:

lim dist =(PIn u(t), PIn Z) =0 ~+ 1lim dist(u(t), Z) =0 ,

L+ t+®
since v(t) € = for all times if v(0) € =

* *
In particular, if w = u , where u is some equilibrium sclution belonging to
the set of M of fixed points (cf. Eq. (3.1), then:

*
lim IIP u(t) - P u || 0= 1lim |[|u(t) ~u || =0 ; (4.3b)

t+o )

if the projection of the orbit converges to some (projected) fixed point, the
same is true of the infinite-dimensional orbit.

The main result of this section is stated for space dimension n = 1; with
Q= [0,L] and periodic boundary conditions:

Theorem 4.4. The first m Fourier modes are determining if
m+1>k1Y2 (4.4)

where K is some constant depending on a,f and C with initial values

1Vu(0)1] ¢ &,

Proof of Theorem 4.4. For sake of brevity, in the sequel, we will denote

Qmw, s me. Now, if u,v are two solutions, w satisfy the following
qﬁuation
2y aCaw + o - alu® + v + VEw) =0 . (4.5a)

Mulciplying by qIn and integrating:

o Hgg 112+ a1 - 8 119g 1% - o f [u® + uv + v?] w aq dx = 0

(4.5b)
But w = 9, + Py’ and so by Hilder’s inequality:
] (u2 + uv + vz)w 8q dx
<l|u +uV+VII w CHpgll + Llg l1) 1laq || (4.6)

10



and

b 59 lHggl1? + —2— (11aq 112 - B 11vg |12
lg |l
- allu? + wv + w11 8q Il g 11} 11g )12
L
2 2
o ||u® +uv+yv IIL“ Hagptl e Il . (4.7)

We must prove that Ilpmll + 0 implies qumll » 0. This will be completed by
verifying the three assumptions of the generalized Gronwsall’s Lemms 4.1 of
[3]. We recall this Lemma:

Let £(t) be an absolutely continucus nonnegative function on (0,®) such that

%% + A(t)E < B(t) a.e. on (0,®) |,

where A(t) is a locally integrable function on (C,®) satisfying for some T,
0 <T < oo

t+T
lim iuf [ Ads =y>0 (H1)
tom t
t+T
lim sup [ A ds =T <o | (H2)
tw t
where A~ = max (-A, 0) and B(t) is a measuruble function on (0,®) such that
B(t) +0 ,t>+e |, (H3)

then

E(t) »0as t

+

[+ J

(Here, we set {(t) IIqm(t)IIZ.) We define:

IIu2 + uv + v2|| -

, l1aagll - p Vg |17

A (t) = 7 - 20 l1aq |1 (4.8)
» g l1* Hayll b
B (t) = 20 [[u? + uv + vzllL, lag 1 Ip 11 (4.9)
2
Iaq | p T
pm(t) = — pm(t) =7 J pm(') ds , (4.10)
Ha !l t
R(u,v) = allu2 + uv + v2|| - - (4.11)
L

il



'Inequality (4.7) now can be rewritten in a more compact way:
d 2 2
3 He 1% + A () g 11% < B (8) . (4.12)

We first verify Hypothesis (Hl1) from the generalized Gronwall's Lemma:

2
2llaq |1 2l 1aq |1 I1aq |1
A (%) > - - 2 R(u,v) ———
m Ilqmllz il I 11
=2 - | & - 5
= pm(t) 2B pm(t) 2 R(u,v) pm(t) . (4.13)
From (4.13):
p T - - Yy 2 t+T 3
T It A (s) ds > 2 p (¢) 7 2Bp,()" - 3 It R(u,v) p_(5)* ds
t+T N
>2 Em(t) -2 Em(t)l' - 2(% J R(u,v)2 ds)!i pm(t)g
t
t+T
=2§ 0BG RuwIaY , 416)
: t

where we use a classical inceprlation inequality for IIquII2 and Jenssen's
inequality. From (4.14), a su: ficient condition ~ - (H1) is:

t+T
p)>p+ A RuW?ant (4.15)
m T t

but

b t) > E : (4.16)

2n(m+1).4

where E is the (m+l)th eigenvalue of the biharmonic; Em+l = ( L ).

Then a Tﬁ}ficient condition for hypothesis (H1) is:

2 2 t+T
L R 3 I Y (Tl T TP L T B (4.17)
L t

We will further elaborate on (4.17). But we first verify Hypothesis (H2) and
(H3) from the generalized Gronwall’'s Lemma. To -~ erify (H2), notice that
(4.14) implies by the Cauchy-Young inequality:

t+T . -y - . )
ft Am(l) ds > 2 pm(t) -28 pn(t) - pm(t) - ﬁi: R(u,v)“ ; (4.18)

=3

(H2) is satisfied as soon as

B(t) 2 4 g (4.19)

12



which is implied by (4.16) and (4.17). To verify (H3), remember that R(u,v)
and || || are uniformly bounded in time (cf., Section 3); moreover,
||pm(t)|| + 0 from the very hypothesis of theorem 4.4.

We now further explicit the remaining sufficient condition (4.17). Using
(Lemma 2.1), namely tlat

u(t) = u(o)

the continuous injection of HI(Q) into L“(Q) can be sharpened as:
lull o, < 4L [I9u]] , + u(0) . (4.20)
L 12

Then:

t+T
( 5omax ARENZ, , vANE d.)5
L L

=3

t

< max (To |lully, , T IIvi1Z)
o L to
< max (GE Fug) + a0)% , (L Fvp) + von?) (4.21)

where we have used Theorem 2.3, i.e., 2im ||Vu(t)]]| < F(uo). Then for m and
t -+
L large enough, (4.17) is equivaleat to:

2 2
b (w3 1)- . ce(a,B,upvp) L (4.22a)
L
m+ 1~ Ctla,B ) L2, (4.22b)
where we have taken both ||Vu(0)|| and ||Vv(0)|] < CO' u]
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