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and
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ABSTRACT

I)i ffusion is the transport of mass caused by molecular motion. in

this article we review recent studies of the motion of one tagged par-

ticle in (a) a static, disordered medium, and (b) a bath of moving

particles, both in two-dimensional latticea. We find in the first study

that diffusion only exists if the p~ticle-scatterer collision rules are non-

rleterministic. ln the second study we find that tl.e tw-dimensional dif-

fusion coefficient exists, apparently without a logarithmic divergenm.

We also find that several tagged- partirie collision ruhm are ronsistrnt

with t~ ~vin,; p~ticle ~w]m, ]eadillg to the non-uniqueness of thr

diffusion 4cient. ‘TheYc rmult~ are rekvant to the .qtu(iy of diffusion

in lattice gaa autamata.



1. Introduction

‘-q] show cellular ailtomaton models to he a pro[nis-Rm=nt developments .

ing alternative. rather than a replacement. to numerical solutions of partial

(Differential equations.

ln particular. there has been a lot of work in the area of fluid mechanics

‘Al several two and three-dimensional models have provided simulations that.,

agr~ extremely well with experiments. Eve+n though these microscopic ITKI(klS

involve Sewtonian particles wtlich collide elastically, the corrcspondrnrr of

t heir macroscopic behavior to the Xavier-Stokes equation is surprising. In thi:

present article we deviate from most other studies in several respects:

( 1) JVe study specifically the phenomenon of diffusion.

(2) We study gases at r=t rather than high Reynolds n!.lmber flows.

(3) We are more concerned with quantitative and qualitative changm in

behavior resulting from the modelling, rather than with agreement bet weml

models and n=ality.

(4) The studies here usually involve the calculation of macroscopic proper-

tim (diffusion coefficients and autocorrelation functions) from enscmt)le aver-

ages of Inicroscopic measurements, Typically, this involves Einstein’s diff~i.,1~~11

‘1 or (;r*n-Kuho formula9.equation

This articl~ will proceed as follows: in section 2 we rrvicw ttw Il]i(”rosz’)pic

origin of diffusion; in section 3 we present tht= models for ttw Iatticr Lormlt z

gas, along with some analytical results. [n section 4 we ~’xtmd the l.or-ntz

models to include moving s{-atterers. i.e., othrr l}arti~”lm. %(-t.ion .5 ron)i);in”s

the reaulta of th~ previous [w() sm-tions to complltm sill] ulations. Fi[lal!y

srction 6 contains a sulnnlary an(l conclllsions. \fIICll )f Ihr work rcpc]rtrfl

I]rrp Ila.q bfwn I,hp rcslljt of co]lat){)rat i{)n~ wilh \l.ll, Frnst , (;..1. vail \’(’lzvll.

f).tl’flllmiivm and l..l)mljol.



2. One-particle diffusion in two dimensions

The diffusion equation.

i)t n = DV2n (1)

is the archetype of parabolic diflesential equations: it describes a ubiql]itous

phenomenon in nature. In his 1?05 paper on suspended particles, Einstein 51

rclatml the diffusion coefficient G( 13rownian particles to their average displace-

ment by

< Z2 >= 2Dt (~)

\\:hen one tria to replace the random walker by a ?Jewtonian particle with a

random potential, two possibilities arise:

( 1) for a point particle moving among fixed scatterers, the diflusion co-

efficient exists, except for overlapping square scatterers. In the latter cast=.

retracing events lead to a vanishing diffusion coefficientel.

(2) for a particle in a two-dimensional fluid, transport properties in two

dimensions (viscosity and diffusion coefficients) diverge logarithmically with

the characteristic length of the flllid. This is caused by long-time tails in ttw

vrlocity autocorrrlation function. As discussed by Pomeau and R4sibois71, t lI(J

theories Ieadilqq to these results are somewhat unsatisfactory, The problmuat ir

long -!ilnr tail can be traced back to mass and momentum conservation ‘1. ‘1’hc

r(*ii.~()[1 I hat the diffusion coef~lt”ivnt exists in case ( I ) above is that mommltum

is nut cons?rv~, leading tO a t.orrelation fun(’tioli that (]er~ys as t ‘“i+ 1‘ii

rather than t-diz,

In the next two sections WPwill construct lattic~ analogllm of thr Iwo CM(SS

l)rmentcd above.



3. Lattice Lorentz gases

( “onsifier a two-dimensional square Iatlice: we Mine directions i=O,l .2.3.

\\’e associate with them nearest neighbor lattice vectors p,. Fixed scatterers

ar~ placed randomly at the nodes with probability c. The system of many

noninteracting particim is described by the probability density in 1’-space.

~J,(n, I: {Cn}), which is the probability of finding a particie moving ii~ dircrlion

i at site n in a gi’”m configuration of scatterers {cm}. W’eassociate with cacil

site n a random variai]le with value cm = O with probability l-c. cm = 1

otherwise. The distribution function of moving particles can be obtained by

j,(?z. t) =< p,(?z. f) > (3)

where the brackets indicate an average over configurations of scatterers, Col-

lisions between moving particles and scatterers occur only at integer values of

tirne, At sllch valum the velocities are not wwil-defined. lV’Prhoos~ to Minv

J,(n, t) as the distribution function just after time t. 1 wili now describe two

of the modeis and give their respective Liouville equations.

ModeI 1: lf a scatterer is i~rmcnt. the particle velocity p, brcomcs rithrr

/),+, (jr p,_l (mo(!ulo 4), ~hach with probability 1/2.

‘1’hr I.iollville rquation is

p,(n.1 + 1) = (1 –c”)l),( n–l),, ()+;r”~,(rl - fll+:.~)+l~l(~-pl-l.~)] (“1)

ILfodel II: This mo(lrl has (ictmministic coilision rulrs. ‘rlw w’locify p,

(.tlangeg to p,_l or ~],+1 if t]lt. tilllt. strp is ()(j(i or e-,’rn, rmpcctivc!y. “1’llis1(’atis

to thr Licvlvillr eqllation

wilt’r(l r(l) -. ( -1 )’,



Lly recasting thr Liouville equation in terms of a collision and a streaming

91 one can solve it for the first model bv performing a Fourit=r-Laplawoperator ,

‘“l one ohtaills for this Illo(lc]transform of the probability for a displacement. .

the following diffusion codlicient:

((;)

For model II in a hexagonal lattice, the diffusion coefficient is given by the samr

repression as t’quation (6), without the factor 2 in the first term. For mo(iel

11, there are two complications: ( 1) the collision operator is time-dependent,

and (2) there is no equilibrium distribution. We have found that including the

possibility of reflection modifies the above result directly, not as a higher-order

corrwtion,

A final observation is that the particle-and-scatterer models descrihf d in

t his section seem to approximate better the Lorentz model with convex SI.at-

trrers, while the earlier models of Gates *’l are closer to the Ehrenfest wintl-t. rvt=

mode] which has squarr scatterers,

4. Tagged fluids

The results of the previous section can be easily extended to predict the

self-diffusion coefficient of the well-known square lattice fluid of Ilardy, de

Pazzis and Ponwau “1 (HPP).

Figure 1 shows the possible taggmi-untagged particle c(dlisions consistent

w; .i] the HPP model. AS discussed by Bin(ler aild (]’l]urll]ivwi ‘:’1, any roln -

hination of two or four- partirlr collisions from. this wt h~~ tllr cfJIlstwlIIrI~cr

that the tagged particle is

can spmk of Self diflusion.

c{wffirient is net uniqur in

rrprmentativt= of any fluid particlr; tilis is whv wr

Fr(ml this ohst=rvat ion it fldlows that tl,r ~lilTusiou

lat t i(w !Ilo(lvls.

.-)



\Ve will consider twc models: model 111 consists of collision 2.+ plus the

IIPP rules for untagged particles. while in model It’ we consider all collisions.

It turns out that the Eloitzmann level solution for the Lorentz gas can be

used to derive expressions for the HPP self-diffusion coefficient. It can be seen

from figure 1 that certain configurations of bath particles act as “scatterers”

to the tagged particle. Inserting the probabilities of such events in terms of

the concentration of bath particles. one obtains

DIII = ;(l+; C-C2 +...) (7)

and

D\v = +(1 -;C+ ;C2+... ) (8)

As in the previous section. these results should only hold for low enough

densities.

5.

In

Simulations

this section we review numerical simulations of the diffusion coefficient

for several of the models presented above.

Table 1 shows averages over 200 configurations for times up to 20 mean-free

paths. The model studied is the hexagonal-lattice version of model 1. These

results appeared originally in figure 7 of reference 14. The densities studied

are lower than 1/64, and the agreement between theory and experiment is

rxcel]ent.

“rabk 2 sbow9 averages over 3000 configurations and 5000 time steps. These

reslllts appeared originally in figure 2 of reference 1.5. Although the r-ults

for IIK-API 11 should not he expectmi to agree with t=quation (6), the general
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agram-t betwan this ●quation and simuiatiom for models I and II is quite

good.

FinaIly, table 3 ShOWS averages over 2000 configurations ad 4096 time

steps for models 111imd IV. Th= results were originally reported in reference

13. The results in tables 1 and 2 mfne from simulations in an infinite field,

while those in table 3 come from a periodically repmted 256x512 field.

The agreement between theory and simulations is exceUent, except for

model IV at high densities where a superdiffusive zig-zag phenomenon, caused

by Alternating deflections, cornea into play.

T

Density. h uation 6. Simulations(I). Simulations (II)

0.05 9.75 8.2 + 1.6 9.0 ● 1.8

0.10 4.75 3.3 ● 0.7 6.0 + 1.2

0.20 2.25 1.5 * 0.3 4.5 ● 0.9

Table 1: Density of scatterers, equation 6, and simulation for models I and

II.

E

llenaity

2-10

2L8

2-0

2-4

Equation 6, modified. SimuMionu (II)

1024. 1096. ● 100.

64. 60. +6.
I

16. I 15,0*2. I

‘hblo 3: Ihsity of scatterers, equation 6 modified for hexagonal lattice and

simulation for model 11.
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- Densityl

0.0625

0.12.5

o.~50

0..500

t

Equation 7. Simulations (III). Equation 8. .Simulations (IV)

8.?3 8.8 * 0.7 2.55 ~.~5 * o~

4.95 51* 0.4 1.25 1.4 ● 0.2

3.3 3.5 + 0.3 0.61 0.63 + 0.1

3.8 ~.~ * O.q om3~ 0.73 ● 0.1

Table 3: Density of particles, equation 7, simulations for model III, equation

8 and simulations for model IV.

The diffusion coefficient values for model II are only valid for short times

As stated in section 3, for any configuration of scatterers the phase space

decomposes into independent orbits. The particle recurs with probability one,

which leads to abnormal diffusion through the mtxhanism of orbiting events

which is discussed in reference 6. In the wind-tree model it is a different type

of event that leads to abnormal diffusion. The fact that deterministic Lorentz

models behave diffusively only

seems to be exclusive to lattice

is given k reference 14, and a

given in reference 15.

for times smaller than that of a typical orbit

models. A typical distribution of orbit lengths

mean-square displacement versus time plot is

Reference 15 also contains preliminary reports of me~urements of the ve-

locity autocorrelation function, C(i) =< u(0)u(t) >. For the Lorentz model

we find C(t) z ta. The values of 0 are -1.5 +0.3 for model I and –1,0 + 0,2

for modal II. Preliminary simulations for the tagged- ~article models show ex-

ponential decay of this function.

Finally, the diffusive behavior in the taggd-particle systems smrns to per-

sist for times longer than what it takes the particle to traverse the system.

8



.41s0. v c find no logarithmic divergence of the diffusian coefficient. The latter

r~sult~ come from simulations in a 32x32 field.

6. Summary and conclusions

In this paper I have reviewed several lattice gas models for diffusion. coef-

ficients of th=e models. Comparison of simulatio~s to higher-order analytical

161will be available in the near future. Theexpressions for one of these models

simulations for particiescatterer models show that diffusion exists for proba-

bilistic collision rules; for deterministic rules, closed crbits equivalent to the

infinite limit of orbiting e“~ents cause abnormal diflusion. Alternating left-right

defktions can also cause zig-zag e~~ents which for short enough times increase

the diffusion coefficient.

For tagged- untagged particle models, the most striking result is that a

number of collision rules are consistent with the undifferentiated particle col-

lision rul-, leading to tlie non-uniqueness of the self-diffusion coefficient. The

results in the previous section point to the existence of diffusion in a tw~

dimensional fluid. The origin of this phenomenon is unknown; a possibility is

mode coupling with the ill-defined viscous mode in the HPP system. Perhaps

recent simulations in a hexagonal lattice tagged-particle system will help in

clearing this issue* 71.

1 hope that the models and results reviewed here will provide the basis for

rigorous studies in the high-density behavior of lattice gas models.
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Figure 1

Taggd-untagged collisions that can be derived from the HPP modei.
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