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\i
Bruno Scheurer ,>;) ““’

I
Centre d’Etudes de Limeil - ‘(

and University Paris-Sud (Orsay), France

We investigate the fourth-order Cahn-Hilliard parabolic partial
differential equation which describes pattern formation in phase
transition. Neumann and pe~iodic bounda~ conditions are
considered for a domain inR, 1 < n< 3. This equation is
characterized by a negative (backward~ ae~ond order diffusion and
m~ilt+ple steady states for the appropriate f range of parameters.
We ●stablish compactness of the orbits in H (0) ●nd convergence to
some steady state. We demonstrate that the Cahn-Hil erd ●quation

v
admits an intrinsic low dimenolonal behavior: inR, the number
;$,jetermini ng ❑odes (in a Galerkin ●xpansion) is proportional to

; where L, the diameter of the domain, is ●lso proportional to

the number of unstable ❑odes for the linearized ●quation. Similar
results hold for n = 2,3,

1. INTRODUCTION

We investigate the low dimensional behavior of the Cahn-Hilliard ●quation with
a quartic homogeneous free energy, in Rn, I ~ n ~ 3:

&
at = div [H(u) V (-Au + au3 - Pu)]

s div [!’!(U) VJ(U)] irIfi CRn ,

u(o) = U. 6H2(Cl) ,a>O and ~ > 0 ; (1.18)

the following hypotheses are ❑ade for the ❑obility coefficient II(u):

II(u) > 0 , ❑ onotone non-increasing in Iul, C1

and M(u) > H(( ) ●xp -Aiul , A > 0 ; (1.lb)

the boundary conditions on WI (boundary of the pattern cell) are either of the
Neumann type or periodic (periodic cell structure):

I I

E!?=o,a&.o,
8“ Ml 80

or

U(X + Leit) = u(x)t) 1 ~ i ~ n ,

(lmlc)

(1.ld]

L beina the size of ● typical pattern CP1l,



Eq. (1.1) is in fact ● normalized form for the claauical Cahn-Hilliard
●quation [2,5,9]:

& 2
at

= div [H(U) V (-Ac + b2c + b3c + b4c3)] ,

b2eitber>Oor<0, b3<0, b4>0 , (1.2)

with the same boundary conditions. As shown below (1.2) reduces to (1.1) by a
simple translation c(x,t) = u(x,t) + c*, c* constant.

Eq. (1.2) is ● continuum model for pattern formation resulting from phase
transition. It ia ●ssociated to ● clasaical Landau-Ginzburg free ●nergy [1]:

; =J (+(V:)2 + f(?)) dx , ~~dxs Jc(x,C)dx=ct , (l,3a)
Q n o

where the homogeneous free ener8y f(c) is a quartic polynomial whose
derivative ia:

af
G ❑ b2c + b3c2 + b4c3 ,b3<0 ,b4>0, (1.3b)

Steady-state solutions of (1.2) are Siven by critical points of the non-convex
functional F. The corresponding Euler-Lagrange ●quation is:

-A; + b2; + b3;2 + b4t3 =Ct, (103C)

plus ●ppropriate boundary conditions.

The influence of the homogeneous free ●nergy function f(c) ●ppeara in the ~ign
of b2 ●nd the parameter B [9]:

(1.4)

If b ~ O, there is a “negative viscosity”
$

destabilizing mechanism somewhat
aimi ar to the one ob-erved in the Kuramoto-Sivashin~kY eauation for unstable
flame fronta [6-8]. The zero solution is un-table ●nd ~hii regime io referred——— ——
to 98 nun-table subapinodal.” The special limit ca~e bn = O ia called the
“opinodal regime.”

L

af
> 3, the cubic — defined in (1.3b) posseaaea two dimtinct

~~t~d. o f?i3~2<3, b2 >0, it # well known that zero is ● monotonically
~table attractor [5,9]. f. Novick-Cohen ●nd L. A. Segel [9] have ●xtensively
studied the caaa 3 ~, P < ~ in a one-dimensional Ueometry. They have
cpaci$!ied the fu~ cet of equilibrium solutions. They have ●lto establi~hed
that for 4.5 ~ B < ~, the baain of attraction of zero in bounde~, whereaa
there exists st lea-t another nontrivial equilibrium with ita own bamin of
attraction. B w 4,5 im the distinguished “binodal” case.

Wz investigate mome &’Lobal dynamical properties of (1.2) when b > 0 ●nd
if >3,0rb2~0. Either caae reduce to the normalized ●quation ( ?.1); actfl—. —. —— —

U(x,t) = C(x,t) - c* , (1*5U)



where

C* = -b3/3b4

and iIS such that

83f

--1
= o

ac3 C=C*

>0,

;

afthrough the translation (1.5), the cubic ~ is changed into:

af b2

Si
= c!k + [b2 -+~]u+b4u3 .

4

(1.5b)

(1.6a)

We define

a =bb>o (1.6b)

b2
13=- [b2-~~1 ,P>O ; (1.6c)

indeed B2 > 3, b- > 0 implies ~ > 0. Injecting (1.5) ●nd (1.6) into the
Cahn-Hilliard Eq.’(l.2) yields the normalized form (1.1), with H E tl(c* + u),
●nd uo = C(x,o) ‘- c*. -

In Section 1, we verify boundednesB
Lyapunov functional. Althgugh the
compactness of orbits in H (N) has
knowledge. This in done in 8ection

of orbits in Hi(0) ●nd the existence of
●bove is implicit in the literature,

not previou~ly been established, to our
2~and enables the correct ●mlication of

● clas-~cal t~ological dynamics theorem of Hale [4]: all ortits strongly
conver8e in H (0) to critical points of the non”convex functional (l,3a),

However, the moat important results ● re found in Section 4; we ●stablish the
intrinsically low-dimensional behavior of the Cahn-Hillard ●quation.
Essentially, we project 8N3 or~it onto the linear manifold of the fir-t
❑-eigenmodes of the biharmonic A . Suppose that the ❑-dimensional projected
orbit converges to some m-dimensional fixed point; we will ●ay that the first
m-eigenmodes ●re determining if this implies convergence of the infinite
dimensional orbit.

Followina idean developed in the Na./jer-Stokes context by
Foia~-?ianley-Temam-Treve [3], we prove that for the onu-dimensional
Cahn-liilliard ●quation:

m~ct L3/2 ,

where L is the pattern size.

L i~ ●l~o proportional to the number of unstable modes of (1.1) linearized at
u M O; indeed the ●igenvalue -pectrum i-:



●nd

# (AklAk> 01 = [#L] ,
where [a] is the usual integer part of a. So for the determining modes:

3/2 ;m ~ ct (# unstable ❑odes)

in some heuristic sense, the impact of the nonlinearity is reflected or.iy
through the ●xponent #. “ Similar-results hold
boundary conditions.

To simplify the technical derivationa,
H(u) = constant; the general caae is ●aaily
obtaina an ●stimate such as:

m [Iu(x,t)ll <K;
t- Lm(fl)

then from (1.lb)

O < M(O) ~H(u) ~M(K) .

for n = 2andn= 3, periodic

we restrict ourselves to
disposed of, as soon as one

2. BOUNDED~SS OF ORBITS IN H’(O): THE LYAPUNOVmcTIoN

W consider the normalized problem:

au—.AJ~u)=OinO ,
Ot

J(u) = -Au + UU3 . @ ,aand~>O

u(o) = U. 6H2(n)

with ●ither

- periodic boundary conditions , U(X + Lei, t) =u(x,t), 1 ~i ~n

(2.la)

(2.lh)

(L being the size of

Hem■ Han=
In this section, flC

First we have the:

(201C)

● typical pattern cell) or

0. (2.ILI)

Loma 2.10 ;(t) ■ G(O), whoro ii(t) is the ●vorago

~Za ~s

& .f’ u(x, t) dx ●nd



Remark 2.2.
ae u can be
set

Ilull =

The previous leuna implies that Poincar4-like inequalities hold,
renormalized to a function of null ❑ ean value. From now on, we

(f U2 dx)* ,

unless specified otherwise.

We now look for a Lyapunov function associated with (2.1). Multiply (4.1) by
J(u) ●nd integrate by parts over fl. With either set of boundary conditions:

J ‘J(u) dx + ~ (VJ(U))2 dx = O
~ at

(2.2a)
n

and injecting the explicit form of J(u) into the first integral:

.(f #J (VU)2
Q

Let us define V(t)

)dx-~~u2dx+; Jh4dx +~(VJ)2dx=0 .
n n

as:

(2.2b)

(2.3)v(t) = #~(Vu)2dx -~~u2dx+~~u4dx .

0 0 Q

Then (2.2b) implies:

.& ’(t)<o .
I

(2.4)

To ●stablis that V(t) is a Lyapunov function, we must ShO
9

y the boundedness of
orbitu in H (fl) and that V(t) iB bounded from below in H (0). Remark that:.—

now

v(t) : v(o) ,

80

(2.5)

(2.6)

(2.7)

This proves the

Theorom 2.3. = IIVu(t)ll ~~(uo), whom
t-



‘.

F(uo) = (Ilvl$l
:2

+2J(JpJo- -%2 dx)% .
n 24;

(2.8)

Cmollary 2.4. = I lull ~ is boundd.
t* L

Proof. Use the continuous imbedding

H1(fl)~L4(0) , n ~ 4

or specifically Eq. (2.7), together with Poincar4’s inequality.

Corollaa 2.5. V(t) is ● continuous, bounded from below, Lyapmov functional

on H1(fl).

Remark 2.6. All (f the above results are valid if we consider the more
general ●quation (1.1) with the coefficient of diffusion !’l(t,) given as in
(I,lb), Indeed:

3U
— - div Id(u) VJ(U) = O ;3t

❑ultiplying by J(u) and integrating over Q:

@(u) dx+~H(u) (VJ)2 dx=O ,

and we still have

:V(t):o ,

with V(t) same as in (2.3).

3. ASYMPTOTICBEHAVIOROF ORBITS.

We wish to establish some kind of convergence of the orbits u(x,t) to the
critical manifold H af fixed points ~(xl of:

-Afi+afi3-~fi=y (3.la)

~iidx= 101;(0) (3.lb)
Q

au
mlm

= O or periodic boundary conditions . (3.IC)

To ●pply classical topological dynamics ~esults of Hale [~], we first n~ed the
relative compactness of orbits u(t) in H (Cl):



Theorem 3.1. (1)~ [[D2uII is bounded , for ●dther pariodic boundarg condi-

tions (2.lc) o~~euynn conditions (2.ld) if flC R1; and for periodic boundary
coridltiona if (l C R or R .

The proof is technical and will be outlined b~low. Theorem 3.1 ●nsures the
relative compactness of the orbit u(t) in H (fl); hence, the w-limit set
associated tc u is nonempty, compact, invariant and connected. Using a
claasical theoreg for such flows with Lyapunov functions [4], namely that V(t)
is constant on W(UO), we deduce:

Corollary 3.2. As t -, Mm diat Iu(x,t) - Hi = O in H1(SI), for

bou.ndaq conditions if flC R1, and for periodic boundmq conditions if

or R3.

●ither

flCR2

Remark 3.3. Problem (3.1) usually admits multiple solutions, whether one
considers ~ or L = diamfl as a bifurcation parameter [9].

84
Proof of Theorem 3.1. Multiply (2.1) by 26 26n

u, integrate by parts

axl l“”””axn

and take the sumation over all 6 = (61, . . . . 6n) such that 161 = 2; we get:

#+ IID2U112 + IID4U112 - ~llD3u112= X a J AU3 D26U dx
16[=2

= (6u J UIVU12 D*6U dx + 3a ~ U* Au D26U dx) . (3.2)
I6;=2

Apply Cauchy-Schwartz ●nd Cauchy-Young’s inequalities to the R.H.S. of (3.2):

4+ ll112ul 2 + (1-c) [ID4U112 ~ ~ ll~3Ul~2 + C(c) ~ U2(VU)4 dx

from now on C(c).—— .

+ C(c) J U4 (Au)2 dx ; (3.3)

will be ● ~eneric symbol for ~ constant dependin6 ~ c.—— . —.

We will estimate:

.ll = J U2 (VU)4

‘2
= ~ U4 (Au)2

(1) For brevity, we

dx , (3.4)

dx . (3.5)

aet llDku112 = Z llDau112.
Ial=k



“ We will deed the Agmon inequalities (for functions periodic and/or with zero
mean value):

1
Ylilu(t)ll * I IvlJ(t)ll $ ,ifn=l ,

Ilu(t)ll < Y211u(t)llhJ(t)ll+ ,ifn=2 (3.6)
L- -

%~llliu(t)ll , ifn=3 .Y3mo)ll

We also need the following general interpolation inequalities:

[ [Dk+lull ~ l[Dk-lul?’3 [Dk+2ul!2’3 (3.7)

llDkull s llDk-1U11411Dk+ 1Ull~ (3.8)

% %Also, as H ~L4 (n = 2) or H ~L4 (n = 3), we will need:

lll)u[lf4511Du113 IID3uII ,n=z ; (3.9a)

llDuli~4 ~ IIDu115’2 IID3U113’2 , n = 3 ; (3.9b)

$ (resp.which are obtained by interpolation of H H*) between L2 and H*. We
will give ●xplicit technical details only for n = 2. Thecasen=landn=3
●re similar.

In (3.3), we first consider the tem BIID3U112; from (3.7) and usin8
Cauchy-young’e inequality with p = 3/2, q = 3:

IID3U112 ~ IID4U114’3 IIDuII 2/3 II ~ c II D4U112 + C(c) II Du112

: c IID4U112 + C(E) , (3.10)

tince ~ IIVUII ~ F(uO) (Theorcm 2.3).
t-

Now ●stimate J1 in (3.4):

using Agmon’s inequalities (3.6) ●nd the interpolation inequality (3.9a):

Jl <Ct llU~l IID2U[I IIDu[13 [ID3uII ,
,,

●nd from Theorem 2.3:

J1 < Ct !ID2uII IID3uII < Ct [ID3U112

(using Poincar4’o inequality) and

J1 < C [ID4uI[2 +C(C) ,

following (3.10).

(3.11)



Now ●stimate J2 in (3.5):

using Agmon’s inequalities (3.6):

J2 ~Ct [Illu[l [l~4Ull l!u4114 SCt IID2uII IID4uI[ ,

(using Corollary2 .4); now using the interpolation inequality (3.8):

J2 ~ct IIDuII* l[D3u@ IID4uII ~Ct l[D3u@ IID4uII ;

but from the interpolation inequality (3.7):

llD3u[[ ~ ~[Dulll/3 IID4U112J3 ;

so:

J2 ~Ct IIDu[$’6 [ID4U114’3 ,

and using Cauchy-You.ng’a inequality with p = 3/2, q = 3:

J2 < c IID4U112 + C(c) lIDu!I* ,

J2 SE IID4U112 + C(C) .

We now collect all terms in Eq. (3.3), applying (3.10, 3.11, 3.12):

#: IID2uI

We conclude with

~ IID2uII
t*

(3.12)

2
+ (1- 3C ~ fk) I[D4U 12 c C(c) . (3.13)

the help of Poincar6ts inequality and Gronwall’s Lemma, that:

<m. o

4s NUHEEROF DETERMININGMODES

This section gives our main result, namely an upper bound of the number of
determining modes for any solution of the Cahn-Hilliard ●quation (2.1) with
periodic boundary conditions. This bound is formulated in terms of L.
Although we give the detailed derivation for space dimension n = 1, analogue
results can ●asily be derived for n = 2 and n = 3.

C~nsider U,V
H (fl)); set w
decomposition

Pmw(x,t)

where k 6 Zn,
also use:

Qmw(x,t)

1Lwo solutions of (2.1), corresponding to two initial data (in
= u-v, Due to the periodicity of U,V, we can uge a Fourier mode
of w ●nd ●et:

= Z wk(t) ●xp~ k.x (4.1)
lkl:m

and wk(t) is ,the k‘h Fourier coefficient of w(x,t), We will

=(1- Pm)w(x,t) . (4.2)

9



Definition 4.2. we say that the first m Fourier modes of w = u-v are
deteminix)g f f :

lim IIPQ (u(t) - v(t))ll = O + lim Ilu(t) - v(t)ll = O . (4.3a)
t- t-

Remark 4.2. For Neumann boundary conditions (2.id), we use the appropriate
eigenfunctiona of (A*) as a Galerkin basis in (4.1 - 4.2).

Remark 4.3. If E is a compact positive invariant set under the semi-flow
defined in Section 3, then from (4.3) we deduce:

lim dist =(PQ u(t), Pm E) = O + Iim dist(u(t), E) = O ,
t- t-1.m

since v(t) 6 E for all times if v(0) G E.

In particular, if u s u*, where u* is some equilibrium solution belonging to
the set of H of fixed points (cf. Eq. (3.1), then:

lim ~lPm u(t) - Pmu*ll =O+liml lu(t)-u*ll=O ; (4.3b)
t- t-

if the projection of the orbit converges to some (projected) fixed point, the
same is true of the infinite-dimensional orbit.

The main result of this section is etated for space dimension n = 1; with
Q= [O,L] ●nd periodic bounda~ conditions:

Theorem 4.4. The first m Fourier modes ●re determining if

m~~KL3/2 , (4.4)

where K is some constant depending on a,p and [., with initial values
Ilvu(o)ll go.

Proof of Theorem 4.4. For sake of brevity, in ‘the sequel, we will denote

jQm
E w, Pm = Prow” Now, if u,v are two solutions, w satisfy the following

● uation:

+ pw - a[u2 +UV+V2]W) =0. (4.5a)

~ ~nd integrating:

%$ llq112+ llA~112-1311v~112 -aJ[u2+uv+v21wA~ dx=o

(4.5b)

But W =
‘% + Pm, ●nd B.

by H61der’s inequality:

$ (U2 + UV + V2)W as dx

:IIU2+UV+V% (Ilpmll + llqJl) llAc#l
Lm

(4,6)

10



and

4+1

<a

qJ12+ 1 * {I IAQ12 - B llWJ12
Ilql

-allu2+uv+u211 llAqJl llq Jl) llqJ12
L*

IIu2+uv+v211,= [lA~~l Ilpmll . (4.7)
JJ

We must prove that lip II + O implies [i~ll + O.—— This will be completed by
verifying the three a%umptions of the generalized Gronwall’s Leamna 4.1 of
[3j. We recall this Lema:

Let ~(t) be an absolutely continuous nonnegative function on (0,~) such that

~ + A(t)& < B(t) a.e. on (O,=) ,
dt

where A(t) is a locally integrable function on (C,=) satisfying for some T,
o<T<@:

t+l’

lim iuf J Ads= y>o (HI)
L- t

t+’1’

lim sup J A-ds=r<=, (H2)
t* t

where A- = max (-A, O) and B(t) is a measurable function on (O,m) such that

B(t) +O,t+=, (H3)

then

g(t)+Oast+m ,

(Here, we set ~(t) E ll~(t)llz.) We define:

I bq# - P llwJ12
llu2+uv+v*llm

Am(t) = 2 —-2a L llAqJl
II$J12 Hql

Elm(t) = 2a IIu2+uv+v211 llA~ll llPmll ,
L@

IIA+J12 t+T
Pm(t) = , b’m(t) = # J Pm(s) da ,

llq12 t

R(u,v) =allu2+uv+v211 .
Lm

(4,8)

(4,9)

(4,10)

(4.11)

11



.
Inequality (4.7) now can be rewritten in ● more compact way:

# llPa112 + Am(t) llqJ12 : Bin(t) .

We first verify Hypothesis (HI) from the generalized Gronwall’s Lenmna:

211ACJJ122MlAqJl lUMJl
Am(t) >

llqJ12 - T6JT -2 ‘(””) Ilqi

= 2 pm(t) - 2 El pm(t)* - 2 R(u,v) pm(t)% .

From (4.13):

(4.12)

(4.13)

t+T t+T

+ St Am(s) ds ~m2 ~m(t) - ~ P6m(t)$ - # J +

I
~(U,V) pm(S) ds

t

t+T

=2; am(t)$- p- (; f R(u,v)2 ds)%] , (4.14)
:

t
.

where we use a claasical iutierp>lation inequality for llVqJlz and Jenssen’s
inequality, From (4.14), ● ~~’~ficient rendition F - (Hi) is:

t+T

6m(t)*?.B+ (+.r #
R(u,v)2 ds) ;

t
(4.15)

hut

6Jt) z Em+l , (4.16)

‘here ‘vi
is the (m+l)th ●igenvalue of the biharmonic; Em+l = ~2n(;+l)14,

Then a u ficient condition for hypothesis (Hi) is:

t+T
&mlll> $+ 4a [+~

L2
max (llu2112m , llv2112mds] $ . (4.17)

t L L

We will further ●laborate on (4.17). But we fir-t verify Hypothesis (Hz) and
(H3) from the generalized Gronwall’s Lema. To ‘erify (H2), notice that
(4,14) implies by the C~uchy-Young inequality:

t+T

+ St Am(a) d- ~ 2~m(t) - 2 ~~m(t)+ - ~m(t) - IZim R(u,v)2 ; (4.18)
t+m

tire(t) 24 p2 (4.19)

12



which is implied by (4.16) ●nd (4.17). To verify (H3), remember thst R(u, v)
and llA~ll are uniformly bounded in time (cf. , Section 3); moreove:,
I!pm(t)ll + O from the very hypothesis of theorem 4.4.

We now further explicit the remaining sufficient condition (4.17).
(Lema 2.1), namely tkat

Using

:(t) = ;(0) ,

the continuous injection of Hi(0) into L=(fl) can be eharpened ●s:

Ilull : X IIVUIIL2 + G(O) -
Lm

Then:

(4.20)

(
t+T

+ St max (llu2112m

)

, llV21[2m ds $
L L

where we h~ve used Theorem 2.3, i.e., ~
t-

L large ●nough, (4.17) is ●quivalent to:

!&!$.t - Ct(a,P,uo,vo) L ,

L-

(di F(vo) + ~(0))2) , (4.21)

lVu(t)ll ~F(uo). Then form and

(4,22a)

m + 1 - Ct(a,~,~o) L3’2 , (4.22b)

where we have taken both IIVU(0) II ●nd IIVV(0) II < co. D
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