CONY T3 T T
LA-UR -84-2335
LA-UR--84=-2335

DEg84 015515

Los Alsmos Nshional Laborsiory 1s Operaied by the Universily of Canfornia for the United Stales Departmeni of Energy under coniraci W-74G5-ENG-36

TITLE CONFIGURATION MANAGEMENT FOR MISSION-CRITICAL SOFTWARE:
THE LOS ALAMOS SOLUTION

AUTHOR(S) G. Cort and D. M. Barrus

SUBMITTED TO Softool Users Group Meeting, Santa Barbara, CA,
September 10, 1984.

DISCLAIMER

‘This report was prepared as an account of work sponsored by an agoncy of the United States
Government. Noither the Uniteu States GGovernment nor any agency thereof, notr any of their
omployeces. makes any warranty, oxpress or implied, or asnmes any iegal liability or responsl-
biity for the accuracy, completencss, or usefuiness of any information, apparatus, product, or
praceas disclosed, or represents that its use would not infringe privately owned rights. Refer-
onoo herein to any apecific commercial product, process, or service by trade name, trademark,
mancfacturer, or otherwise dnes not nccessarily constitute or imply its endorsement, roconi-
mendation, or favoring hy the United States Clovernment ur any agency thereof. The views
and opinions of authors expressed herein do not necemsarily state or reflect those of the
United States Government or any agency thereof.

By acceplance ol It arhicls ihe publisher recognizes Ihai the U S Gove: "meni relaing a nonexclusive roysily-free license 1o publish or reproducs
ihe publighed lorm ol 1h conibulion o 1o allow others 1o o 8o for US Qovernmeni p.iposes

The Los Alamos Natronar Lahoralory requests thal the publisher ideniily this arlicle a8 work performed under the auspices of the U S Depariment ol Energy

T Y O A 11 RN T ‘fyvtﬂﬁb
(@ LosAlamos National Laborat
L@S A @m@)@ LosAIamos.Nev'v M%xi?:ooergsoz%

FOAM NO 838 R4
81 NO NI S/

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Confilguration Management for Mission-Critical Software:
the Los Alamos Solution®*

G. Cort and D. M. Barrus
Los Alamos Natlonal Laboratory
Los Alamos, New Mexico 87545

Introdﬁction

A3 has been the case ror most of the disciplines of software engilneer-
ing, the evolution of the principles of software configuration
management has been driven malnly by the requirements of large-scale
software development projects. Although this situation has resulted
in very effective anc efficlent strategles for managing these glant
projects, the very different needs of small or intermedliate sized
projects have been largely ignored. Thls has served effectively to
deny both the immediate and the long term beneflts of software en-
glneering 1n general, and software conflguration management 1in
particular, to the majority of sof'tware development projects. Far
more serlous 1s the dangerous attlitude fostered by the large scale
approach to these very important disciplines, namely that the tech-
niques of software engineering and configuretiorn management cen only
oe cost-effective when appllied on a grand scale.

In this paper we present our experlences as a small group responsible
for the development of a moderately large real-time data acquisition
system. Durling the early stages of our project we recognized the need
for a rigorous software configuration management system to support our
development and malntenance actlvitles. Thils paper descrlbes our
approach to the utlilization of the Softool Change and Configuration
Control (CCC) anvironment. The steps that we have taken to develop a
very powerful development/configuration management environment
(incorporating CCC) are outlined and Jjustified. The extension of the
Los Alamos system to management of large-scale projects 1s discussed.

Project Organization

In order to establish the requlirements and operational constraints
which led to the development of the Los Alamos system, a brilef
description of our facllity and the organization of our project 1s
appropriate. The Los Alamos Weapons Neutron Research Facility (WNR)
1s a world-class neutron scattering installatlion devoted to baslc
reseuarch in physics, chemistry, materials sclence and blology.
Operating in conjunction with the 800 MeV linear accelerator at the
Los Alamos Meson Physics Facllity (LAMPF) the facility supports an
expandir.g, international user community. A major facllity upgrade
currently being implemented will significantly enhance present
capabilitics and will tiransform WNR into one of the world's premiere
neutron scattering centers.

The same upgrade, however, wlll render the existing real-time data
acqulisition system obsolete. Its replacement, which 1s currently
under development by the Computer Sectlon of the WNR Operations Group,
will ultimately consist of a network of 8-12 computers of the VAX
11/750 class each hosting the VMS operating system. Each computer
Will be dedicated to acquiring data from a single spectrometer. To

accomplish thils task, each computer wlll execute ldentical data ac-
qulisition sof'tware.

The projected slze of the software system belng developed to meet the
data acquilsition requirements of the new facllity 1s approximately
150 K executable lines. The programming language chosen for the
project 1s an extended version of Pascal. Rellable operation of this
system 1s essentlal as software fallures can result 1n total disrup-
tion of the operation of the facllity. Because of the great expense
incurred 1in producing the neutron beam, and the high demard by users
for access to the facility, the economic, political and sclentific
consequences of a system fallure can be qulite serlous. Because of the
sheer slze of the project, the complexlty of the software belng
developed, and the mission-critical nature of the system, 1t was
declded during the early stages of the project to employ a rigorous
software englneering approach, including the incorporation of strin-
gent software configuration management.

In addltion to the basic hardware and software facllity characteris-
tics presented above, the organization and structure of the software
development gtaff 1s extremely important 1n determinling the level and
mode of configuration manerement appropriate for the project. Our
organization consists of three very senlor staff members with full-
time responsibility for software design and implementation. In
addition, we have avallable the equlivelent of approximately two full-
time people to support the development effort. These individuals
range In experlence from very senlor staff members with partial
responsibllity for softwuare to Jjunlor programmers and data analysts.

The project management structure 13 also quite different from that
associated with most large-scale development efforts. The small staff
attachied to the project does not warrant the multilayered, highly
stratifled management structure limposed on laurge development projects.
Indecd, a single manager oversees the entire software devclopment
offort. Heavy rellance on the experience and judgement of the
vof'tware staftf further reduces management visiblility to a minimal
lirvel.,

Advantages of the CCC Environment

Arter evnluating various commercial configuration management systems,
we chose the CCC as tihe tool best fltted to support our configuration
managemens effort. The CCC environment can provide virtually un-
brcachable sccurity fcr system sources (and documentation), thereby
eliminuting the posaibillity of inadvertent or unauthorlzed modifica-
tion of any of these key system components. Thls capubllity 1s of
particular importance in a highly volatile development environment
such as ours: one in which every programmer has access to system

management resources and therefcre 1s potentlially capable of bypassing
all file protections established by the operating system.

The CCC environment also provides us with a comprehensive, automated
verslion control system, a feature that 1s essential to the conduct of
an effective confilguration accounting effort. This feature gives us
the capabllity to define the preclse configuration of any software
component of the data acqulislition system. 1In addition, 1t provides
for fallback configurations that can be utillized in the event of a
serious fallure of a primary software component, thus allcwing the
data acquisition task to continue (though possibly with reduced
capabllity) while the primary component 1s under repair.

The almost unlimited extent to which the CCC macro facllity allows the
configuration management environment to be automated 1s another ex-
tremely valuable feature. Thils capabllity 1s particularly attractive
within the context of our project for which the relatively small size
of the technlical staff demands that the overhead assoclated with
support functions (such as configuration managemen:) be kept to an
absolute minimum. The 1intrcduction of automated procedures into the
environment not only decreases the time spent on configuration manage-
ment functlons, but also significantly enhances the accuracy and
rellabllity of all transactions.

Finally, the capabllity to minimize the slze of the conflguretlion data
base by defining global text structures for parent conflgurations
provides an effective mechanism for conserving precious disk
resources. This allows many generatlions of each software component to
be maintalned 1n the data base without duplilcating razdundant informa-
tion, thereby eliminating the necessity of restoring a previous
version from secondary storage 1n the event of a maintenanne
emergency. This feature significantly enhances the abllity of the
conflguration management staff to react to emergency situations as
they arlse.

The Need for an Extended Environment

Although we recognize the CCC environment as an extremely powerfuy
tool to support confipuration management activities, 1t 1s our posi-
tion that the conventional methodologles for utilizing this tool are
not adequate to meet the needs of a small software development projecct
such as ours. At the extreme of maxim:m CCC ucllization, the
methodology requires that every development and malntenance programmer
work entirely within the confines of the CCC data base, using CCC
commaids and the CCC editor to accomplish all programming and main-
tenance activities. At the opposlte extreme, programming and
meintenance staff do not interact with the CCC data base, hut instead
conduct thelr programming activities externally. A manager 1s then
responsible for copying all work from the users' environments into the
CCC data base At regular intervals. The deficiencles of these
methodologlies ure discussed below.

The policy of maximum CCC utilization allows management to exercise a
high level of visibllity throughout the development process, and

management resources and therefore 1s potentlally capable of bypassing
all llle protections established by the operating system.

The CCC environment also provides us with a comprehensive, automated
verslion control system, a feature that 1s essentlal to the conduct of
an effective configuration accounting effort. This feature gives us
the capabllity to define the precilse configuration of any software
component of the data acquisition system. In addition, 1t provides
for fallback confilgurations that can be utilized in the event of a
serious fallure of a primary software component, thus allowing the
data acquisition task to continue (though possibly with reduced
capability) while the primary component 1is under repair.

The almost unlimited extent to which the CCC macro facllity allows the
configuration management environment to be automated 1s another ex-
tremely valuable feature. This capabllity 1s particularly attractive
within the context of our project for which the relatively small size
of the technlcal staff demands that the overhead assoclated with
support functions (such as configuration maragement) be kept to an
absolute minimum. The introduction of autometed procedures into the
environment not only decreases the time spent on configuration manage-
ment functlons, but significantly enhances the accuracy and
rellabllity of all transactlons.

Finally, the capabllity to minimlze the slze of the configur~tion data
base by defining global text structures for parent confilgurations
provides an effective mechanism for conserving precious disk
resources. This allows many generatlions of each software component to
be malntalned 1n the data base wlthout duplicating redundant informa-
tion, thereby eliminating the necesslty of restoring a previous
verslon from secondary storage 1n the event of a malntenance
emergency. This feature significantly enhances the abllity of the
conflguration management staff to react to emergency situatlions as
they arise.

The Need for en Extended Environment

Although we recognize the CCC environment as an extremely powerful
tool to support configuration management activities, 1t 1s our posi-
tion that the conventlional methodologles for utillizing this tool are
not adequate to meet the needs of a small software development project
such as ours. At the extreme of maximum CCC utilization, the
methodology requires that every development and maintenance programmer
work entirely within the confines of the CCC data base, using CCC
commands and the CCC edlitor to accomplish all programming and main-
tenance activities. At the opposite extreme, programming and
maintenance staff do not lnteract with the CCC data base, but instead
conduct thelr programming activitlies externally. A manager 1s then
responsible for copylng all work from the users' environments into the
CCC data base at regular intervals. The deficlencles of these
methodologles are discussed below.

The policy »f maximum CCC utllization allows managemcnt to exerclse a
high level of visibillity throughout the development process, anrd

provides the capabllity to 1dentify software verslon changes with an
extremely fine time resolution. Unfortunately, this approach also
imposes severe overheads on both configuration management and develop-
ment personnel. The most severe management overhead derives from the
necessity for the data base adminlstrator to define and maintain
access control information for every CCC user. This problem is fur-
ther complicated by the extremely volatile development environment
that 1s often assoclated with small projects: users' access control
information may require modification on a dally or even hourly baslis.
Add in a constraint that requires all malntenance operations to be
performed in a modular fashion (programmers are allowed access to
only those modules of a software component that actually require
modification) and the process of maintaining access control informa-
tion becomes increasingly error-prone and time intensive. It should
be noted that this activity cannot be extensively automated, so there
1s 1little hope of reducling these overheads through the use of the CCC
macro facllity.

Also, the maximum utllization strategy 1imposes 1ntolerable overheads
on the technical staff. The effectlive relocation of the development
environment to within the confines of the CCC data base has the 1im-
medlate consequence of making standard development tools (compllers,
linkers, etc.) as well as locally deveioped automated software support
tools 1naccesslible to the developer. As a result, what should be a
simple complle-link procedure becomes tedious, time consuming, multi-
step operation 1nvolving exportation of the appropriate modules from
the data base, performance of compllation and link steps in the host
operating system environment, and importation of the sou 'ce modules
back 1nto the data base. In additlion to the direct deleterlous ef-
fects upon developer productivity, the impocltlion of such overheads
can foster resentment and can result in serious erosion of morale
within the technical staff. To support a modular maintenance effort
within thls environment becomes even more difricult, requiring a
significantly increased level of particlipation by the data base
administrator.

Additional unacceptable overheads are also charactzristic of the
maximum uvilizatlon implementation. Developers are requlired to become
proficlient with new software interfaces 1n order to operate within the
CCC data base. In some cases these new interfaces may he percelved as
less effective than tonls that exist at the operating system level
(for instance, programmers resiat abandoning the versatile, full-
screen VMS EDT editor for the less powerful, line-oriented CCC
editor). Additionally, responsc times deteriorate rapidly as more
users are forced to access the data base simultaneously. Coupled with
the ecxtra response time overhead 1ntroduced by a policy of archiving
incremeontal changes for most recent versions, these delays can
sericusly degrade development productivity.

'he minimum utilizavion methodology also presents serious problems as
a configuration management implementation strategy. Although access
control, tnol accessibllity and response time overheads are largely
eliminated »y this approach, significant new management overheads are
introduced. Foremost among these 1s the Increased effort required to
eXxport modules !'rom the CCC data base for malntenance, especlally in a

modular maintenance environment. When used 1n this mode, the CCC
environment seems to be reduced to an extremely sophisticated (and
ezpensive) backup utility.

Both methodologles seem to allow the CCC data base to become cluttered
with uncertified intermedlate software versions. Thils generally
results 1n rapld increase in data base size and dzcreased intervals
between data base malntenance and backup activitlies. Almost regard-
less of the time resolution assoclated witn the the smallest increment
of change, the benefits to be galned by saving uncertified versilons in
the data “ase are offset by the increased maintenance burden placed on
the data base administrator.

In short, theire seems to be a basic incompatibllity between environ-
ments that promote a strong development effort (the VMS operating
system environment, for example) and those, such as CCC, that support
rigorous, automated configuration management activities. Environments
in which developers thrive present severe difficulties for configura-
tion management personnel. The converse also appears to be true.
Conventional approaches to the resolution of these problems generally
force one of these groups to work within an lnadequate environment in
order to preserve the effectiveness of the other group. In worst case
sltuations, each group 1s forced to endure a compromise solution in
which both partlies sacrifice significant capabllities and no one 1is
satisfled. The Los Alemos approach, however, 1s to define a new
methodology that completely 1solates development activities from the
configuration management effort, thereby allowing the full power of
each environment to be explolted to 1ts fullest. The unique feature
of this strategy 1s the provislion of an interface between the two
environments that allows for automated interaction between them, and
act'tally melds them into a single, comprehensive hybrid environment
for software development and configuration management.

The Hybrid Environment: Speciflcations

Within tne context of our project, the following propertles were
ldentified as required features of the hybrld environment uand 1ts
assoclated configuration manugement methodology:

User erclusion from the CCC data base. All development/maintenance
activities must be conducted within the VMS host operating system
environment. This requirement was spgeciflied in order to elimlnate the
management and develcper overheads assoclated with CCC data base
transactions and maintenance. Only the CCC data base administrator 1s
permitted access to the data base.

Only certified software 1s maintalned uinder configuration control.
Only soltware that has b. :nn reviewed and passed by the racllity
Configuration Control Board (CCB) 1s accepted into the configuration
management environment. Llkewlse, specliic approval of the CCB 1s
required before any software 1s released from configuration cuntrol
(by transfer to the development environment). All uncertified
software versiors (generally intermedliate versions of modules undergo-
ing maintenance or development) remain in the develcpment environment.

Relliance 1s placed upon ordinary facllity software backup procedures
to provide adequate capabllity for reconstruction of modules in the
development environment.

The hybrid environment must impose no additional overheads upon the

develcper. All configuration management tasks must be the exclusive
responsibility of configuration management personnel. In addition,

there must be no degradation 1n system response attributable to the

hybrid environment.

The hybrid environment must support.the automation of virtually every
configuration management task. Because the configuration management
staff 1s responsible for all aspects of the conflguratlion management
effort, and because these staff members generally have significant
development responcsibilities as -well, automated procedures must be
avallable to reduce the effort and increase the reliability of all
configuration management transactions.

The Hybrid Environment: Implementation

The hybrid environment 1s comprised of a development environment and a
configuration management environment, each of which 1s strictly iso-
lated from the other. The development environment conslists of the VMS
operating system utilized in the conventlional manner and partitioned
into the usual user accounts and directorlies. All activities that
take piace within the development environment are the exclusive
responcibllity of the software developer and are not monitored or
influenced in any manner by the configuration management staff.

The configuration management environment consists of a Conflguration
Data Base (CDB) and automated procedures (VMS command files and CCC
macros) to operate on CDB elements. The configuration management
staff 1s responsible for performing all operations on the CDB.

The organization of the CDB reflects our operational requirement that
modules be malntalned at different levels of configuration control
depending on the function, utllization and current change processing
status of a module. To meet this requirement, the CDB is divided 1into
a Class 1 and a Class 2 partition. The Class 1 partition consists of
the CCC data base and 1s intended to hold modules for which access
must be restricted to co.liguration management personnel only. Source
code, user's documentation and test results are examples of modules
that must be maintalned under Class 1 conflguration management. The
Class 1 partition 1s organized such that each constltuent CCC SYSTEM
structure 1s devoted to a different data acquisition subsystem
(primary commands, tools, utilities), and each CONFIGURATION structure
subordinate to a given SYSTEM represents a unique verslon of one of
the computer programs that comprise the subsystem. MODULE structures
are used to functionally subdivide each version into user's documenta-
tion, source code and test report categorler. Subordinate TEXT
structures comprise the constituenta of each category. Only the CCC
data base admlnistrator 1s authorized to access structures that reside
within the Class 1 partition.

The Class 2 partitlon consists of a hierarchy of protected VMS direc-
tories that contaln software modules that must be accessed on an on-
demand basls by data acquisition system users or development
personnel. Included 1n the list of Class 2 modules are executable
images, libraries of object modules and support data bases. All users
have read-access to Class 2 modules; only configuration management
personnel have modify-access. Obviously, modules that exlst in the
Class 2 partition are not as secure as those in the Class 1 partition.
However, because these modules exist in non-ASCII format, and because
any Class 2 module can be simply rebuilt (usually by a compile or link
operation) from one or more Class 1 modules, the reduced security is
not consldered a serious problem.

The CDB structure 1s primarily responsible for reducing developer
overheads to levels comparable to those that would exist in the ab-
sence of any configuration management activities. By extensively
automating the CDB (using CCC macros for the Class 1 partition and VMS
command files for the Class 2 partition) management overheads can also
be drastically reduced. Indeed, the only aspects of the configuration
management process that do not lend themselves to automatica under the
hybrid environment are those of 1) releasing software from the Class 1
partition into the development environment and 2) admitting softwsre
(after certification) f.om the development environment into the CDB.
This inabllity to integrate the constituent environments in an
automated fashion was consldered a serlous deflclency of the hybrid
approach 1n light of the fact that these processes comprise the vast
majority of the activitlies of the configuration management staff.

Integrating the Environments

In order to address this deficlency, we further extended the hybrid
environment by defining an interface data structure that enables the
complete automation of software transfers between the constituent
envirorments. The structure 1s called a Program Source Fille List
(SFL) and consists of a text flle that describes the structure of a
program. Each program that 1s malntalned in the Class 1 partitlion has
a corresponding SFL that reslides wilith the program source code in the
appropriate CONFIGURATION structure.

An SFL conslists of a list of each software module that must be
complled/linked to bulld the executable image for a particular com-
puter program. The SFL 1s organlzed with one module name per line and
allows commentary materlal to be included after any module name. The
SFL also contains information that defines the status (unmodified,
modified, or new) of each module in the list. A sample source file
list 1s shown below.

Source File List for Program ADD :

ADD | Main program

VALDATBAS | Data base validation routine
SEEKENTRY | Entry locate routine

UPDATE | New entry addition routine
PMPTUSER | General prompting routine
PARSELINE | Command decoding routine

In order to demonstrate the degree to which SFL's support the unifica-
tion of the hybrid environment through automation of the interface
between the constituent environments, we present the following example
of a simple mailntenance operation. Conslder the ADD program for which
the SFL 1s presented above. Consider also that a sof'tware fault
assoclated with the execution of ADD has been 1dentified and reported.
Analysis indicates that bugs exist in the SEEKFNTRY and the PARSELINE
subprograms and (in ancordance wlth the modular malntenance policy) a
request has been placed with the confilguration administrator to
release these modules into the development environment (i.e. into the
maintenance programmer's local VMS directory). Using manual proce-
dures to accomplish the appropriate transfers from the CCC data base
to the maintenance programmer's VMS directory 1s a tedious and error-
prone operation. This 1s especlally true in light of the fact that a
transfer operation must be performed on every module of the computer
program, regardless of how many modules are to be modified. (This
results from the fact that object modules must be generated for all
modules that are not subject to modification, and these objJect modules
must be transferred to the Class 2 partition in order to allow the ADD
program to be linked prior to testing.)

By utllizing the ADD source fille 1list, however, the entire manual
process described above can be replaced by an automated procedure that
reduces the overhead imposed upon the CCC data base administrator to
trivial levels. The only step performed manually involves edlting the
SFL to indicate which modules are to be transferred to the malntenance
programmer. T'ils 1s accomplished by editing the appropriate SFL (with
the CCC editor to place an asterisk (*) before the name of each module
to be transferred. Within the context of this example the edited SFL
for the ADD program would appear as follows:

Edited Source Fille List for Program ADD :

ADD | Main program
VALDATBAS | Data base valldation routine
® SEEKENTRY | Entry locate routine
UPDATE I New entry addition routine
PMPTUSER | General prompting routine
1

® PARSELINE Command decoding routine

A CCC macro is then invoked that parses the edited SFL and transmits
the source code for the flagged modules to the appropriate malntenance
account, and sends object modules for all other SFL entrles to the
Class 2 partition from where they can be accessed by the malntenance

programmer at link time. In addition, the macro sends a copy of the
edited SFL to the maintenance account.

Within the development environment, the SFL can also be utilized to
streamline the job of the developer or mailntenance programmer. To
demonstrate thls let us contlinue our example by assuming that ap-
proprlate modifications have been made to SEEKENTRY and PARSELINE. We
will also assume that th: programmer has decided that, in addition to
these modifications, an entirely new module (called VALCOMMND) 1is also
required and has been developed.

The maintenance programmer 1s now prepared to recomplle all of the
modified modules and the newly developcd module prlior to relinking the
ADD program. This could be done manually, or even with a command file
written and maintained by the programmer. A far simpler approach 1s
to use the infrrmation contained in the SFL as 1nput to an automated
utility (a VMS command file) that recompiles all modified or newly
developed modules. Prior to invoking this utility, the programmer
must re-edit the SFL to indicate any newly developed modules as-
soclated with the program. This 1s accomplished by flagging the names
of all newly developed modules with two asterisks and adding them tc
the SFL. For this example the re-edited SFL would appear as follows:

Re-edited Source Flle List for Program ADD :
ADD Main program
VALDATBAS Data base valldation routine

!
!
¥ SEEKENTRY ! Entry locate routine
UPDATE ! New entry addition routine

!

!

|

PMPTUSER General prompting routine
¥ PARSELINE Command decoding routine
*¥VALCOMMND Command validation routine

The utility parses the SFL and complles any module that 1s flagged as
new (*¥) or modified (*).

Similar support can be provlded for the link activity. An automated
procedure can be supplled that parses the SKFL and retrieves each
required object module from one of several locations depending on the
status (new, modified or unmodified) of the corresponding entry in the
SFL. Objects for new and modified modules are linked from the mailn-
tenance account; objects for unmodified modules are linked from the
Class 2 partition.

In additlion to rrducling the overheads imposed upon the
maintenance/development programmer, utilization of these standard
compilation and link tools guarantees that the same set of compllation
and link options are used in every operation. This promotes a level
of software uniformity that would be difficult to obtaln with manual
procedures.

The final step 1n the maintenance cycle for program ADD involves
readmitting (after certification) the modified and newly developed
modules to the Class 1 partition (CCC data base). Depending upon

local configuration management standards and upon the level of main-
tenance performed, thls step may also require generation of a ncw
CONFIGURATION data structure within CCC to accomodate the modifiled
software., To accomplish thls task a CCC macro zan be invoked to
insert the new CONFIGURATION, import and parse the SFL, and import all
modules that are flagged within the SFL as new or modified. As a
final step, the macro deletes all status flags from the SFL. Agailn,
virtually all manual procedures are eliminated from what would other-
wlse be a very complex task.

In addition to eliminating the tedium and significantly reducing the
time involved 1n processing new and modifiled modules, use of SFL-based
automated procedures and utilities at all levels of the development
and configuration management efforts virtually eliminates the pos-
8lbility of corrupting the Class 1 partition due to an error or
overgight on the part of the developer or the configuration management
staff. Conflguration management efforts that rely upon manual proce-
dures to update a data base of protected software are susceptible to
admitting uncertified modules to the data base, or falling to admit
all of the new or modified modules for a program to the data base. In
elther case, 1f these errors are not immediately detected and rec-
tified, the 1integrity of the data base can be seriously compromised.
By providing SFL-based tools that are used by both the
development/maintenance and the configuration management communities,
however, one can guarantee that all modules and the same modules that
comprise a (successfully tested) program are readmitted to the data
base.

The final aspect of SFL utilization that we will present 1s the ap-
plication of SFL's to the automation of software system rebuillds.
Within the context of our system, the term system rebulld denotes a
process whereby all software subordinate to a particular data struc-
ture in the Class 1 partition (CCC data base) 1s recompiled and
relinked, and the appropriate compone ts of the Class 2 data base are
updated (with the new executable images, for example). To perform
thlis task manually, even for a very small system, can be an enormously
complex and time-intensive undertaking.

By utilizing the information within source file 1ists, however, this
process can be completely automated. A CCC macro 1s invoked to mcdify
the SFL for each program in the data base, flagging each constituent
module for transfer out of the Class 1 partition. This macro then
invokes the software release macro (discussed above) to transfer all
source modules and the corresponding SFL's to a location in the Class
2 partition from which they can be compiled and linked. The standard
compllation and link utllitles can then be executed from a command
file to accomplish the recomplilation, relink and recataloging of the
resulting executable image for all exported software. All sources and
objects are then deleted from the Class 2 partition. In this manner
the entire system can be rebullt extremely quickly and reilably.

Configuration Accounting within the Hybrid Environment

One of the pr.miere difficulties assocliated with the counduct of a
program o co' /iguration management relates to the generation and
control of large amounts of printed materlial. Especlally for small
projects, and regardless of the degree to which interface overheads
~are reduced by the utilization of £FL's, the effort required to gener-
“ate, update, file and retrieve the prlnted byproducts of configuration
management activities often dwarfs the savings gleaned from utillizing
automated interface procedures. For a prolect of our size and or-
ganlization, the most significant contributor to this sea of paper 1s
the configuration accounting effort.

Our confilguration accounting procedures specify the use of four dif-
ferent reports to initlate software changes and track the change
processing status of a software component through the development,
maintenance and certificaticon processes. Typlcal of these forms 1s
the Discrepancy Report (DR), a standard form that 1s completed and
submitted by system users to report a software fault and to initlate
the maintenance activity to repalr 1t. 1In order to track these
reports accurately, 1t 1s necessary to maintaln logs of pending
(unassizned), in-progress, and completed DR's as well as a
chronologically-organized log for all DR's. In addition a copy of
each DF submitted against a particular software component should be
filed (in the Claas 1 partition) with the source code of the repaired
sof'tware. Obviously, maintaining the various logs of printed coples
of these forms requires a major clerlical effort. In addition, even if
the logs can be malntalned in good order, the process of generating
reports that summarize *thelr contents cannot be easily accomplished
with manual procedures.

Within the structure of the hybrid environment, however, these
problems can be very effectively addressed by automating all aspects
ot the configuration accounting process. Templates for all configura-
tion accounting forms reside 1n the Class 2 partition of the CDB,
where they can be accessed by all users. A template can be completed
using a text editor and submitted via electronic mall to a special
holding area in the Class 2 partition where 1t 1s assigned a unique
identif'ying number. A collectlicon of CCC macros can then be used to
perform all operations upcn a submitted DR, including:

a) importation from the holdlng area to the chronological log
(within the CCC data base);

b) modification of the DRk text to record the identifying number
on the DR;

c) assignment of a change name to rei'lect the PENDING status of
the DR;

d) automatic change of status of the DR from PENDING to ASSIGNED
when the DR 1s ussigned to a programner or analyst. Upon
assignment, automatlic exportation of the DR to the program-
mer's development environment;

e) aut.omatic change of status of the DR from ASS1GNED to
COMILETED when the maliitenance speciflied by the DR has been
completed. Upon completion, automatic exportation of the
satisfied DR to the originator's account (in the Class 2

partition), and automatic copyling into the Class 1 data struc-
ture that contalns the certified, repalred software sources.

In addition to supporting automated operatlons upon configuration
accounting forms, the hybrid environment, by making use of CCC's data
base management capabllilitles, supports automated management of these
forms. CCC macros that employ the LISTCHANGE and LISTSTRUCTURE com-
mands can be used to generate the foilowing reports on the status of
the change proceasing effort:
a) names and status of all entries in the chronological log ;
b) all change processing requests that have been submitted after
a speclflied date and time ;
¢) individual 1lists of all change processing requests correspond-
ing to a particular status: PENDING, ASSIGNED, or COMPLETED.

For a small project with a limlted staff, the hybrid environment makes
possible the implementation and support of very powerful automated
change processing and configuration accounting proceciures without
burdening the development/malntenance communities wi“h additional
overheads. Definition of these procedures accomplishes the goal of
addressing all configuration management activities in an automated
fashlon, thereby maximizing the erfectliveness and productivity of the
configuration management staff without interfering with the
development/maintenance effort. It also allows for electronic storage
malntenance, transfer and retrieval of information that would other-
wise be mainteined in printed form, thereby moving us one step closer
to the goal of "paperless" project management.

Conclusions

In thils paper we have presented the results of our efforts to imple-
ment an effective automatzd configuration management environment to
support a small software development project. We have demonstrated
that the introduction of a hybrid environment that explolts features
of the Softool CCC (for configuration management support) and the VMS
operating system (for development support) pirovides an exiremely
powerful structure within which both of these complementary activitles
can be conducted. VWe have further demons.rated that a simple inter-
face data structure (the SFL) can be defined that aliows automation of
the interactlons that must take place between the constituents of the
hybrid cnvironment. {"lnally we have shown that the performance of
this system (in terms of operational overheads, convenience and user
training) significantly exceeds that of conventicnal configuration
management environments. Indeced, we have shown that the capabllities
of a developer operating within the hybrid environment are actually
enhanced, without 1mposing any significant additional overheads.

The hybrid environment approach to configuration management was
developed specifically to address the requirements of a small eoftware
development project. These requirements dictaved the elimlnation of
intrusions upon the development effort by configuration management
activities. 1In addition, the abllity to automate all phases of the
configuration management effort was deemed the only practical way to
guarantee that all configuration management activities could be

carried out by a very small staff. It 1s our oplnion, however, that
the hybrid environment approach is also appropriate for use in con-
Junction with large-scale software development projects. Although the
high level of management visibility supported by the hybrid environ-
ment, and the prohiblition agalinst retalning uncertified verslons
within the CCC data base may be considered limitations, the tremendous
reduction in the overheads imposed upon both management and technical

staffs could potentially resvlt 1n even greater productivity gains
than are seen on a small project.

We predict that the minimum impact of the implementation of the hybrid
development/configuration management environment upon a large-scale
scftware development project would be the re-assignment of a large
fraction of the configuration management staff from tedious manual
tasks to (more productive) development-oriented activities.
Certainly, 1t 1s true that the automated procedures that we have
described in this paper constitute a minimum exploitation of an ex-
tremely powerful resource: a subset thaut enables the small project to
conduct effective configuration management. The enhancements to this
system that might be realized by redirecting the efforts of staff
formerly engaged 1n manual configuration management activities to the
develorment and support of new automated capabllities could
revolutionize this very limportant software englineering discipline.

T M Ta vAanl: wae NRnanlAanmal anAam tha anandnna AF Ftha 11 Q Narnantmani-

