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THE THREE-DIMENSIONAL HYDRODYNAMIC HOT-SPOT

by

Charles L. Mader
Los Alamos National Laboratory

Los Alamos, New Mexico 87545 (USA)

ABSTRACT

The basic processes in the shock initiation of
heterogeneous explosives have been investigated theo-
reticallv using a model cf a cube of nitromethane con-
taining 91 cubic air holes. The interaction of a shock
wave with a single air hole and a matrix of air holes in
PETN, HMX, and TATB has been numerically modeled. The
interaction of a shock wave with the density discontinui-
ties, the resulting hot-spot formation and interaction,
and the buildup to propagating detonation were computed
using three-dimensional numerical Eulerian hydrodynamics
with Arrhenius chemi:al reaction and accurate equations
of state according to the hydrodynamic hot-spot model.
The basic processes in the desensitization of a hetero-
geneous explosive by preshocking with a shouck pressure
too low to cause propagating detonation was numerically
modeled. The basic differences between siock sensitive
explosives such as PETN or HMX and shock insensitive
explosives such as TATB or NQ may be described using the
hydrodynamic hot-spot merel.

I. INTRODUCTION

The hydrodynamic stability of one-dimensional detonutions in an
1deal gas of constant heat capacity undergoing an exothermic, irve-
versible, unimolecular reaction with an Arrheuinus-law temperaturc
dependence has been studied analytically by Erpenbe\'k.1 The analysisn
gives no informntion about the neture of the time-dependent behavior
of the flow for finite perturbations (the stability) of the ideal gas
reaction zone using a one-dimensional characteristic method. In thowe

cases for which Erpenocck's linearized analysis has shown the steady-



state solution to be unstable to infinitesimal lc:gitudinal perturba-
tions, flows started in a configuration approximating the steady-state
solution exhibited nondecaying oscillations; in those cases for which
Erpenbeck’'s analysis showed the steady-state solution to be stable,
perturbations were found to decay.

In Ref. 3 we described the results of our studies of the time-
dependent behavior of the flow (the stability) of the ideal gas,
nitromethane, and liquid TNT reaction Zzones to finite longitudinal and
transverse perturbations using finite difference methods to solve the
reactive Navier-Stohes equations of fluid dynamics. We also described
the time-dependent behavior of the flow of stable overdriven nitrome-
thane detonations formed by pistons of various configuration.

The constant velocity piston calculations with a resolved reac-
tion zone show details of the process of shock initiation of nitrome-
thane. The basic features are identical to those of the flow computed
with an unresolved reaction zone.a The shocked nitromethane first
completely decomposes at the piston and achicves a detonat“on with a
peak pressure that builds up toward the C-J pressure of the high
density shocked nitromethane. The detonation overtakes the shock wave
and the pressure at the end of the ceaction zone decays toward the
piston pressure.

If one introduces gas bubbles or grit into a hnmogeneous explo-
sive such as a liquid or a single crystal, thereby prodicing a hetero-
geneous explosive, the minimum shock pressure necessary to initiate
propagating detonation can be decreased by one order of magnitude.

Heterogeneous expiosives, such as PBX-9404 or PBX-9502, show a
different behavior than homogeneous explosives when propagating along
confining curfaces. A heterogeneous explosive caa turn sharp corners
and propagate outward, and depending upon its sensitivity, it may show
either very little or much curvature when propagating along a metal
surface. The mechanism of initiation for heterogencous explosives is
different thau the simple Ar-henius kinetic model 1ound adequate for
homogeneous explosives. Heterogeneous explosives are initiated and
may propagate by the process of shock interaction with density discon-
tinuities such as voids. Thene inlLeractions result in hot regicas

that decompose and produce incrcasing pressures that cause more and



hotter decomposing regions. The shock wave increases in strength,
releasing more and more energy, unless it becomes strong enough that
all oi the explosive reacts and detonation begins.

This process is described by the "hydrodynamic hot-spot model,
which models the hot-spot formation from the shock interactions that
occur at density discontinuities and describes the decomposition using
the Arrhenius rate law and the temperature from the HOM equation of
state.5

The numerical modeling of the interaction of a shock wave with a
single density discontinuity was reported in Ref. 5 where an 8.5-Gpa
shock interacting with a single spherical holc in nitromethane was
studied. The study was extended to four rectangular holes5 where it
was determined that a 0.0032-mm-racdius cylindrical void would initiate
propagating detonatien and a 0.001-mm-radius void would form a hot
spot which failed to propagate because of rarefactions cooling the
reactive wave,

We have studied the buildup of an 8.5-GPa shock wave in nitrome-
thane as it interacts with 91 cubes, 0.002 mm or 0.0004 mm on a side.
The: cubes simulate a random spacing.

It has been observed that preshocking a heterogeneous explosive
with a shock pressure too low to cause propagating detonation in the
time of interest can cause a propagating detonation in unshocked
explosive to fail to continue propagating when the detonation front
arrives at the previously shocked explosive. For explosives that nave
been previously shocked, it has been experimentally observed6 that the
distance of run to detonation for several multiple-shocked explosives
is determined primarily by the distance after the second shock has
overtaken the lower pressure shock wave (the preshock). In this stady
we examine the basic process in the desensitization of heterogenecous
explosives by preshocking.

When a shock wave interacts with a hole, a hot spot with tempera-
tures s~veral hundred degrees hotter than the surrounding explosive is
formed in the region above the holc when it is collapsed by the shock
wave. The hot region decomposes and contributes cenergy to the shock

wave, which has been degraded by the hole interaction.



Whether this energy is sufficient to compensate for the loss from
the hole interaction depends upon the magnitude of the initial shock
wave, the hole size, and the interaction with the flow from nearest
neighbor hot spots. The objective of the study was to investigate the
nature of this complicated interaction and to determine if the hydro-
dynamic hot-spot model was adequate to describe the experimentally
observed sensitivity to shock initiation of the haterogeneous explo-
sives PETN, HMX, TATB, and Nitroguanidine with PETN being the most

sensitive and Nitroguadine the least sensitive.

I1I. NUMERICAL MODELING

The three-dimensional Eulerian reactive hydrodynamic code 3DE is
described in Ref. 7. It uses techniques identical to those described
in detail in Ref. 5 and used sucéessfully for describing two-
dimensional Eulerian flow with mixed cells and multicomponent equa-
tions of state, and for modeling reactive flow.

The three-dimensional code has been used to study the interaction
of two, three, and five colliding, diverging spherical detonation
waves in PBX-9404. As described in Ref. 8, the size and magnitude of
the high-pressure double, triplz, quadruple, and quintruple interac-
tions depend upon the number and relative location of the initiators.
The initiation of propagating detoration in the insensitive explosive
PBX-9502 by triple shock wave interaction resulting from three initia-
tors has also been studied. The reactive hydrodynamics of a matrix of
tungsten particles in HMX was described in Fef. 9.

The Arrhenius reactive rate law was used with the constants
determined experimentally by Raymond N. Rogers and described in Refs.
5, 6, and 10.

The HOM equation of state constants used for nitromethane and
PETN are described in Ref. 5. The BKW detonation product and the
solid equation of state constants used in the HOM equation of state
for HMX, TATB, and Nitroguanidine (NQ) are piven in Ref. 10,

A coustant velocity piston was applied to the botiLom of the
explosive cube, shocking the explosive initially to the desired pres-

sure.



III. NITROMETHANE NUMERiCAL RESULTS

To determine the effect of numerical resolution on critical
details of the hot-spot temperature gradients, calculations were
performed with various resolution for the interaction of an 8.5-GPa
shock in nitromethane with a single 0.002-mm cubical hole. The re-
sults were compared with the two-dimensional calculations for a
0.002-mm cylindrical hole described in Ref. 5. Similar results were
obtained for the cubical hole resolved with 5, 4, and 3 cells along a
side or 125, 64, and 27 cells per hole. However, two cells along a
side or eight cells per hole resulted in the temperature gradient of
the hot spot being too smeared. Because the calculations were long
and expensive, we wished to use the lowest resolution possible to
study the basic processes involved. It was determined6 that in-
creasing the frequency factor would compensate for the effects of low
resolution of the hot spo%, so most of the calculations were performed
with low resolution and the compensating frequency factor. During the
total time of interest in the calculation, the bulk of the nitro-
methane is essentially undecomposed and the pressure remains constant
behind the shock wave in the unperturbed regions of the flow.

The interaction of an 8.5-GPa shock Jn a 0.028-mm cube of nitro-
methane with ninety-one 0.002-mm cubical holes (Fig. 1) and chemical
reaction is shown in Fig. 2. The shock interacts with the first layer
of holes causing hot spots upon clnosure of the holes, which decompose
but do not result in propagating detonation in the remainder of the
nitromethane. The decomposition enbances the shock wave so that, upon
interaction with upper voids, hotter and larger hot spouts are formed
and result in shocks sufficiently strong to build toward propagating
detonation. Similar results were obtained from a high resolution
calculation of this problem.

The interaction of an 8.5-GPa shuck in a 0.0056-mm cube of nitro-
methane with ninety-one 0.0004-mm cubical holes and chemical reaction
is shown in Fig. 3. The problem is identical to that of Fig. 2,
except scaled by 0.2.

The hot spots form, but are so small Lhat they are quickly cooled

by the side and rear rarefactions before they can decompose enough to



significantly enhance the shock wave. The hot spots continue to react
slowly and keep the pressure behind the shock front from decaying.
This slow decomposition was observed5 in the shock initiation of
heterogeneous explosives when an explosive continued to decompose
behind the shock front and even after the shock wave passed through a
slab of explosive toc thin to build to propagating detonation.

The interaction of a 5.5-GPa, 1.72-g/cm3, shock generated by a
constant velocity piston moving at 1.29 mm/ps in a 0.028-mm cube of
nitromethane with ninety-one 0.002-mm cubical holes and chemical
reaction is shown in Fig. 4. The resulting hot spots are too cool
(less than 900 K) to cause appreciable decomposition before the side
and rear rarefactions further reduce the temperature of the hot spot.

The interaction of a 5.5-GPa shock for 0.0016 ps followed by an
8.5-GPa shock in a 0.028-mm cube of nitromethane with ninety-one
0.002-mm cubical holes is shown in Fig. 5. The 5.5-GPa shock wave
closes the holes and makes low-temperature hot spots, which result in
very little decomposition of the explosive. The following 8.5-GPa
shock wave does not have holes with which to interact. The precom-
pressed nitromethane resembles a homogeneous explosive with the second
shock causing only some additional bulk shock heating. The multiple
shocking also results in a lower nitromethane shock temperature than
if it had been singly shocked to 8.5 GPa.

When the 8.5-GPa shock wave catches up with the 5.5-GPa shock
wave, it then interacts with the remaining holes, forming hot cpots
which ‘lecompose and snpport the shock wave growth building toward a
propagating detonation. This models the experimentally observed
behavior of the distance of run to detonation for multiple shocked
explosives being determined primarily by the distance after the second

shock has overtaken the preshock.

IV. MHMX, PETN, TATB, AND NQ NUMERICAL RESULTS

To initiate PBX-2404 (HMX-based explosive) or PBX-9502 (TATB-
based explosive) at maximum pressed density within 4 mm of shock run
requires a shock wave in PBX-9404 of 5 GFa and in PBX-9502 of 16 GPa

as determined from the experimental Pop plot.s.11



To initiate PETN at 1.75 g/cm3 (cryvstal density is 1.778) within
4 mm of shock run requires a pressure of only 2 GPa, while to initiate
Nitroguanidine at 1.723 g/cm3 (crystal density is 1.774) within 4 mm
of shock run requires a pressure of 25 GPa.11

The hole size present in such pressed explosives varies from
holes of 20 to 600 A in the TATB crystals to holes as large as 0.5 mm
in the explosive-binder matrix. Most of the holes vary in size from
0.05 to 0.005 mm in diameter, so we examined holes in that range of
diameters.

As shown in Ref. 5, the hot formed when a shock wave interacts
with a spherical hole scales with the radius of the hole as long as no
chemical reaction occurs. Using hot-spot temperatures in the calcula-
ted range of 700 to 1300 K and calculating the adiabatic explosion
shown in Table I. The ordering is identical to that observed experi-
mentall-,

The interaction of shock waves of various pressures with single
cubical air holes of various sizes in PETN, HMX, TATB, and NQ was
investigated. The calculations model the hot-spot explosion and
failure to propagate because of rarefactions cooling the reactive
wave. If the reaction becomes too fast to numerically resolve the

cooling by rarefactions, the flow builds towarc a detoration too

quickly,
TABLE 1. Adiabatic Explosion Times
Hot-Spot Temperature

Explosive 700 K 1000 K 1300 K
Nitroguanidine 5504 ps 124 ps 18.47 ps
TATB 1290 ps 6 x 1072 ps 1 x 107> ps
HMX 5.26 ps 1x 1074 ps 5 x 1077 ps
PETN 0.08 ps 7 x 107 ps 5 x 1078 ps

A summary of the results of the study is shown in Table II. The
ordering of shock sensitivity of the explosives is again observed

experimentally correlating well with the observed Pop plot data.11



TABLE II.

Single Cubical Air-Hole Study

Explosive

HMX

TATB

PETN

Nitroguanidine

Air

Cube Size
(mm)

Pressure
(GPa)

2.

5.

12.

15.

25.

25.

5

0

Result

Fails to build toward a detonation
Fails to build toward a detonation
Builds toward a detonation

Fails to build toward a detonation
Marginal

Builds toward a detonation

Fails
Fails
Builds toward a detomation

Fails

Builds toward a detonation

Builds toward a detomnation

Fails

Builds toward a detonation




To evaluate the sensitivity to shock more realistically, we stud-
ied the interaction of a 5-GPa shock wave in HMX with a matrix of
spherical holes of 4 x 10-3-mm diameter. The void fraction is 10%.
While a single hole fails to build toward a detonation as shown in
Fig. 6, the matrix of holes builds toward a detonation as shown in
Fig. 7. The experimental run to detonation for a 5-GPa shock wave in
1.71 g/cm3 HMX is 0.17 cm. While a propagating detonation would not
be expected to occur experimentally in this geometry (the computed
detonation is the result of insufficient numerical resolution to
resolve the reaction at high pressures and temperature), the enhance-
ment of the shock wave would occur.

The interaction of a 12.5-GPa shock wave in TATB with a single

(2

spherical hole of 4 x 10 “-mm diameter is shown in Fig. 8. It fails
to build toward a detonation. The interaction of a 12.5-GPa shock
wave in TATB with a matrix of spherical holes of 4 x 10-3-mm diameter
with a void fraction of 1:0% is shown in Fig. 9. The flow builds
toward a detonation. The experimental run to detonation for a
12.5-GPa shock wave in 1.71 g/cm3 TATB is 0.30 cm. The computed
detonation occurs too quickly because of insufficieat numerical re-
solution when the shock wave is enhanced tc high encugh pressures and
temperatures by the interacting hot spots.

The interaction of a 2.0-GPa shock wave in PETN with a single
spherical hole of 4 x 10-3-mm diameter is shown in Fig. 10. Build up
toward a detonation did not occur. The interaction of a 2.0-GPa shock
wave in PETN with a matrix of spherical holes of 4 x 10-3-mm diameter
with a void fraction of 10% is shown in Fig. 11. The flow builds
towards a detonation after the hot spots interact. The computad
detonation in this geometry is a result of insufficient numerical
resolution at high decomposition rates. The experimental run to
detonation for a 2.0-GPa shock wave in 1.60 g/cm3 PETN is 0.20 cm.

The experimental run to detonation values are about the same for

a 12.5-GPa shock wave interacting with TATB with 10% voids, for a

[, ]

.0-GPa shock wave interacting with HMX with 10% voids, and for a

N

.0 GPa shcck wave interacting with PETN with 10% voids.
The computational grid contained 24 x 22 by 36 cells, each

<

1 x 10 ” mm on a side. The 36 air holes were described by 4 cells per



sphere diameter. Numerical tests with 2 to 6 cells per sphere dia-
meter showed the results were independent of grid size for more than 3
cells per sphere diameter. The air holes were located on a hexagonal
close-packed lattice (HCP). The vclosest distance for the HCP .trix
between holes was 3.8 x 10.3 mm. The time step was 1.0 x 70—5 Us .
I1I. CONCLUSIONS

The hydrodynamic hot-spot model describes the basic difference
between shock sensitive and shock insensitive explosives. The inter-
action of a shock wave with air holes in PETN, HMX, TATB, and NQ, the
resulting hot-spot formation, interaction, and the build up toward
detonation or failure have been modeled. Increased hole size results
in larger hot spots that decompose more of the explosive and add their
energy to the shock wave and result in increased sensitivity of the
explosive to shock. Increased number of holes also causes more hot
spots that decompose more explosive and increase the sensitivity of
the explosive to shock. The interaction between hole size and number
of holes is complicated and requires numerical modeling for adequate
evaluation of specific cases. The hole size can become sufficiently
small (the critical hole size) that the hot spot is cooled by side
rarefactions before appreciable decomposition can occur. Since in-
creasing the number of holes while holding the percentage of voids
present constant results in smaller holes, we have competing processes
that may result in either a more or less shock sensitive explosive.
If the hole size is below the critical hole size, then the explcsive
will become less sensitive with increasirj number cf Loles of decreas-
ing diameter.

To evaluale the potential shock sensitivity of an explosive for
engineering purpos?s, one needs to determine experimentally the
Arrhenius constants. One then calculates the adiabatic explosion
times for several assumed hot-spot temperatures to determine the
relative sensitivity of “he explosive compared with explosives of
known sensitivity. A more detailed evaluation can he obtained from
calculations using the hydrodynamic hot-spot model.

The process of shock initiation of he“erogeneous explosives has

also been investigated numerically by studying the interaction of

10



shock waves with a cube of nitromethane with 91 holes. An 8.5-GPa
shock interacting with 0.002-mm holes d d build toward a propagating
detonation. The enhancement of the shock wave by the chemical reac-
tion resulting from the hot spots caused by the shock interaction with
the first layer of holes resulted in hotter and larger hot spots on
each subsequent interaction until the shock wave became strong encugh
to build toward a propagating detonation. Reducing the size of the
holes to 0.0004 mm resultea in a sufficient amount of the expiosive
Jecomposing to compensate for the loss in energy to the flow ~aused by
the interaction of the shock wave with the holes. The shock wave
slowly grew stronger.

A t£.5-GPa shock wave resulted in insufficient heating of the
resulting hot spots to cause significant decompcsition.

The basic process ~f desensitization by preshockiug irn a result
of the holes being closed by the low-pressure initial shock wave
withoui resulting in appreciable explosive decomposition. The higher
pressure shock that a.rives later does not have holes with which to
interact and behaves 1like a shock wave in a homogeneous explosive
until it catches up with the lower pressure preshock wave.

The basic processes in the slock initiation of heterogeneous
explosives have been numerically modeled in three dimensions using the
hydrodynamic hot-spot model. The interaction of a shock wave with
density discontinvities, the resulting hect-spot formation and inter-

action, and the buildup toward propagating detonation or failure have

been modeled.

1
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Fig.

1

The initia) configuration of 91 cubical air holes in a cube of
nitromethane.
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The cross sections for the 12th cell in the Xx-direction for the

interaction of an 8.5-GPa shock in a 0.028-mm cube of nitromethane

with ninety-one 0.002-mm cubical holes.
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Fig. 9. A matrix of 10% air holes in TATR. The spherical air holes have a
diameter of 4 x 1072 mm. The initial shock pressure is 12.5 GPa.
The density and mass fraction contours are shown for a cross section
through the center of the matrix. The flow builds toward- s detona-
tion.
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10. A 4 x 1073-mm diameter spherical air hole in PETN. The initial shock

pressure is 2.0 GPa. The density and burn [raction cross sections
through the center of the hole are shown at various times. The flow
dovs not build toward a detonatjion.
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Fig.

11. A matrix of 10% air holes in PETN. The spherical air holes have a
diameter of 4 x 10 3 m- The initial shock pressure is 2.0 CPa. The
density and mass fracticn contovr. are shown for a cross section
through the center of the matrix. The flow builds toward a detouna-
tion.
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