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Abstract

In any exploslve device, the chemlcal reactlon of the
exploslve takes place Iin a thin zone just behind the shock
front. The finlte size of the reactlion zone |3 responsible
tor: the pressure generated by the explosive being less near the
boundarles, for the detonatlon velocity being lower near a
boundary than away from It, and for the detonatlon veloclty
belng lower for a dlvergent wave than for a plane wave.

In computer models *that are used for englneering design
calculatlons, the simplest treatment of the explosive reactlon
zone |s to lgnore |t completely. Most explosive modellng Is
stl!)l done this way. The neglected effects are small when the
reactlon 2zone |Is very much smaller than the explosive’s
physical dimenslions. wWwhen the ratlo of the explosive’s
cetonatlon reactlon-zone length to a representative system
dimenslion Is of the order of 17100, neglectling the reactlon
zone |Is not aclequate.

An obvious solutlon Is to model the reaction zone In full

detall. At present, there is not sufficlent conputer power to
do so economically. Recently we have developed an c¢lternative
to thls standard approach. By transforming the governing

equations to the proper Intrineslc-coordinate frame, we have
simplifled the analyslis of the two-dimenslional! reactlon-zone
problem. When the radlus of curvature of the detonatlon shock
Is large compared to the reactlon-zone length, the calculatlion
of the two-dimenslonal reaction zone can be reduced tc a
sequence of one-dlimeas'onal problems.

Worlk performed under the auspices of the U.S. Department of Energy.



Describlng the propagaticn of detonatlon In complex
mult!l-dimensional sxplosive geomeirtes |s an Important and
ongolng problem in the design process for explosively driven
devices. In order for the design of the exploslve aystem to be
successful, two requirements need to be met. Flrst, the
detonatlon of the exploslve system must be relatlively
Insensitive to varlatlons 1In the Inlitlal conditlons (e.g., to
changes In the temperature and varlatlons 1In the lInltlation
system) . At the same time, the exploslive system must be safe
from accldental Initlation of detonatlon. The ratlo of the
exvlosive’s detonatlon reactlon-zone length to a representative
system dimenslion s the parameter that controls these
propertles. The desirable ratlo Is of the order of ./100.
Problems of accldental Inlitlation are minimized, yet at the same
time the detonatlion |Is relatively Iinsensitive to Initlal
condltlons. For most exploslive geometrlies, this ratlo |Is sma!ll
enough so that the Integrated momentum through the reactlon zone
ls 'mall In comparison to that |Irn the broad reglon where the
reactlion products expand and do work on thelr surroundlngs.
Thus the reactlon zone hast llttle direc’. Influence on the
process of driving lnert materlals that are In contact with |t.
Howaver, the lndirect Influences of the reactlcn zone o *he
calculatlion can be much more Important. wWhen the ratio
parameter Is 1100, a 9lgniflcant fractlon of the exploslive
charge experlences such things as both reduced detonation

preasure and velocltyvy near boundarlies, ays weliy as a sgslower
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detonatlon veloclty for a divergent detonation than for a plane
one. These, in turn, lead to large errors In zeroth-order
effects such as the time of detonation arrival and the
two-dimensional detonation wave shape. From the point of view
of the designer, this Is a difflcult computational regime. Not
only doea he need to resolve the bproad reglon where the
reactlion products expand and do work on thelr surrcundlngs, but
he must also resolve the thin reactlion zone.

Because of the dlsparate lengths of the reactlon zone and
release wave, most of the explosive design codes In use today
empl oy some varlant of the constant detonation veloclty
“Huygens" constructlon to propagate the detonatlion wave. This
method for propagating the detonation only works well for
explosives for whlich the reactlon zone can be lgnored (1.e.,
the ratlo parameter Is lesas than 1/1000). Ac hoc "flxes* of
this simple mode! have heen used to mode! systems tor which the
ratlo parameter 1Is larger than 1/1000. On~ example nf such a

“£ix* Includes a lower detonation veloclty near the edge of the

explosive than In the center. These have met with oniy llmited
success.
With all of {ts shortcomings, the simple *Huygens® method

has one real advantage, computational aspeed. Slince the
recaction zone does not need to be modeled when this method |Is
emp!oyed, design calculations can be done In a =hort enough
time to allow many deslign Iteratlona to be tried. Thly Is an
lmportant feature that design codes need to have.

In order to improve on thla simple method, constitutlive
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Information must be avallable about the explogive’'s react!lon
zone. Thls can be elther expliclt or Ilmpllclt Informatlon.
wWhen explliclt Informatlion I3 avallable, one can |In princlple
fol low the standard approach and do multl-cimenslonal
silmulatlons that resolve both the reactlon zone and the
explosive products region. Thls Information Is usually supplled
In the form of the shock Hugonlot of the *unreacted" exploslive,
an equAatlon of sgtate (eos) of the explosive products, and a
compatible energy-release rate callbrated to one-dimenslonai
exper lmeints,.

To be useful, a numerical simulatlon of the reaction zone
must be &bl2 to resolve 3ll of the Important features of the
flow. Filckett (1] has shown that when the standard 1D
Lagranglan-mesh artliflclal-viscoslty methods are used, roughly
20 computational «cells are needed In the reactlion zone to get
10% accuracy. This translates Into many tens of thousands of
computatlional cell®s forr a typlcal 2D numerlcal calculation.
Even with today’s supercomputers, such calculatlons take tens of
hours of computation tlime; they are not practical for routlne
design calculations. When one reduces the number of cells In
the calculatlon In order to get sensible computation times, the
accuracy of the caiculatlions suffers.

In large measure, the lnordinately large computation time
Is a result of the lack of sophistication of the standard
me thod. The wunlform flne mesh that’s needed to achleve
reasonable resclutlon In the reactlon zone, 13 excessively flne

focr the release-wave calculatlon. Today researchers are
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developing a variety of improved methods that include such
features as; (1) multli-grlid techniques that employ moving flne
zonlng near shocks (2], (2) sechemes vaged on the method of
characterlistics such as CIR and Godunov (2,31 and (§Ch)
shock-tracklng methods (4)]. To date, however, none of these
methods has reached the polnt of maturlty where they could
replace the standard method for routlne detonatlon
calculatlons.

The central Issue In Improved 20 calculations of
detcnatlon |Is a hlgh-accuracy calculatlon of the reactlon-zone
structure, and a relatlvely coarse grld caiculation of the
followlng products release wave. One way of gettilne a high-
accuracy calculation of the reactlcrn-zone structure, Is to do
It analytically. Thls alternative brlings wlth It not only the
direct computational benetlt, but it also brings the advantage
of a theoretical understanding of the two-dimensional
detonation process. With such an understandlng, we could make
a fast hlgh-resolution wave-tracking code that solves the
reactlon-zone flow analytically and the release wave w!th a
coarse grld numerlical slraulatlon. This Increased knowledge
also brings with It the Iinsights that lead to the Improvements
that are necessary |f some of the more sophlsticatéd
comnputatlional methods mentioned above are to become practical
tools.

An analytlical solutlon of the general two-dimenslional time-
deper.dent detonatlon problem !s not wlthln reach. However., In

many appllicatlions of exploslves, ovne observes that the radlus of
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curvature of the detonatlon shock Is large in comparison with
the reactlion-zone length. Recently we have developed an
alternatlve to the standard numerlical approach that‘’s based on
the large radlus of curvature 1imit. By transformling the
governling equations to the proper Intrinsic-coordinate frame, we
have simplifiled the analysis of the two-dimenslional reactlon
zone problem, and reduced 1|t to a sequence of one-dimensional
problems. The coordinate frame of cholce Is one In whlch the
spatlal coordlnate axes are everywh@2re locally parallel and
perpencicular to the shock. The governing equations consist of
a klnemat lc equatlion that descrlbes the progress uf disturbances
moving along the shock, and equations for the reactlon-zone
dynamirs that describe the quasl-steady flow pnormal to the
shock and through the reactlon zone. We cali thls method
DETONATION SHOCK DYNAMICS (DSD)>.

We have divided thls paper Into four sectlons. In sectlion
11, we glve an ovarview of the theoretlical model. Thls sectlon
ls divided Into three subsectlons. In Shock Kipematlcs, we
briefly describe our coordlinate system and the klnematics of the

detonatlion shock. The subaection entlitled Boundaryv

Conditions, s devoted to a dliscussion of the boundary
conditlona that are applled at the edges of the explosive. In
Reactlon-Z2one Dvnamics., the Euler equaclions are

tranaformed to the Intrlinsic-coordinate frame, and the analysils
that leads to the quasl-steady descriptlion is brlefly revliewed.
In section III, we demonstrate how our theory can be used to

study a representative exploslvye ansign problem. In section 1V,



we sSummarlze our results.

QVERVIEW OF THE THEQRY:

The thrust behind our theory Is the concept that the
response of the detonatlon shock Is local, and |Is governed by
Ilts current local <conflguration. Philosophlically, 1|t Is an
extenslon of Whitham’s geometrlical shock dynamlcs to detonatlon
(5]. Our theory Is a unlform perturbation theory, that |Is
based on the notlon that the radlus of curvature of the shock
Ils large when compared to the reactlon-zone length. [t ls a
ronlinear theory that can be used to descrlibe arbitrarily large
departures of the detonatlion shock shape from the plane one-
dimenslonal state. From the results of our theoretical
calculatlons, the followlng plcture has emerged. In many
sltuations, the dynamics of the detona*lon reactlon =zone !|s
decoupled from the evolutlon of the large followlng rarefactlon
wave, and |Is controlled by the flow near the shock. As a
result, we have found that the Important waves In the reactlion
zone, elther rarefactions or compressions, are transverse
waves. Qur theory describes how these two-dimen=lonal waves
are generated (e.g., near an explosive edge) and move.*
laterally through the reactlion zone (see Figure 1). There are
three components to the theory: (1) a klnematlc conditlon for
the shock surface, (2) conditlons to be satisfled at the
boundaries of the explosive and (3) the flow dynamics In the
direction normal to the shock (l.e., through the reactlion

zone). We wlli brlefly descrlibe each of these.
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Our tbheory |s based on thz time-dependent, two-dimensional
reactlve Euler equations. As a consequence, the detonatlon
shock (shock) I|s a surface of dlscontinulity. Since we wish to
treat detonatlon-wave evolutlon In compllicated two-dimenslional
geometrles, we have developed our theory In a problem determined
Intrinsic-coordlnate system (s=e Flgure 2. It lIs a
shock-centered frame that moves with the local normal
detonatlion-shock veloclty (Dn). The space varlables are the
distances F and 2 focally parallel and perpendicular to
the shock.

Shock Klpematjcg

The princlpal object ot the theory 1Is to calculate the
shock shape as a functlon of time. The Intrinslc
representation of a curve, such as the shock, Is In terms of Its
curvature (& ) as a functlon of arc length along the shock (E)
and time (t). In thils coordlnate system, the shock shape |Is
described by the shock angle (ﬁ) as a functlon of 5 and t.
In terms of these varlables, the shock curvature ls f'= Qéf
where the ¢ Indlcates a partlal derlivative with respect to
arc length. The laboratory coordinates for the shock are

returned by
¥ N
2’ 27 - [ , s feap)le, 0)

Y ]
i,
where 2-’_ and [/, are the coordlinates of the edge. Typlcally

we are nost Interested In describlng the changes In the shock

shape that are the result of the Interactlon that occurs
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between the shock and an explosive edge. For such problems,
having the zero of arc length colnclde wlth the edge lIs the
most convenlent origin to use for § . Figure 3 shows a
schematic representatlion of the shock lncluding the lndependent
varlable (f) and the definltlon of the dependent varlables
D~ and ¢ . The carteslan unlt vectors are é& and é

The geometrlic compatiblllity conditlons for a moving two-

dimensional! surface are glven In Whitham (S]

Qéat:' ',37} D’&,a (2)
/
By =B M. (3)

The varlable o |Is equlvalent to time, and labels a partlcular

and

shock surface. The constant /B rays are corthogonal to the

shock and are |ts propagators. The streamtube area |Is /,ﬂ .

where at flxed OC
JE = f7B )
(l.e., the area between two adlacent counstant /B rays).

For the problems of Interest In condensed phiase
detonatlon, the shock Is seldom normal to the explosive
boundary. As a result, the coordinate p ls not a convenlent
Independent varlable slince boundary c:)ndltlons must be applled

at the edge. Changlng Independent variables from (O(,P) to

(t.g ), we have

JE= ﬁ?J/B # Bdx (5)

Jt = o A,

where th~z coefflclent B describes the change In arc length
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with time along a constant ;B ray. Performing this
transformation, the surface klnematlics (l.e., Eq. (2)) takes on
the form of a one-dimensional wave equatlon alcng the shock
wlith B belng the wave veloclity and D’J.F Ils a Burgers Equatlon-

l!ke transport term

@t *BQ?}_ =-a5_§ . (7)

The <coefficlent .23 s obtalned by requlring that the
transformatlon [ Egqs. (5) and (6)] ls solvable, from which it

follows that

] &
From Eqs. (3) and (8) It follows that

¥
B= [B.Dudf + Bt). (9)

The functlon zﬁiﬁﬂls the amount of shock arc length which

’£;7 = ;Eg;)a v (2;)

crosses the )ZB = constant ray that iIntercepts the edge and |Is

B (t)= Dye /2n/¢:) . (70)

This Intrinsilc form of the shock-surface klinematlics |s

glven by

fundamental! to any shock-tracklng method that seeks to descrlibe
the evolution of shocks of arbitrary shave In a upniform
mapner . Clearly, Egs. (7) and (9> are simply a constralnt
between D. and /(::gér . However, |f a second relatlon
between D. and A can be obtalned, then Eg. (7) becomes a
partial-differential eguation for the shock msyrface. It Is
Important to note that Eq. (7) Is a “one-dimensional® condltion,

whose |ndependent varlables are the arc length (EE ) {the



i1

distance coordinate] and time (t). Further, 1f we then
prescribe the Inltlal shape (gb) of the surface, as well as some
boundary conditlon at the Intersectlon of the detonatlon shock
and the explosive boundary, then Eq. (7)) can be solved to get
the two-dimenslional shock locus at any subsequent time.

Boundary Conditlons

For the problems we consider In this brlilef review paper,
we do not need to study the complex flow or the detalled
boundary conditlons that apply In the vicinlty of the exploslive
boundary. It wlll be sufficlent to consider only the conditlon,
lf any, that must Le applled at the locus generated by the
Intersectlion of the dectonatlion shock and the edge. We conslder
ocnly an exploslive/vacuum lnterface.

At such an lnterface, the flow experiences a slingularlty.
In the exploslive, the pressure just behlind the detonatlon shock
ls near the Chapman-Jouguet <(cj) pressure; Jjust outside the
exploslve, the pressure |Is at or near zero. 1In order for the
flow to execute such a translition, a singularlty of Prandti-
Meyer (PM)-type must be Imbedded In the flow at the Intersectlon
of the shock and the edge. Since locally the flow at this polnt
Ils quasl steady, It can only be elther a sonic or a supersonic
flow (as w®seen by 2an observer riding along the edge/shock
Intersection locus). We wlll dlscuss the conaequences that
result from having flows of these two types.

Along the edge/shock locus, the sonlc parameter Is a
functlon of the normal detonation velocity along the edge,

N
D.q. and the shock interface angle, gb . For a polytropic
[~
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eos, wlth ‘7” the polytroplc exponent, the expresslion

o ju1s D, { /- 5 : m/ /- )fs"/f)f (%)

ne
where C Is the sound speed, /Z/ IS the magnitude of the
particle veloclty 1In the shock-fixed frame and Dnx Is the
minimum value ot D~ for a one-dimensional detonatlon.

If the flow 18 supersonic along the locus, then
disturbances from the edge can not propagate Into the
detonatlon reactlon zone. The Interface moves faster laterally
than do acoustic waves. For thls case, no boundary conditlion Is
applled, and the Interface does not affect the detoq:flon.

As the flow turns subsonlc, then D.e and ¢e must be
adjusted so that the sonlc coadltlon, ¢%/U/>* =0 . 1s
maintained. Thls condition serves as a boundary conditlon for
the flow.

The followling rule |a used along the edge/shock locus:
Monltor tne sonic varameter on the locus. 1f C‘-/I//l-((') ,
the flow ls supersonic and no conditlon |s applled. When the

~

flow |Is elther sonlc or subsonlic, then Dnc &and ¢ must be
[

adjusted to satisfy the condition &% /y/*= (O

Reactlon-Zdone Dvnamlcs

Equatlion (7> |Is a one-dimensional partial-differentlal
relatlon that D. and ¢ must satisfy If they are to descr'be
a two-dimenslonal shock. If a second relatlon between D. and
¢ can be fcund, we can convert this relatlon to a partlal-

differentlal equatlion (pde), and lIn the process reduce the two-
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dimensional shock tracking problem to a one-dimensional one.
For a number of cases, we have found such a second relatlion
between D. and k:daf . When It exists, this relatlon
contalns all the necessary reactlon-zone dynamlics; the
consequences of the Interaction of the chemical-heat release
with the flow. To find It, we must solve the time-dependent
two-dimenslicnal Euler equations. in order to solve these
equations for complex exploslive gecmetrles, we must express them
In terms of a natural aystem of coordinates that simpllifies
thelr form. In the limit that the radlus of curvature of the
shock |s large compared to the reactlon-zone length, the
coordinates shown In Flgure 2. are partlcularly convenlent.
Bertrand curves that are everywhere parallel to the shock are
the 7" constani coordinates; the lines perpendicular to these
curves are the constant j; coordlnates. These coourdlnates are

related to the laboratory carteslan frame, by

and

where ;?’ and /,  are glven by Eq. 1), Expressed |In these
o

|98 & 3 vRetwy

coordinatesa, the Euler equatlions are

mass L *_/a/,(_/ﬂ? -7(7)7 ""@:f) =0, (s4)
7 -momentum Iﬂ ;3'7;’7 +e = O, (15 )
S cnmesisn L% + A7y - Dyp 2, o = O (1)

and

amerey  LE - A L = O, (17)
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The chemlical rate law |Is

cate L e = A (8)

We have displayed or !y those terms that are necessary to do the
leading order theory In the small A(—llmlt. In the a«bove
L= 3 */B"”y):% +BF , (19)

/o Ils the density, ﬂ»’ Ils the 7—component of the particle
veloclty (at leadlng order 7/73'0 and 7/2740), 7; Is the

f—partlcle veloclty (74=0 at the shock), 7~ Is the piessure,
A Js the degree of reactlon ¢( /= O at the shock), /r"'e Is the
chemical rate and EE' is the specliflc Internal energy. The
above equatlons, the standard one-dimenslonal shock condlitlons,
the kinematlics (1 Eq. (7)) and approprlate lnlitlal/boundary
conditlons completeiy defl~e the two-dimensional problem that
must be solved. Even Ir tue smal!—/( limlt, thlis |Is a
formicable task.

What we have shown recently s that for certaln rate-law
forms (l.e., expressions for ;Z? >, the Important large-scale
dynamics Is quas! wsteady [(6). We consldered relatively
long-scale disturbances to the shock

€r= OIK) <</, (20)
D,= D, + Or€*) £21)
and two tline regimes:

(1) "fast* dynamlcs t,:ét
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— 3/42) - %
changes In ¢ = O/é /), ‘F)';— & 5 {22)
and
(2) quas!-steady dynamlics tz = é'z't

changes In QS = O[é) 5 -FI = é‘E (23)

and larger.

The *fast" scale problem was necessary to treat tlie Influence
of the two-dimenslonal Initlal/boundary data, and to descrlibe
the hydrodynamlc wavehead that separates the reactlon zone Into
parts that are e.ther Influenced or uninfluenced by the edge.
As the flow evolved, the “fast" scale perturbatlions became
snma!ler, and the dlsturhbances to the one-dimenslonal state
pecame larger ard quas! steady. Thls quasl-steady regime was
particularly simple;: the Euler equations reduced to the steady
nozzle equations [a steady cylindrically-symmetrlic system of
ordlnary-dlffecentlal equatlions (ode)]

L(Tn-%)F], + PKH, = 0O, ()

etc. 7 17 )
The only parameters In these equatlionss, besldes the flxed

constlitutive parameters, are D. and &/ . That |s, the

Ilnitlal/boundary data do not appear In the large change
reactlon-zone dynamics. In s=some sense then, the dynanico ip
unjlversal . The resulting one-dimensional problem |s simply

the detonation ‘“elgenvalue problem conslidered by Wood 8
Klckwood (7). Slnce the propagatlon of the detonatlon shock |=a
decoupled from the product expanaslon reglon, the theory Is free

of ad hoc approximatlions about the Influence of the followling
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flow. At least thls |Is the case for dlverglng detonatlon.
The quasi-steady problem def!nes D (& )>. With A{
speclifled, D~ Is determined by solving an e¢lgenvalue problem.
In additlon to vlelding Dn( /( ), ¢this solutlon also glves the
state at the end of the reaction zone as a function of X
Thus for an Important class of problems, the reactlon-zone
dynamlics 1Is glven by Dn(}( ), and the two-dimenslional shock-
evolutlon problem |s reduced to a one-dimensional problem.

Two polnts are worth notlng. Firat, the Dn(( > relatlon
onty contalns ilmlited <onstlitutive Informet!on about the
exploslve. The constants In thls relatlon are Integrals through
the reactlon zone of this Informatlion. Secondly, Dn(K)> lIs
Independent of Inltlal/boundary data. Theretfore, when detalled
constitutive Informatlion about the reactlon zcne |s not known
(the typlcal sltuation feor condensed phase explosives), D)
can be measured dlrectly via simple steady-state two-
dimenslonal hydcoidynamic experliments. Thus we have a way of
using simple experlments to callbrate the reactlon-zone
dynamics. In turn, we can use the callbrated [.( K > relatlon
to predlct detonatlon wave evolutlon In complex explosive
deometrlea.

Direct calculatlons of Dn(l( ) performed with the simple
polytroplc eos, snow that the form of the rule® |=s sensitive to
the form of the rate law (8). Calculutionms were done for two
astate-independent rates with different depletion forimms; square-

root depletlon

R =(7-4 (25)
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and simple depietion
= (7). (2¢)
Tne DnC(X > rule for Eq. (25) |s
22}7:: /- “{'4{ B ﬁ:;?)
whlle for Egq. (26) we have
Dy =/ 7‘/8:‘(41/4/)-06/(- (28)
The constants ol and/B are not to be confused with Whitham’s
curvlllinear coordlinates. D., 1Is set to one. In the next

section, we glve a brlef tutorial that describes how this theory

can be applled to explosive englneering deslign problems.
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APPLICATIONS:
The simplest time-dependent problem that can be done |s the
constant-veloclty detonatlon or *“Huygens' construction for a
diverglng detonatlon. For convenlence we take D, = 1.

Equation (7)) then becumes the simple ponlinear-wave equatlon

for the shock angle (see Figure 3)
- = (RF
@t + /¢ ¢e)¢; o p )
where Q le the value of QS at the edge (l.e., at f = 0).
Eqgiatlon 29 states that gb = constant along the

characteristic llnes F- /¢'¢é)t' = constant, that |s

BB e E-(B-L)E=F . (30

If we consider a tlow where the two-dimenslonal shock |s
convergent Initlally, then the Initlal ang.:, Qé , 18 a
decreasing functlion of the Initlal arc length, ji . Such a
flow looks compressive, In the sense that the characteristic
llnes are convergent. After a flinite time, sore of the
characterlstics cross one another and the solutlon becomes
muiti-valued. Physlically, the ruie D. = 1 does not apply to
a convergent detonatlon, so we wlll not conslider thls case
further.

wWhen the two-dimensalonal shock Is |nltlally divergent, the
initlal angle |s an Increasling functlcn of arc length, and the
characteristic llnes are rcarefactlion-1|lke. An example of a
alvergent-wave problem that Is often encountered In demsigns Is
shown In Flgure 4. It Is a prototyplical examplie of a diverging

detonatlon that features the dlffraction of ths detonatlion
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(l.e., the "shadow zone" prob!em}). The left-most vertical llne
Is a symmetry plane; the lower horizontal Illne and the upper
clrcular arc are the edges of the explosive. The wave Is
Initlally clrcular with a radlus Ra. Since the wave Is
perpendicula:: to the horlizontal edge, the flow along that
edge/shock locus is sonic, and the edge does not Influence the
shock evolutlon. When the expandlng wave flrst reaches the
clrcular boundary, the flow along the upper edge/shock locus Is
supersonlc. It remalns supersonlic untll! the detonatlon reaches
the polnt where the dashed llne is tangent to the arc. The
reglon above the dashed llne 1s not In direct llne of sight of
the Inltlai data; It Is a ‘"shadow zone". Dliffractlon Is the
process that allows the wave to spread intc thle reglon. The
solutlon In thils reglon |3 determined by the boundary data
supplled along the clrcular edge.

In both rxglons of the problem, the solutlon takes a
simple form. The great advantag: of our formulatlicn over older
methods |s tnls simpllicity of representation. The calculatlons

shown in Figure 4, are free of reactlon-zone effects. We
conclude this mection by showlng how detonatlon shock dynamlcs

can be used to Include the Important finlte slze reaction-zone

effec\s for this oxample.

We assume that the reactlon-zone dynamics |Is glven by

Eq.<27)>

and Introduv-e the change of variable

¢:¢};+$, (3/)
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where ¢Z.is the angle that the tangent tu the edge makes with

~
the reference dlirectlion 63} . Sucstituting these Into the

kinematic equatlion [l.e., Ea, (7)), vields a "Bu.gers* eocuatlon

7z B Dne _ x K
@t s eoa[ﬁ) * B%‘x - -4—9; ¢gxx b/ (32)

as the propagator for the shock. The lIndependent varliables in

Eq. (32) are scaled time (t) and scaled arc length (x). The
filnite length reactlicn-zone effects enter thls equation as the
transport term on the rlght-hand side. Thls Is simllar to the
structure of wave-hlerarchy probizms that arise In one-
dimensional wave propagation problems in reactlve materials
(9. The s=second term on the left-hand side represents the
dlffraction effect. Equatlien (32) ls a one-dimenslonal
parabollc pde. In the quasl-steady 1izlt, the reactlvlity acts
to smooth the shock locus.

Equation (32 was solvzd nume:lcally for the design
problem shown In Figure 4. A mesh was used with onc thousand
polnts along the shock. The computation time was one minute on
the Cray-1 supercomputer. The results of the wave tracklng
calculatlon for a set of parameter values that highlight the
finite-length reactlon-zone effects are shown iIn Figure 5.

The Important parameters In this calculation are (a /Ra)
the ratlc of the reactlon-zone length parameter to thes radlus
of the booster, and (Ra/Ra) th» rativ of the booster to the
edge radlus. The dashed contour= correspond to the standard
*Huygens" construction studled in Flgure 4. The dotted

contours show the cylindrically e:(panding finlte-length
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reactlon-zone wave wlthout any edge effect. The solld contours
show the complete DSD calculatlon, Includling the edge effects.
Although the results shown 1|In the flgure speak well for
themselves, a few comments are |n order. Even In reglons of
the flow that are not influenced by the edge, the flnlte-length
reaction-zonre effects cause the detonatlon to lag behind the
*Huygens" wave. Near the 1ower edge, the complete D3D
calculatlon |s strongly curled back. Along thls edge, the
phase veloclty of the detonatlon wave 1Is Inltlally lew, but as
time passes |t bullds back to that for a cyllndrically expanding
wave. Along the upper surface, no edge effect |s observed untll
the detonatlon wave passes Into the "shadow zone". After thls
occurs, the detonatlon wave I|s contlnually wundergolng wave
diffractlon. Slnce tihe phase veloclty at the edge quickly
reaches a steady value that |s well below D.,, the curl back
ls more pronounced In this reglon than at the lower edge. The
value of thls veloclity Is a functlon of the radlus of the upper

explosive/vacuum lnterface.

SUMMARY :

We have developed a theory for propagating two-dlmenslonal
detonatlon shocks In complex explosive assembll!es. The three
components of our method are:

(1) shock kinematlics [ Eq. (7)],

(2¢) boundary condltlons [ Eq. (11)) and

(3> reactlon-zone dynamics (e.g., Egq. (27)].

In spirlt It |Is the detonatlon analog of Whltham’s lnert shock
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propagatlion theory, geometrlical shock dynamlcs. It 1Is a
rationally derlved theory th&t applles when the radius of
curvature of the detonatlon shock 1Is large compared to the
reaction-zone length. A fully nonlinear theory, !t descrlibes
the large ampllitude changes in the two-dimensional detonatlon
shock that occur over long tlmes.

The DSD method that we’ve developed Iis a powerful tool
that can be used to efficlently model reactlon-zone effects |In
numer|cal simulatlons of detonatlon. Using this method,
typlcal explosive design calculations c¢an be performed with
about one minute of supercomputer time. Th!s Is to be compared
to the tens of hours that are requlred for a modest resolution
full numerlcal simulation of the problem. In addltlon to the
direct computational benefit, this theory also Increases our
understanding of tlme-dependent two-dimensional detonation.
For example, thls theory deflnes the relatlionshlip between the

detonatlon wave phase veloclty and the radius of the explosive

edge In the “shadow zone".



23

(1) Flckett (1976), Accuracy of the Conventlonal Lagranglan

Scheme for One-Dimenslonal Hydrodynamlics, Los Alamos Report LA-
6454.

(2] Woodward & Colella (1984), The Numerical Simulation of Two-

Dimensional Fluld Flow wlth Strong Shocks, J Comput Phys $4,
115-73.

(3] Addesslo, et. al. (1986>, CAVEAT: A Computer Code for Fluld
Dynamics Problems with Large Distortion and Internal Sllp, Los
Alamos Report LA-10613-MS.

(4] Glimm, Isacson, Marcheslin & McBryan (1981), Front Tracklng
for Hyperbollc Systems, Adv Appl Math 2, 9i-119,

(S]] Whitham (1974), Llinear and Nonllinear Waves, Wlley-
intereclence, New York, 28i-4.

{6] Bdzlil & Stewart (1986), Time-Dependent Twc-Dimensional
Detonation: the Interactlon of Ezge Rarefactions with Flnlte
Length Reactlon Z2ones, J Fluid Mech 171, 1-26.

(7] Flckett & Davlis (197¢», Detonatlion, Unlverslity of
Callfornia Press, Berkeley, 199-219,

(8] Stewart & Bdzll (1988), The Shock Dynamlcs of Stable Multl-
Dimensiona! Detonation, Comb Flame 72, 311-23.

[9] Reference S5, 339-59,.



24

FIGURE CAPTIONS:

Flgure (1) A schematlc dlagram that shows how
chemlcal/mechanicai energy are transported laterally through
the reactlon zone. The klnematlc condition Is applled along
(1), boundary condltlons are applled at (2) and the reactlon-
zone dynamics describes the flow along (3). To leading order,
the reactlion zone |Is insulated from rarefactions from the rear.

Flgure (2> The Intrirsic-coordinate system that was used In
the calculatlon. The shock curvature is = and

4 4 7/ 2 °f
Z =2.—7“9¢/r=/;'-75,)7¢,

Figure (3 Intrinsic coordlinates and shock klnematics. The
Independent variables are arc length (¥ ) and time <(t), whlle
the dependent varlables are, the normal shock veloclty (D.)
and the shock normal angle_.( ). The curves = constant are
normal to the shock, and ¢L |ls the angle between the tangent to
the edge and ncrmal to the shock.

Flgure (4> A prototyplcal diverglng detonatlon prcblem. The
wave |s propagated with D, = 1, a *Huygens" constructilon.
Below the dashed line, the wave |Is free of boundary effects and
expands as a clrcle. Above the dashed llne, the wave shape |Is
determined by applying the sonlc conditlion along the radius Ra
clrcular edge.

Figure (5> The DSD calculation of the example conwldereg In
Flgure 4. The reactlic 1-zone dynamics rule was D, = 1 -/
where the magnitucde of o, Is shown. Three calculatlions are
displayed :

—— - D~ = 1 “Huygens*,

"""""" D, = 1 - clrcularly expanding wave and
the full DSD calculatlion.
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Figure (1) A schematic dliagram that shows how
chemical,'mechanical energy are transported laterally through
the reaction zone. The kinematic condlitlon |Is app!llied along
(1), boundary condlitlons are applied at (2) and the reactlon-
Zone dynamics descrlibes the flow along (3). To leadlng order,
the reaction zone Is insulated from rarefactions from the re:r.
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Flgure (2 The Intrinslic-coordinate system that was used In
the calculation. The shock curvature la K= ‘é and
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Flgure (3) Intrinslc coordlinates and shock kinematlics. The
Independernit varliables are arc length (F) and time (t), whlle
the dependent varlables are the normal shock veloclity (D.)
and the shock normal angle (¢ ). The curves = constant are
normal to the shock, and I|s the angle between the tangent to
the edge and normal to the shock.
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Flgure (4) A prototyplcal diverging detonation problem. The
wave |s propagated wlith D. = 1, a *“Huygens* constructlon.
Below the dashed line, the wave |s free of boundary effects and
expands as a clrcle. Above the dashed llne, the wave shape |=
determined by applylng the sonlc condltion along t(he radius Ra
Clrcul ar edge.
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Figure (5) The USD calculation of the example considered |In

Flgure 4. The reactlon-zone dynamlics rule was D, = ¢ - L
where the magnltude of o( |s shown. Three calculatlons are
displayed

—te -~ D, = 1 "Huygens",

-------- D.. = | -9 K clrcularly expanding wave and

the full DSD calculatlon.



