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In any exploslve device, the chemical reaction of the
explosive takes place in a thin zone lust behind the shock
front. The flnlte size of the reaction zone is responsible
foe: *he pressure gerierateclby the explosive being legs near the
boundaries, fOr the detonation velocity being iower near a
boundary than away from lt, and for the detonation velocity
beingl~~er for a dlvergent+~a;e than for a plane wave.

computer models . are used for engineering design
calculations, the simplest treatment of the exploslve reaction
zone 1s to ignore It completely. Moat exploslve modellng Is
Still done this way. The neglected effectg are mall when the
reaction zone 1~ m much 9maller than the explosive’s
physical dimensions. When the ratio of the exploslve’s
detonation reaction-zone length to a representative system
dlmenslon 1s of the order of 1/100, neglecting the reaction
zone 13 not adequate.

An obvious solution is to model the reaction zone in ful 1
deta!! . At present, there 1~ nnt ~LJff!~!@nt cfufmiiter nnu-r ~0

do so economically.
--...r-.-- ~-..--

Recently we have developed an ~lternatlve
to this standard approach. By transforming the governing
equations to the proper Intrlnalc-coordinate frame , we have
slmpllfled the ana)ysls of the two-dlmcnslonal react ion-zone
problem. When the radl!is of curvature of the detonation shock
Is large cunpared to the reaction-zone length, the calculation
of the two-dimensional reaction zone can be reduced tc a
sequence of one-dlme;ls!onal problems.

—-—. ——...—. . . .. .
(hfoI-k pprTormc*(l un(i(.r t})t’ :lus~)ic’c’s of t tl(’ [1. .$ . I)epil l-t m(.’[lt of l:[l(’l”y,y
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Descrlk)lng the propagation of detonat ion In complex

multl-dimensional SXpiOSiV= geuiiieirles 19 an important and

ongoing problem in the design process for explosively driven

devices. In order for the design of the explosive system to be

successful , two requirements need to be met. First, the

detonation of the exploslve system must be relatively

Insensltlve to variations In thle Initial conditions (e.g., to

changes in the temperature and variations in th~ Initiation

system). At the same time, the explosive system must be safe

from accidental Inltiatlon of detonation. The ratio of the

exploslve’s aetonatlon reaction-zone length to a repre~entatlve

system dimension Is the parameter that controls these

properties. The desirable ratlo 1s of the order of ./100.

Problems of accidental Inltlatlon are minimized, yet at the same

time the detonation Is relatively ln9ens1tlve to Initial

conditions. For most exploslve geometries, thla ratio Is small

enough so that the Integrated momentum through the reaction zone

1s mall in camparlson to that lr? the broad region where the

reaction products expand and do work on their Yurroundlngs.

Thus the react Ion zone h~g IIttle dl_c_QQ Influence on the

process of driving Inert matorlals that are In contact with lt.

However , the L@_lKsQ lnfluence~ of the reactlcn zone Ori the

calculation can be much more important. When the ratio

parameter 13 1/100, a 91gnjflcant fraction of the exploslve

charge experiences such thlnQs a?! both reduced detonation

pressure and veloclty near boundac les, a‘u WC’li as a 91 Owf?r’
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detonation velocity for a d!vergent detonation than for a plane

one. These, in turn, lead to Iarge errors In zeroth-order

effects such as the time of detonation arrival and the

two-dimensional detonation wave shape. From the point of view

of the designer, this Is a difficult computational regime. Not

only does he need to resolve the &rnaQ region where the

reaction products expand and do work on their surroundings, but

he mu~t also resolve the W reaction zone.

Because of the disparate lengths of the reaction zone and

release wave, most of the explosive design codes in use today

emp1oy some variant of the con:jtant detonation veloclty

“Huygens” construction to propagate the detonation wave. This

method for propagating the detonation only works well for

explosives ffar wh 1ch the :eaction zone can be Ignored (I.e.,

the ratio parameter 1s 1e93 than 1/1000). Ad hoc “fixes” of

this simple model have been used to model systems for which the

ratlo parameter 19 lar~er than $/1000. ~n- e~~p]e Of guch a

“fix” includes a lower detonation veloclty near the edge of the

explosive than in the center. These have met with oniy 1lmlted

success.

with all of its shortcomings. the simple “Huygen9” method

has one real advantage, ~ W2Q.!@. Since the

reaction zone does not need to be modeled when thla method is

emp!oyecl, design calculations can be done in a short enouqh

time to al low many dealgn Iterations to be tr!ed. Thlsi 1s an

Important feature that dealqn code= need to have.

In order to improve on thla almple method, constitutlve
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Iable? about the exploslve’s reactlo~

zone. This can be either expllclt or lmpllclt information.

When expllcit information 1s available, one can in principle

follow the standard approach and do multl-c<lmenslonal

simulations that resolve both the reaction zone and the

explosive products region. This information Is usually supplied

In the form of the shock Hugonlot of the “unreacted” explosive,

an equation of state (eo9) of the explosive products, and a

compatible energy-release rate cal Ibrated to one-dlmenslona~

experlmeilts.

To be useful, a numerical simulation of the reaction zone

must be /ible to resolve ~11 of the important features of the

flow. Flckett [11 has shown that when the standard ID

Lagranglan-mesh artlflclal -vlscoslty methods are used, rough Iy

20 computational cells are seeded In the reaction zone to get

10% accuracy. This translates Into many tens ot thousands of

COmWtdtlOnd] Ce]15 fOL- a typical 2D numerical calculation.

Even with today’s supwrcomputersp such calculatlona take tens of

hours of computatl~:ln time; they are not practical for routine

design calculations. When one reduces the number of cells in

the calculation In order to get sensible computation times, the

accuracy of the calculations smffers.

In Iarge measure, the Inordinately large computation time

Is a result of the lack of sophlstlcat Ion of the standard

,method. The uniform fine mesh that’s needed to achieve

rea$mnabl e reaolutlon in the reaction zone. 19 exceaslvely fine

foL- the releaae--wave cillculatlon. Toda Y researchers are
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developing a variety of improved methods that incIude such

features as; (1) multl-grid techniques that

zon!ng near shocks [21, (2) schemes based

characteristics such a= CIR and Godunov

employ tmovlng fine

on the method of

[2,31 and (3)

shock-tracking methods [41. To date, however, none of these

methods has reached the point of maturity where they could

replace the standard method for routine deto)~ation

calculations.

The central Issue In improved 211 calculations of

detcnatiorr 1s a high-accuracy calculation of the reaction-zone

structure, and a relatively coarse grid calculation of the

following products release wave. One way of getting a hlgh-

accuracy calculation of the reactl@r:-zone gtr~cture, lg to do

It analytically. This alternative brings with It not only the

direct computational beiretlt, but it also brings the advantage

of a theoretical understanding of the two-dlme~islonal

detonation process. With such an understanding. we could make

a fast high-resolution wave-track Ing code that 901ves the

reaction-zone flow analytically and the release wave w}th a

coarse grid numerical simulation. This Increased knowledge

alao brings with it the in=!ghts that lead to the improvements

that are nece99ary If some of the more sophlstlcatdd

computational methods mentioned above are to become practical

tools.

An analytica

deper.dent detonat

many applIcatlons

solutlon of the general two-dimensional tlme-

on problem !s not wlthln reach. However, in

of explosives, one obscrvea that the radius of
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curvature’ of the detonation shock 1s large in compar ison with

the react ion-zone length. Recently we have developed an

alternative to the standard numerical approach that’s based on

the !a.rge radius of curvature limit. By transforming the

governing equations to the proper Intrlnslc-coordinate frame, we

have sl!npl ifled the analysis of the two-dimensional reaction

zone problem, and reduced it to a sequence of one-dimensional

problems. The coordinate frame of choice 1s one in which the

spatla] coordinate axes are everywhere locally parallel and

perpendicular to the shock. The governing equations consist of

a kinematic equation that describes the progress of disturbances

moving - the ghock, and equations for the reaction-zone

dynamlfls that describe the quasi-steady flow ~ to the

shock and through the reaction zone. We call this method

DETONATION SHOCK DYNAMICS (DSD).

We have divided thi~ paper into four sections. In sect

11, we give an overview of the theoretical model . This sect

Is dlvlded Into three subsectlon~. In S13.@f ~.

briefly describe our coordinate system and the kinematics of

detonatlcm shock. The emb~ectlon e~tltled Boundarv

on

on

we

he

QxMuMQM t 1s devoted to a dl~cusslon of the boundary

conditions that are appl led at the edges of the exploslve. In

RSACUQQ-ZQLU RYRMIQSP the Euler equaclons are

transformed to the lntrinslc-coordinate frame, and the analysla

that leads to the quasi–steady description is briefly reviewed.

In section III, We demonstrate how our theory can be used to

study a represtenti$itlveexploslve ci~s!gn problem. In section IV,



we sumnarlze our results.

Ew OF ~ :

The thrust behind our theory is the concept that the

response of the detonation shock 1s local , and

lts current local configuration. Philo~oph

extens!on of Whltham’s geometrical shock dynam

is governed by

tally, it is an

cs to detonat,on

[51. Our theory 1s a uniform perturbation theory, that 1s

based on the notion that the radius of curvature of the shock

is large when compared to the reaction-zone length. It !s a

nonlinear theory that can be used to describe arb!trarlly 1arge

departures of the detonation shock shape from the plane one-

dlmensional state. From the results of Our theoretical

calculations, the followlng picture has emerged. In many

91tuatlons, the dynamics of the detonation reaction zone !s

decoupled from the evolutlon of the large followlng rarefaction

wave, and is control led by the flow near the shock. As a

re9ult, we have found that the important waves in the reaction

zone, e!ther rarefactlons or compreaslonsp are transverse

wavea. Our theory describes how these two-dimensional waves

are generated (e.g., near an exploslve edge ) and move.’

laterally through

three components to

the shock surface,

boundaries of the

the reaction zone (see Figure 1). There are

the theory: (1) a klnematlc condltlon for

(2) conditions to be ~atlgfled at the

explosive and (3) the flow dynamics In the

dlrectlon normal to the shock (i.e.. through the reaction

zone) . We wlli briefly descrlbc each of these.
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Our theory 1s based on the time-dependent, two-dlrnensional

reactive Euler equations. As a consequence, the detonation

shock (shock) is a surface of discontinuity. Since we wish to

treat detcmatlon-wave evolutlon In compl Icated two-dimensional

geometries, we have developed our theory in a problem determined

lntrlnsic-coorcilnate system (see Figure ‘!). It 19 a

shock-centered frame that moves with the local norms 1

detonation-shock veloclty (IL). The space variables are the

distances F and
T

locally parallel and perpendicular to

the shock.

ShQQk lunmwks

The prirlcipal object of the theory is to calculate the

shock shape as a functiOn of time. The intrlnslc

representation of a curve, such as the shock, 1s in terms of Its

curvature (K) as a function of arc length along the shock (~)

and time (t). In this coordinate system, the shock shape is

described by the shock angle (#) as a function of ~ and t.

In term= of these variables, the shock curvature is ~~ bJ~ ‘

where the ~
f

Indicates a partial derivative with respect to

arc length. The laboratory coordinates for the shock are

returned by
3

#
*4

where Z& and & are the Coordinates of the edge. Typically

we are most interested in describing the changes In the shock

shape that are the result. of the Interaction that Gccur-=
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between the shock and an explosive edge. For such problems,

having the zero of arc length coincide with the edge 1s the

most convenient origin to use
F

for . Figure 3 shows a

~chematlc representation of the shock Includlng the independent

variable (~) and the definition of the dependent variables

#
D. and . The carteslan unit vectors are ~’ and 2P .

The geometric compatibility conditions for a moving two-

dlmenslonal surface are given In Whltham [51

and

.
/2)

The variable < 1s equivalent to time, and labels a particular

shock surface. The constant
P

rays are orthogonal to the

shock and are Its propagators. The streamtube area Isp,

where at fixed ti

(i.e., the area between two adjacent cunstant
P

rays) .

For the problems of Interest in condensed p?iase

detonation, the shock 1s se Idom norms 1 to the exploslve

boundary. As a result, the coordinate
P

1s not a convenient
●

independent varlab]e since boundary conditions must be applied

at the edge. Changing Independent variables

(t,J), we have

Jq=Rw’’)3+ELJd&

and

dzf = C&
2

where the coefflclcnt ~ describes the change

from

In arc

/5)

(d
ength
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‘With time along a constant
P

ray. Performing this

transformation, the surface klnema~1c9 [I.e., Eq. (2)1 takeg on

the form of a one-dimensional wave equation alcng the shock

with ~ being the wave velocity and ~ is a Burgers Equatlon-
●f

llke transport term

(7)“

The coefficient B 1s obtained by requiring that the

transformation [ Eqs. (5) and (6)1 is solvable, from which it

follow that

(t%)

The function ~efi~ls the amount of shock arc length which

cro9ses the
F

= con~tant ray that intercepts the edge and 1s

given by

B f%)= Z?&+2A{fir) ●o
/20)

This Intrinsic form of the shock-surface kinematics is

fundamental to any shock-tracking method that seeks to describe

the evolution of shocks of ~ -a in a ~

lXkaM&C* Clearly, Eqs . (7) and (9) are simply a con9tra1nt

between D. R+and -z However, lf a second relation
J~ “

between D. and K can be obtained, then Eq. (7) becomes a

al-diffeual eca~ for & ock . It 1s

important to note that Eq. <i’) 19 a “one-dlmenslonal” condltlon.

whose Independent variables are the arc length (
5

) [the



distance coordlnatel and time (t). Further, lf we then

prescribe the Initial shape (#
) of the surface. as well as some

boundary condltlon at the intersection of the detonation shock

and the expiosive boundary, then Eq. (7) can be solved to get

the two-dimensional shock locus at any subsequent time.

BaJmaKY GQiMLusns

For the problems we consider in this brief review paper,

we do not need tO 9t’Jdy the complex flow or the detailed

boundary conditions that apply In the vlclnlty of the exploslve

boundary. It wII1 be sufficient to consider only the condltlon,

lf any, that must be applled at the 1Ocus generated by the

intersection of the detonation shock and the edge. We consider

only an exploslve/vacuum Interface.

At such an interface, the flow experiences a singularity.

In the explosive, the pressure Just behind the detonation shock

Is near the Chapman-Jouguet (cJ) pressure; just outalde the

exploslve, the pressure 1s at or near zero. In order for the

flow to execute such a transltlon, a singularity of Prandtl-

Meyer (PM)-type must be Imbedded In the flow at the Intersection

of the shock and the edge. Since locally the flow at thla point

Is quasi steady, It can only be either a uonic or a supersonic

flow (as seen by an observer rldlng along the edge/shock

intersection locus). We wIII dlSCUUS the ccnaequence~ that

result from hav!ng flows of these two types.

Along the edge/shock 1 Ocug , the son 1c parameter 1s a

function of the norms I detonation veloclty along the edge,

Dme , and the shock interface angle,
F

. For a polytroplc
e
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eos, with ~ the polytropic exponent, the expression 1s

where c 1s the sound Speed, /~/ Is the magnitude of the

particle veloclty in the ?!shock-fixed frame and D.* Is the

minimum value of Dfifor a one-dimensional detonation.

If the flow is 9uper90nlc along the locus, then

disturbances from the edge can not propagate Into the

detonation reaction zone. The Interface moves faster laterally

than do acoustic waves. For this case, no boundary condltlon is

applied, and the interface does not affect the detonation.
&

As the flow turns subsonic, then D.e and + must be

adJuated so that the =onlc colldltIon, c~lu& , is

maintained. This condltlon serv~?s as a boundary condition for

the flow.

The followlng rule Is uued along the edge/~hock locus:

HOD 1tor the son 1c parameter on the locus. If Ctlulz< 0,

the flow 1s supersonic and no condltlon Is applied. When the
w

flow la either sonic or subsonic, then D.e and
4

must be
c

adJusted to satisfy the condltlon CZ-/#’/&=O.

Ekas&km-Z.mR Rumn.ks

Equation (7) Is a one-dimensional partla]-differential

relatlon that D. and
@

must satisfy If they are to deacrlbe

a two–dimensional shock. If a second relation between D..and

# can be fcund, we can convec-t this relatlon to a part lal-

dlfferentlal equation (pale),and In the process reduce the two-
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ditrienslonalshock tracking problem to a one-dimensional one.

i?or a number of cases. we have found such a second relation

between D. and (z ~~ . When It exists, this relation

contalr,s al) the necessary r*actlon-zone dynamics; the

consequences of the interaction of the chemical-heat release

with the flow. To find lt, we must solve the time-dependent

two-dlmenslcmal Euler equations. In order to solve thege

equations for complex exploslve gecxnetrles, we must express them

in terms of a natural system of coordinates that simplifies

th~lr form, In the limit that the radius of curvature of the

=hock Is large compared to the reaction-zone 1ength, the

coordlnate~ shown in Figure 2. are particularly convenient.

Bertrand curves that are everywhere parallel to the shock are

the ~ constant coordinates: the lines perpendicular to these

curves are the con~tant ~ coordinates. These coordinates are

related to the laboratory

z’= ?04-

and

carteslan frame, by

(/5)
(IL)

(/7)



The chemical rate law 1s

2’1
.#e#* =

z? ●
/28)

We have displayed or IY those terms that are necessary to do the

leading order theory In the small ~-llmlt. In the ~bove

f 1~ the density, ~
7

is the
?

-component of the particle

veloclty (at Ieadlng order & ZO and y
P &oL Zf 1s tt?e

3
~soat the shock),-particle veloclty (Z ~ 1s the pressure,

a J9
/,

the degree of reaction ( ~fi O at the shock), 2 is the

chcmlcal rate and & is the speclflc internal energy. The

above equations, the standard one-dlmen~lonal shock condltlona,

the kinematics [ Eq . (?)1 and appropriate lnltlal/boundary

conditions canpleteiy defile the two-dimensional problem that

must be solved. Even 1P tile umal]-~ IImlt, this 1s a

formld~ble task.

What we have shown rec6ntly 1s that for certain rate-law

forms (i.e., expreaslons for 2 ), the Important Iarge.-ucale

dynamics 18 quael uteady [61. We

long-scale clluturbances to the shock

G’= o(u) ~~ / )

Do = Dc; + O(g’)

cctnglde~-ed relatively

[20)

[.?/)

and two time regimes:



15

and

(2) quasi-steady dynamics f2 =&t

{22)

and 1arger.

The “fast” scale problem was necessary to treat tile influence

of the two-dimensional lnltlal/boundary data, and to descclbe

the hydrodynamic wavehead that separates the reaction zone Into

parts that are ether Influenced

As the flow evolved, the “fast”

smaller, and the disturbances to

became 1arger and quasi steady.

or i~nlnf)uenced by the edge.

sca 1e perturbatlon~ bec~e

the one-dlmenglonal state

Thla quasi--steady reg!me was

particularly simple; the Euler equat!ons reduced to the steady

nozzle equatlona [a steady cyl!ndrlcal ly–symnetr lC system of

ordinary-differential eq~atlona (ode)]

The on 1y parameter In these equatlont~, beeideo the fixed

Corlgtltut I ve parameters. are l). and M. That la, the

lnitlal/boundary data do not appear In the iargtr change

reaction-zone dyrlamlcs. In some sense then, the ~n- LE

Mkll_Y!ad . The result!nq one-dlmenalonal problem Is ulmply

the detonation “elgenvalue” problem conaldered by wood &

KlrkWoo\l

decoupled

of ad hc)c

[“;1. Since th~!propagation of the detonation shock la

frcmnthe product expanalon region, the theory is free

approxlmatlc)ns about the Influence of the followlnfij
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flow. At least this is the case for diverging detonation.

The quasi-steady problem def!nes D.<,<). With ~

specified, D. Is determined b>-solvlng an eigenvalue problem.

In addltlon to yleldlng W(K ), this solutlon also gives the

state at the end of the reaction zone as a function of~.

Thus for an important class of problems, the reaction-zone

dynamics is given by DJ#), and the two-dlmenslon~l shock-

evolutlon problem 1s reduced to a one-dlmen~lonal problem.

‘IVopoints ate worth noting. E’irqt, the D.(( ) relatlon

only contains iImlted ~;on3tItutlve Informa,tl,on about the

exploslve. The constants! In this relatlon are Integrals throiJgh

the reaction zone of this !nformatlon. Secondly, D.(<) Is

Independent of lnltlal/boundary data. Therefore, when detal led

constltutlve information about the reaction zcme Is not known

(the typical sltuatlon for condensed phase ex~lloslves), ~“uo

can b,e measured directly vla simple ste,bdy-utate two-

dlmenslondl hydro:~ynamlc experlmenta

u211na simple experiments to cal

dynamics. In turn, we can use the cal

to predict detonation wave

geometries.

Direct calculations of

polytroplc eoa, anew that the

the form of the rate law [81.

gtato- Independent rates with

root depletlon

Thus ‘pe

brate the

brated C-(

evolutlon In Ccmp

D.( ~ ) performed w

have a way of

react ion-zone

~ ) relatlon

ex explcmlve

t.hthe simple

form of the rully 1= sansltlve to

~alcul..~tlonawerB done for tWo

different depletion forms; square-



and simple depietlon

Tne D.(x) rule for Eq. (25) is

while for Eq.

The constants

Dn= /.&k’,
(26) we have

D 49
=/ +jw4k’J

< and
P

are not to

/27)

6?8)

be confused with Whitham’s

curvil lnear coordinates. D.~ Is set ta one. In the next

section, we give a brief tutorial that descrlbe~ how this theory

can be appl led to explosive engineering design problems.
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The simplest time-dependent problem that can be done Is the

congtant-veloclty detonation or “Huygens” construction for a

dlverglng detonation. For convenience we take D~ = 1.

Equation (7) then becumes the simple ~-u equation

for the shock angle (see Figure 3) .

)

$’29)

where
a is the value of d at the edge (i.e., at f =0).

Eqllation (29) states that #
= constant along the

characterl~tIc lines f. ~@$-$$~t ~ constant, that is

#“d
If we consider a tlow where the two-dimensional shock is

convergent lnltlally, then the Inltlal 9$ang.~, ~ , 1s a.

decreasing function of the lnltlal arc length, }’ . Such a

flow looks compressive, In the sense that the characteristic

Ilnes are convergent . After a flnlte time, some of the

characteristics cross one another and the solutlon becomee

multl-valued. Physically, the rule D- = 1 does not apply to

a convergent detonation, so we Will not consider this case

further.

When the two-dimensional shock 18 lnltlally divergent, the

Inltlal angle 1s an increasing functlcn of arc length, and the

characteristic 1Ince are rarefactlon--lIke. An example of a

divergent-wave problem that la often encountered In rlealgns Is

mnowri In E’lgure 4. It la a prototypical example of a dlverglng

detonation that features the diffraction of the detonat 1c)n
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(i.e., the “shadow zone” prob! em). The left-most vertical llne

Is a symnetry planei the lower horizontal llne and the upper

clrcu)ar arc are the edges of the explosive. The wave Is

inltla)ly circular with a radius R=. Since the wave 1s

perpendicul a~- to the horizontal edge, the flow along that

edge/shock locu~ i~ p~onlc, and the edge does not influence the

shock evolutlon. When the expanding wave first reaches the

circular boundary, the flow along the upper edge/shock loc~s is

supersonic. It remains sbpersonlc until the detonation reaches

the point where the dashed line Is tangent to the arc. The

region above the dashed line 1s not In direct line of sight of

the lnltlai data: It 1s a “shadow zone” . Dlffractlon 1s the

process that allows the wave to spread Into this region. The

solutlon In this rcglon is detormlned by the boundary data

mpplled along the circular edge.

In both rwglons of the problem, the solutlon takes a

simple form. The great advantag; of

methods 19 this slmpllclty of repre

shown in Figure 4, are free of

our formulation over older

Sentatlon. The calculations

reaction-zone effects. We

Cnnglude th!e @ect.i.nnlay ahou!ngl how daton~t!nn flvnamlr--e.hnck _, .._ . . ..-—

can be used to include the Important flnlte !!!Izereaction-zone

effec~s for this example.

We assume that the reaction-zone dynamics la given by

Eq.(27)

D Q “/”dti

and lntrod~l-ethe change of varlnble

(3/)
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where 9$~ is the angle that the tangent tu the edge makes with

the reference dlrectlon & . $Wbstltuting tinese Into the
#

kiriematlc equation [i.e., Ea, (7)1, yields a ‘Btiiglers”euuation

as the propagator for the shock. The independent variables in

Eq. (32) are scaled time (t] and scaled arc length <x). The

flnlte Iength reacticn-zone effects enter this equation as the

transport term on the right-hand side. This Is slmllar to the

structure of wave-hierarchy probi?ms that arise in one-

dlmenslonai wave propagation problems in reactive materials

[91. The second term on the left-hand side represents the

diffraction effect. Equatlcn (32) 19 d one-dlmenslcmal

parabolic pale. In the quasi-steady llzilt,the reactivity acts

to smooth the shock locus.

Equation (32) was solvpd nunw~-lcally for the design

problem shown In Figure 4. A mesh was used with Onc thousand

point= along the shock. The computat.lon time was one minute on

the Cray-1 aupercanputer. The result~ of the wave tracking

calculation for a set of parameter values that hlghllght the

flnlt*-length reaction-zone effects are shown in Figure 5.

The important parameters In ‘ihlscalculation are (@/R=)

the ratio of the reaction-zone length pi3raITi8teL’ to th- radiua

of the booster, and (R~/R~) th,?ratlu of the boaster to the

edge radius. ~he dashed contnura correspond tu the standard

“Huygens” construct Ion studied !n FIWre 41. The dotted

contours uhow the cyllndrlcally e:(pandlng flnlte-length
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react Ion-zone wave without any edge effect. The solld contours

show the complete DSD calculation, Incluaing the edge effects.

Although the results shown in the figure speak well for

themselves, a fe’~comments are In order. Even in regions of

the flow that are not influenced by the edge, the finite-length

reaction-zone effects cause the detonation to lag behind the

“Huygens” wave. Near the lower edge, the complete DSD

calculation 1s strongly curled back. Along this edge, the

phase velocity of the detonation wave 1s lnltlally lCW, but as

time passes It builds back to that for a cyllndrlca]ly expanding

wave . A!ong the upper surface. no edge effect 1s observed until

the detonation wave passes into the “shadow zone”. After this

occ’lrs, the deton~tlon wave 1s contin\Jally undergoing wave

diffraction. Since t;~e phase velocity at the edge quickly

reaches a steady value that 1s we] I below D,), the curl back

1s more pronounced In this region than at the lower edge. The

value of this veloclty 1s a function of the radius of the upper

exploslve/vacuum Interface.

We have deve)oped a theory for propagating two-dimensional

detonation shocks in ccunplex exploslve assembles. The three

components of our method are;

(1) shock kinematics [ Eq. (7)1.

(2) boundary condltlons [ Eq. (11)1 and

(3) reaction-zone dynarnlcs [e.g., Eq. (2-?)1.

in sspirlt lt Is the detonation analog of Whltham’s Inert ohock
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propagat 1on theory, geometrical shock dynamics. It 1s a

rationally derived theory that applies when the radius of

curvature of the detonation shock is large compared to the

reaction-zone length. A fully nanllnear theory, !t describes

the large amplltude changes in

shock that occur over long times.

The DSD method that we’ve

the two-dimensional detonation

developed is a powerful tool

that can be used to efficiently model reaction-zone effects in

numerical simulations of detonation. Using this method,

typical exploslve design calculations can be performed with

about one minute of supercomputer time. This 1s to be compared

to the tens of hours that are required for a modest resolution

full numerical simulation of the problem. In additlotl to the

direct computational benefit, this theory also increases our

undergtandlng of time-dependent two-dimensional detonation.

For example, this theory defines the relationship between the

detonation wave pha=e veloclty and the radlu~ of the exploslve

edge In the “shadow zone” .
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Figure (1) A schematic diagram that shows how
chemical/mechanical energy are transported lateral Iy through
the reaction zone. The klnematlc candltlon 1s applled aloniz
(l), boundary conditions are applled at (2) and the reactlon-
zone dynamics describes the flow along (3). To leading order,
the reaction zone 1s insulated fran rarefactions from the rear.

Figure (2) The lntrl~slc-coordinate syste that was used in
the calculation. The shock curvature 1s ~- 3J~

and

?~= 2.4-y-# ~ f-f=~’”.vs.~+.
I

Figure (3) Intrlnslc coordinates and shock kinematics. The
Independent variables are arc length (~ ) and time (t), while
the dependent variables are

#
the normal shock velocity (D.)

and the shock normal angle~( ). The curves > = constant are
normal to the shock, and ~= Is the angle between the tangent to
the edge and normal to the shock.

Figure (4) A prototypical dlverglng detonation problem. The
wave Is propagated with D- = 1, a “Huygena” construction.
Below the dashed line, the wave 1s free of boundary effects and
expands as a circle. Above the dashed line, the wave shape 1s
determined by applying the sonic condltlon along the radius R~
circular edge.

Figure (5) The DSD calculation of the example conaldere in
Figure 4. 2The reactic ~-zone dynamics r~le was D. = 1 -~’
where the magnit~de of & 1s shown. Three calculations ar~
dlaplayed x

—-—. —. Dn=l “Huy ens”,
- - - - - .--. Dm = 1 -d A? circularly expanding wave and

— the full DSD calculation.
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Figure (I) A schematic diagram that ahowe how
chemical.’mechan1cal energy are transported ]aterally through
the reaction zme. The klnematlc condition 1s applled along
(1), boundary conditions are applied at (2) and the reactlon-
zone dynamics describes the flow along (3). To leadlng order,
the reaction zone Is Insulated from rarefactlons from the re~r.
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Figure (3) Intrinsic coordinates and shock kinematics.

Independerit
The

variables are arc length <~) and time (t), while
the dependent variables are the normal veloclty (D-)
and the shock normal angle ( @ ). The curve~h~k= congtant

4
are

normal to the shock, and Is the angle between the tangent to
the edge and normal to the shock.
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Infraction region

line of sight

Figure (4) A prototypical dlverglng detonation problem. The
wave 1s propagated with D,, = 1, a “riuygene” conetruct ion.
BOIOW the dashed line, the wave la fr~e of boundary effects and
expande as a circle. Above the dashed IIne, the wave shape 1s
determined by applylng the son 1 c cond!tlon along the radlua R~
circular edge.
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Figure (5) The LJsilcalculation of the example coneldered in
Figure 4. The react ion–zone dynamlcn rule wti Y I?,. = i - ~~ ,

where the ma~n 1 tude of (x IZI shown. Three calculatlohs are
displayed :

-.—.—. — D,.- 1 “Huygens” ,
---- ---- D,,~ 1 -<K circularly expanding wave a,~d

the full DSD calculation.


