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Classically Exact Surface Diffusion Constants
at Arbitrary Temperature

Arthur F. Voter and Jennifer M. Cohen

Theoretical Division (T-12, MS J569)
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

An expression is presented for computing the classical diffusion constant of a point
defect (e.g. an adatormn) in an infinite lattice of binding sites at arbitrary temperature. The
transition state theory diffusion constant is simply multiplied by a dynamical correction
factor that is computed from short-time classical trajectories initiated at the site bound-
anies. The time scale limitations of direct molecular dynamics are thus avoided in the low
and middle temperaiure regimes. The expression results from taking the time derivative of
the particle mean square displacement in the lattice-discretized coordiiate system. Appii-
cations are presented for surface diffusion on fce(100) and fee(111) Lennard-Jones crystal

faces.



I. Introduction

Moiecular dynamics (MD) simulations have played an important role in the under-
standing of surface diffusion processes[1]. Single adatom diffusion constants can he com-
puted by simply integrating the classical trajectory of an atom adsorbed on the desired
crystal face, where the crystal is modeled by a finite cluster of atoms with periodic bound-
ary conditions in the two directions parallel to the surface. The adatom diffusion constant
(D) is then extracted from either the time derivative of the mean square displacement or
from the time integral of the velocity autocorrelation function. Because surface diffusion
is an activated process, this approach is limited to temperatures high enough, relative to
the diffusi \n activation barrier, that the time between adatom diffusive jumps is short
compared to the computer simulation time. Toller et al[2] have approached the diffusion
problem by examining in detail the phase space properties of the saddle surface represent-
ing the barrier between two binding sites. In this way, they derive an expression for the
true crossing rate of a diffusing particle, correcting for dynamically correlated recrossings
of the oarrier. However, no account is taken of multiple jumps that lead the particle to
therinalize in a distant binding site. This type of event can be important, as will be seen
below. At low temperatures, a different method can be eraployed(3], that exploits the
rare cvent nature of the diffusion process. In this approach, D is first approximisted by
transition state theory[4])(TST). That is, the rate constant for escape from a surface bind-
g site is taken as the average rate at which site to-site crossings occur, and these crossings
are assumed to be directionally uncorrelated. This TST diffasion constant (D75T) ean be
compnted using equilibibin methods rather than trajectones. The classieally exact difln
sion constant can then be obtained by corvecting DTS for cornrelated dynmieal events

2



(e.g., quick sequential jumps in the same direction by an activated adatom) using short-
time trajectories that are initiated at the TST boundaries dividing the binding sites. The
dynamical corrections formalism for correcting TST rate constants, whether for a two-state
system[5] or for a many-state system|3], is valid only in the low temperature regime, in
which correlated dynamical events occur on a much shorter time scale than the reactive
events. With these two methods available for computing D at Ligh temperature and low
temperature, a difficulty arises in the intermediate temperature regime. Here direct ND
is unfeasible and the dynamical corrections formalism is invalid.

A solution to this problem has been developed recently[6,7]. Although dynamical
corrections to TST rate constants are not valid =xcept at low temperature[3], it can be
shown that dynamical corrections to diffusion constarts are in fact valid at any temperature
for which the lattice of biuding sites is well defined[7]. The purpose of this paper is
to present a brief overview of this method and its application to surface diffusion. In
Section 11, we summarize the der:vation of the method. In Section III, we demonstrate its
application to surface diffusion by calculating D for adatom diffusion on the fcc(100) and

fcc(111) surfaces. These results are presented in more detail elsewlhere[7,8).

Il. Theory

The high-teimnperature dynamical corrections derivation has been presented in two dif-
ferent ways[6,7]. Starting from the low temperature dyunmieal corrections formalisin{3.5].
which gives the rate constants for transition between any two lattice binding sites (con
nected or not), it can be shown that the particular linear combination of these rate con
stants comprising the diffusion constant is validl ot high temperature[7]. This results fion

phase cancellntion of the time dependent part of the expression for 1. Here we veview the



more direct approach[6], in which an expression is derived directly from the mean square
displacement of a tagged, diffusing particle.

We take as our system a particle diffusing in an infinite lattice of binding sites. Be-
cause these sites cover the physical space of positions aailable to the diffusing particle, a

discretized coordinate for the diffusing particle can be defined by
[~ <]
R =) 6;() R, , (1)
J

where
6,(t) = 8 {F[RW®)]} . (2)

Here 8{ } is the standard step function, R(t) is the configuration-space coordinate of 1he
particle at time t, R, is the average position for the particle in state j, and F;(R) is a
continuous, differentiable function with the property that

> O0if R isin state j

F,(R) { = 0 if R is on the boundary to state j (3)
< 0 if R is outside of state

Thus, RY(t) takes on the value of the average position of the state in which the particle
resides at time t. The time denivative of the discretized coordinate for a particle passing

from state 1 to adjacent state j is given by

d RA(1)
dt

=u,(1) &(1) [R, - R}, (4)

where v, (1) 1s the veloeity coniponent normal to the boundary at R(1),

VEF,-v
v, = - e (H)

|V F|



(vi is positive if the particle is exiting state i), and §;(t) is nonzero only at the boundary

to state 2,

6i(t) = 6 {FR(1)]} |VFR([R(Q))| (6)

(6{ } is the Dirac delta function). This convention matches that used previously[3].

The derivation proceeds as follows. The diffusion constant can be written a-

[

D =5 < (IR®O-RE)) , (7

aL

to

where a is the dimensionality of the space and t — ¢, is assumed to be longer than the
memory time of the diffusing particle. The brackets (...) indicate the usual canonical
ensemble average. [An average over a weighting function (w) other than e #H will be
indicated by a right-hand subscript. One restricted to the configuration space of state 3
will be written (P);, where w; = 6,(0) e~#H|. Performing the time derivative in Eq. (7)

over discretized coordinates (setting to = 0) leads to

D=L (2[%“,— . [R(1) - R(O))
= %Z X Z(‘f(ﬂ)b.(ﬂ) v(0) [R, - R [R."'(!) -ﬁ,,]). _ (9)
' ]

Here y, is the mole fraction for state v

o (000) (10)
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Gj-t(O) is defined by 0?(0) = 60;(0+) + 6;(0-), and R,; = 2(Ri + R,). The sum over ;
picks out all the states adjacent to state i, and 01-*(0), in conjunction with 6,(0), picks out
only those trajectories that are poised at the i-j boundary at t = 0.

Equation (9) gives the diffusion constant in terms of trajectories that are at the TST
boundaries at ¢t = 0, thus overcoming the rare-event problem at low temperatures. More-
over, as long as these trajectories are run long enough that the particle memory is lost, the
expression is valid at any temperature for which the lattice of binding sites is well defined.
We now manipulate Eq. (9) to arrive at a more computationally convenient form.

The TST rate of escape from state i is given by[3,5]

wrsT _ {1vi(0) 16,(0) )

22X, (11)

Defining the weighting function for a Maxwellian flux «f particles through the TST border

to state 2,
wark, = 6,(0)6,(0)}v,(0) e 5 | (12)

k',r_?"r can be wrnitten as

kTST _LwMF. dR dp

J v dR dp (13)
Substitution of Eq. (13) into Eq. (9) yields
p- 1 DT > (0*(())-'~"£(—))~ R, - R [RYH - R, Darp (14)
P R : , oy . YT

By synnnetry, the s nnmation over 1 need only span the basis states of the periodic infinite
system. The mtegration over all space, e, i the definttion of i Fgo (10), shoulit be
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similarly restricted to this subspace of representative states. Once the TST boundaries
have been specified, the evaluation of Eq. (14) involves computing k757 for each unique
state, e.g., using configuration-space Monte Carlo[9], and integrating MD trajectories that
are initiated at each unique TST boundary. The trajectory initial conditions can be ob-
tained by sampling from a configuration-space Metropolis walk[10] restricted to the TST
boundary. For the diffusing particle, the initial momentum along the direction normal to
the TST boundary is chosen randomly from a Maxwellian-flux distribution, as dictated by
the weighting function in Eq. (12). The momenta for other the coordinates in the sys-
tem, including the two perpendicular coordinates of the diffusing particle, are randomly
selected from a standard Maxwell distribution. These trajectories are then integrated long

enough that the memory of the initial conditions are lost, after which time D from Eq.

(14) maintains a plateau value with statistical fluctuations, as shown below.

IT1. Lenuard-Jones Surface Diffusion

The method outlined above is now applied to the problem of adatom self-diffusion
on the Lennard-Jones fcc(100) and fce(111) surfaces. The calculations summarized in
this section are described in detail elsewhere[7,8]. To perforrm MD to high accuracy, the
Lennard-Jones potential is cut off smoothly using a spline between r = 1.50 and r =
2.50(11]. Each surface is modeled using a finite cluster of atoms with periodie boundary
conditions parallel to the fice, with the system size governed by the 2.5a cutoff distance, In
both the TST and MD shimulations, the atoms in the top Inyer of substrate are free to move
while deeper layers were hield fixed. The binding site definitions [see Eq. (3)] are dependent
only on the adutom coordinates, with the substrate top layer, equilibrinm positions defining
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the vertices for a square lattice of binding sites on fcc(100) and a triangular lattice on
fcc(111), as shown in Fig. 1. For the (100) surface, there is only one unique binding site.
However, the (111) surface has two types of binding sites, corresponding to the fcc and
hep positions for seeding the next substrate layer. Thus the evaluation of the diffusion
constant for the (111) surface requires two sets of trajectories: one initially entering an fcc
site and the other initiall; entering an hcp site.

Figure 2 shows the resuits for fcc(100) at T=0.345 (all temperatures and times are
in Lennard-Jones reduced units). This temperature, roughly half the melting point, was
chosen to illustrate that Eq. (14) can be successfully applied even at temperatures in the
direct MD regime. At lower temperatures, the method is even more easily applied because
a smaller number of uncorrelated jumps would be expected to occur on the time scale of
the dynamically correlated events. This, in turn, leads to better statistics. The evaluation
of Eq. (14) at t=0 yields the TST diffusion constant. In the case of one unique binding

site,

DTST = 210 kT3T2 (15)
where o is the space dimensionality and [ i1s the distance between adjacent binding sites.
Using the Monte Carlo metliod mentioned above, kI'57is computed to Le 0.10+ .01. From
this we obtain D(t = 04) =D75T= 0.035 £ .006, as shown in Fig. 2. Values at positive
times were computed by means of Eq. (14) with a set of 1948 trajectories. The correlated
dynamical events have ended by approximately = 14, whiclh 1s comparable to the average
time hetween adatom jumps at this temperature [(K797)71 = 101 4 0.4). For comparison,

the vahue of D computed from direct MDD (0,038 + 0.004) is indicated on Figo 2. This was
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computed from Eq. (7) using trajectories that were integrated for the same length of time
as the saddle point trajectories, but whose initial conditions were not confined to the TST
boundary. The two methods for computing D are seen to agree.

Figure 3 shows the temperature dependence of the dynamical correction factor, D/DT5T ]
At very low temperatures, D/DT5T= 1, because the adatom crossing the saddle point has
virtually no excess energy; subsequent interactions with substrate atoms, which on aver-
age will lower its energy, leave it with too little momentum to cross another boundary.
It should be noted that if a position other than the symmetric saddle point were chosen
for the TST boundary, D/DT5Twould be less than unity at T = 0. [Howcver, Eq. (14)
would still be valid.] At high temperatures, D/D75Tincreases with T. This arises from
the increase in excess energy of the adatom, which gives a greater number of correlated
events in the form of directionally aligned multiple jumps along a given direction. This has
been previously observed in analyses of direct MD trajectories[12-14] for both the surfaces
studied here. The effect is more pronounced on the (111) surface because the diffusion
activation barrier (E4 =~ 0.30) is murh lower than for the (100) surface (E4 =~ 1.55).

An effect that has not been previoucly observed is that D/D7T>5Tdips below unity for
fcc(111), with a minimum at about T' = 0.04. This results from the fact that at lowv
temperatures, with the substrate atoms near their equilibrium positions, an adatom his a
reasonable probability of entering the binding site nearly perpendicular to the two-atom
TST “gate,” bouncing off the substrate atom at the far side of the binding site, and re-
tracing its path back through the same TST gate. Inspection of Eq. (14) shows that

this contributes negatively to D, In contrast, the type of double jump that increases
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D/DT5Trequires that the adatom change direction by 60°, whil: maintaining enough en-
ergy to clear the next saddle point. This type of event does not dominate until above

T=0.1.

IV. Conclusions

We have demonstrated that rigorous, classical surface diffusion constants can be com-
puted at arbitrary temperature using transition state theory augmented by short-time
classical trajectories. This method, which can also be applied to solid state diffusion, thus
represents a unified approach to computing point defect diffusion constants. In the fcc(111)
and fcc(100) examples presented here, the dynamical correction factor, D/DT5T | increases
with T at high temperatures, as expected from considerations of the energy of the adatom
relative to the diffusion barrier. On the (111) surface, D/DT5Tshows an interesting dip

below unity at low temperature, caused by concerted bounce-back recrossings.

10



References

! For a recent review, see J. D. Doll and A. F. Voter, Ann. Rev. Phys. Chem. 38, 413
(1987).

2 M. Toller, G. Jacucci, G. DeLorenzi and C. P. Flynn, Phys. Rev. B 32, 2082 (1985).

3 A.F. Voter and J. D. Doll, J. Chem. Phys. 82, 80 (1985).

4 S. Glasstone, 1£. J. Laidler and H. Eyring, The Theory of Rate Processes (McGraw-
Hill, New York, 1941).

5 D. Chandler, J. Chem. Phys. 68, 2959 {1979); J. A. Montgomery, Jr., D. Chandler,
and B. J. Berne, 1bid 70, 4056 (1979).

¢ A. F. Voter, Phys. Rev. Lett., submitted.

T A. F. Voter, J. D. Doll, and J. M. Cohen, to be published.

& J. M. Cohen and A. F. Voter, to be published.

® A.T. Voter, J. Chem. Phys. 82, 1890 (1985).

10 N. Metropolis, A. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller, J. Chem.
Phys. 21, 1087 (1953).

1 A. F. Voter, Phys. Rev. B 34, 6819 (1986).

12 3, C. Tully, G. H. Giliner and M. Skugard, J. Chem. Phys. 71, 1630 (1979).

13 M. R. Mruzik and G. M. Pound, J. Phys. F. 11,1403 (1981).

14 G. De Lorenzi nnd G Jacueer, Surf. Sei. 116, 391, (1982).

Figure Captions

FIG. 1. Top Inyer of the sabstrate clusters used to conpute diffusion constants for the
Lenmard Jones system (o) fee(100); (b) fee(111), vith hep sites indieated by small cineles,
The TST boundaries for the mingue buding sites nve shown,
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FIG. 2. Diffusion constant (in reduced units) for Lennard-Jones fec(100). D(t) from
Eq. (14) is plotted with error bars representing a 90% confidence interval. The solid line
at D = 0.038 is the direct MD result, with associated error limits indicated by dashed
lines. For the saddle point trajectories, the circles give the number of new diffusive jumps,
relative to the total number of trajectories (1948, per At = 1.56 time interval. Correlated

events are seen to end by approximately ¢t = 14.

FIG. 3. Temperature dependence of the dynamical correction factor for adatom dif-

fusion on fcc(100) (squares) and fcc(111) (triangles).
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