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In this we derive one space dimensional. reduced sys-
tems of eq t (l- Dclonmnxieh)fo:ﬂmelud:.t‘mcjm.

laws and a Maxwell-Jeffreys constitutive law for an incompress-
ible viscoelastic fluid. First, we exhibit exact runcarions to a fi-
nite, closed syster1 of 1-D equatdons based on classical velocity
assumptions of von K&rmdn [1]. Next, we demonstrate that the
3-D free surface boundary conditions overconstrain these mun-
cated systems, 30 that only a very limited class of solutions ex-
ist We then proceed to derive approximase I-D closwe theorie;
through a slerjer jet uyuq)mdcmun'.combi.nedwlduppm-
pmmdeﬂnidomofve.lomry preasure and stress unknowns. Our

nonaxisymmetric 1-D slender jet models incorporate the phys-
ical effects of inertia, viscoelasticity (viscoaity, relaxaton and
retardation), graviry, surface wasion, and properties of the am-

order equadons in the present theory by an a poste
riori to leading order of some of these cfects, and
a redu-don A

Solutions of the lowest order of equarions in this

In viscoslastic regimes, our model predicts swell of the elliptical
extrudase and dissortion of the elliptical extrudase cross section
from the dimensions of the die aperture. Higher order correc-
tdons w theso solutions can be examined, to et the validity of
the lowest order equagons and obtain more detalled
information oa the jet vior.

Thers are at kcast two motivatons for one space dimen-
sional (1-D) models of fres, 3-D fuid jews Pa'u:l‘ﬁ‘eu'tnlnp-
plicadons such as lnkju
spinning, there is noedwrlprm\mwpndicl experimental

j;h‘phumnu th a simple and ractable sysem of equatons.
has heen a dominant theme In the his of the subject.
Secondly, in light of the measured success of | -D models in cer-

tain specific jex it is narural o ask why the lower
dimensicnal gre abis 0 model 3-D phenomena. Cin
these 1-D models bs derived in some approximate sense from
the full 3.D free boundary du:;pmum(b.v.p.)? .
purpose in papa to answer this ques-
ton. Wel ")Zerl lD mouels for free jets from the 3.D free
surface b.v.p.; and 2°) clarify the sense nwhich(heleod
cllnpproumlnlnd are consistent with the full 3.D b.vp..

|
i
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answering this quesdon, we find that exisong 1D moaels cor-
respond to particular specifications of fluid and flow properues
within one comprehensive theory.

The 1-D jet models are a rrunca on of the full 3-D system
(which has infinite modes in three space and one ome dimen-
sions) to a finire nunber of unknowns (modes) in one space (ax-
ial coordinaie) and one rime dimensions.

Analogous muncations occur in all numencal sumulaoons
of 3-D fluds. For example, in specaal methods one chooses
10 Juncate at some finiie term in the Fourier mode expansion.
In specific applicanons, ofien one exploits special propertes
and/or symmemries of the full 3-D b.v.p. 10 ouncate modes
and/or spatal dimensions. Two examples are the exacr rrun-
carion 10 vortex sheet and voriex layer equations for 3-D Euler
flows, and the von Kdrm4n (1] velocity profile assumpdon for
3-D Newtonian flow between rotatung concentnic cylinders.

When the cuncaton scheme i3 nor an exact reduction of the
full system, an art anses as 10 the best wsy 10 “close the sysiem”™
and produce the ;ams number of equanons as unknowns (a clo.
sure model). Rarely can or does one quaiify the sense in which
a truncated, non-exact closure model approximaics the full sys.
tem. The proof is usually by comparisun with experiments. A
novelty of the present application to 3-D jei flows is that we de-
duce asympiorically valid, [.D clos:re models from the full 3-D
bvp. The asymprodics is based on a slender jet genmetry.

Throughout this paper we refer to the unknowns as modal
variables, by analogy with amplitude variables in Fourier mode
expangions. We then refer to the reduced equations that govern
these unknowns as modal equarions.

The remainder of this paper is organized as follows. In Sec-

on I we discuss an exact ouncaton for noo-Newtonian ua.
wounded flows to a finite closed syrem of 1-D modal equanons.
\This exact quncaton will arise later as the "zeroth order” basis
of our perturbadon theory for bounded, free surface flows.) We
then note that when a free surface is intoduced, the 3-D .nter-
facial tnmd.n'y condidons overconsmuin the previously closed
rytwm ol exact a ong, so tha! valy trivial solutdons exist
~IV we thow tha: an approximate 1-D clo-
mlbecryca.nb-eu]vuedmmnpprommmhn'hmn In
essence, we exploil the exact |-D closure model of Section IJ in
8 perturbados expansion, with & slenderness oo as the pertur:

badon perameter
Therw is a lorg of approximate |-D models for free
Newtonian and jets, often referred 10 as the "thin fil-

ament™ or “aendemess” approxitnadon, or “nearly
elon " lowa. The ariginal formuladoy is due o Ma-
wvica & Pearson [2]Lnd\euudyo(ﬂburptnnin| Many au.
thars bhave since adopted their pauurbador, scheme, which is
Enﬂyfwmldmﬂwpum’bmonpmhnondendﬂed
molmyrpedﬂcdlnnndmleuﬂowaﬂu&dm.
This bearistic aspect of the meu'ycl.oudnlpwu‘:momofthe
no ph

cnl.:honnzolmmpdw v;udlrymuu[flgﬁ;\

models is the exisdng models are presented and
applied under a v riori resmicdons (e.g., 1n the ab-
00 of one or mare dma . shear stresses, gravity,

(Aswond;rouzol 1-D jet models are based on posited self-

consistant |-D Is (cf. [3]). The —onnections detween the

ted |-D models and derivations from the 3:D free surface
value lem are discussed in [4))

In Secdon woda’ivelntmpmtk:allyvlhd,lbd\o-
ory of slender jet closure models is comprehensive,
n that we begin with the full 3-D free surface boundary value
problem, with the folowing phiysical effects incorporated: dme

. shear stesses, inerdal effects, viscoelastciry (vis-
cosity, relaxadon and retardation effec), gravity, surface ten:
tion and propertes of the unbient fluid as they a mlhe
froe surface interfacial condidons. In this way we 3: elop
general context under which every 1-D jet closure rnoael (wuh
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these physical effects, consttutive law and choice of modal vari-
ables) is deduced.

As is shown in Section V, existing 1-D jet theories corre-
spond in this general framework to the lowest order equations
in the asymptotic expansion, with a posteriori suppression 10
leading order of many of the physical effects. We thereby de-
rive previous |-D models from the 3-D fres surface boundary
value problem and clarify the sense of the 1-D closure model
approximation.

In addition, we have deduced new, asymptotically valid,
1-D closure models for viscoelastic free jets. Onc particular
new feanure is the extension to elliptizal surface symme-
try. Moreover, higher order corrections are available from this
analytic framework, both from within a specific model and due
to physical effects that are suppressed in the lowest order equa-
tons.

We begin with the equations of motion for an arbitrary, im-
compressible 3-D condnuum:

ﬂ(% +(v:-V)v) = pg + dIvT,
Te-pl+T =TT, divyv=0 1)

Here v is the velocity, T is the determinate pant of the stress
wnsor T, pluheoorsuum'reumpuunmaudenu (u-
sumed constant), and gnavitadonal body force
nom(lln)nnd(llb)mbdmeehmforumrmmnmm
and angular momentum, and (1. Ic) is the incompressibility con-
staint

A consttutive law must be adjoined to determine the stess
T. In this we consider viscoelastic fluids and adopt a
Maxwell-Je constitutve model:

t+ .\.%1‘ -2 + .\,%D). 12)

The operator must be suitably invariant; we choose a one-
parameter farmly with rate parameter e,

%(o) - (% +v.VXe) + (a)W
- W(s) - a[(«)D + D(o)], a3

v = [30(s,8) - y¥(a,b)ln
+ (yea(s, t) + 39(s, e + v(s, ). (1L1)

This is the most general linsar polynomial in 2 and y which
huuﬂu:ﬁm with respect to the (3,s) and (y,s)
E mwnmmnmymew
... syumﬂry all planes conaining the s axis, 30 that

. Here 3,y, s denots the usual ian coordinates,
o,U - l 2, 3)denouuncomapondln|huvocmmdq

¢ The tuncated expansion (I1.1) is presented for the
of exhibiting exacr reductions of the 3-D problem. For the
asymptotic scaling of Section VI, the velocity is assumned only o
be expressible as a series in transverse coordinates 3,y , which
agrees with (I1.1) to iinear terms in the expansion.
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represents the axial direcoon. Consistent with the
(11.1), we take the gravitational body force pg to be along e3.
In addition 10 the velocity ansatz (11.1) we assume that suress
and pressure are also given by muncated power series in z,y.
Subsuruting these expansions into the 3-D field equations (L.1),
(1.2) and equating coefficients offowers of z,y yields the exact
closure mode’ of 28 equatons in 28 unknown functions of 5 and
t.involving five arbitrary functons of ¢ under three constraints
(see [5) for details).
We now assume that the fluid is bounded by an elliptical free
surface, given by

12 2

Yy
=], 112
a0 AaD ({-2)

Each cross section 5 = =y is an ellipse with semi-axis l,f.‘,’.fd”
#1.¢2, which deform in 5 and t. See Figure 1. The surface
unknowns ¢,(s,t). ¢7(s,t) are additional modal variables. To
complete the 3-D viscoelastic free surface boundary value prob-
lem, we adjoin to (1.1), (1.2) the interfacial boundary conditions:

1) The kinematic boundary condirions: The free surface is con-
vected with the fluid. From the vclodlztmmz (TIL1) and free
surface ansatz (11.2), this condidon yields:

$as+ Véas = basa, a= 1,2, (¢} - ¢ =0. @)

The second condition is very restrictive: ¢ither there is no
swirl (y = 0). or the swirling low must be axisymmetric (¢, =
¢ and q = 7). For the remainder of this paper we restrict
the case of no swirl, v & 0.

2) The kinedc 5o condirions: Shear stresses aro agssamed
contdnuous across the fluid/ambient inwerface, whereas the nor-
mal stress is discontnucus. The jump in normal stress across
the free surface is assumed t0 be balanced by the constast -
face tension ¢ times the free surface mean curvanare x . These
condidons state:

ty —tgw —oxn, (1L 4)

where t; and t, are the stress vectors in the jet and
ambient material, respectively,  is the unjt outward pormal
to the interface. For the free surface (11.2) the meas Curwaiure A
is given by

x(0,3,1) = —((¢7 500 + $3cor’ CX(¢h adrone®?

+ $1,081000%0) + 2$1 42, — h1é1 N

— #1602, )c00 00in’0 — §,62(#] ;0070 @s

+ ¢1 . #in0 4 D][($162,0070 + dréh soee’0¥

+ ¢fﬂ‘n20 + ﬂcuzﬂ.'ln

We funher agsume the ambient material exsrts a constant pres-
sure pg:

te = —pah. (IL6)
Given these free surface boundary conditions, any closure
model for free jets derived from the 3-D which is based

on the ellipic von Kirmén ansarz (IL1) (thus far, all are based
on the axisymmetric special case) must these boundary
conditons. For our exact closure model, x kinetis boundary
condizions (I1.4) overdererming the system of modal equ.\tons,
50 that only a very limited class of soludons exist. This is be-
cause the power series definidon of stress and ure modal
variables forces the stress ana pressure variables the bound-
ary conditions. See [5) for details. We now return 1o the general
situation where there is no exact power serles uncaton, and
reassess Lthe choice of modal variabies.



[IL_INTEGRATED MOMENTLUM AND
CONSTITUTIVE EQUATIONS : SELECTION OF
STRESS AND PRESSURE MODAL VARTABLES

To derive 1-D jet models from the 3-D theory with the nec-
essary flexibility to describe interesting behavior, such as non-
axisymmetric free jets and jets with swell, we retin the power
series assumption (II. 1) on v, but choose stress and pressure un-
knowns to be integrals over the jet cross section. This approach
is uken by (2, 6].

This leads us w rwo imnportant points. First, our power se-
ries ansarz for v limits the ability of this theory to meet veiocity
boundary conditions, such as no slip. Since boundary values of
velocity are explicit combinations of the velocity modal vari-
ables (ie., the coefficients in the power saiies expansion) and
tree surface modal variables ¢, and ¢, the imposidon of &
condidon oa velocity at the boundary would conswtrain the veloc-
ity within the cross section. However, our second point is that,
hisworically, the reason for the use of area-averaged stress and
pressure varisbles (rather than pointwise, power series expan-
sions) is precisely to not limit the ability to meet saess bound-
ary conditions for free jets. With the power series expressions
for stress and pressure there ls not encugh flexibility to meet the
stress boundary conditions. for the same reason the v antaiz
fuils v meet flow boundary condicons. The boundary values of
stress and pressure are cxplicit combinatons of the stress and
pressure modal variables (l.¢., the coefficients in the power se-
rics expansions) and free surface modal variables ¢y and ¢;.
Therefore the boundsry coaditions (11.3) and (11.4) are coupled
©© the modal equarons as severe constraints on the class of solu-
tons of the modal equations, and hence limit the ability to model
interesting free je1 phenomena,

The firm swep is O compute cermin cross sectdonal area in-
egraions and moment integrations of the components of the
conservation of momentum equanons (L 12), evaluased on rthe
velocity ansazz (11.1). We make no a priori sress and pressure
modal ansary. -

Ve compume the foliowing inwgratdons over the ares A
boanded by the ellipse, at fixed s, given by (I 2):

[[e-awin [ [ aimnaa
[ [ ainea 1)

whaers, for instance, (1.1a), indicates the componeat of the vec-
wr equation (L 1a) along @) . One uses the divergence theorem,
inssgracion by pars, and Leibniz’ rule for differendaton of in-
wugrals, and all boundary srms involving pmdﬁ, either can-
cel, or what remains (s precisely the linear combinatior. that ap-
pecrs i the inserfacial kinetic boundary conditions (T.4). Thua,
oné “incorporams” the bouadary condidons ([L4) inswo the inw-
graed momsntum equations; ip other words, one replaces the
houndary values of stress and pressure by the mean curvature,
paface tension, and ambient pressure varables. The resulting
exact equations (given in [5]) Involve the following integreted
sress and precsure variables:

A -//AT..M. Anl//ATndA.
A.,-//Aﬁ,a. A3 -//Ar.,zu. (T.2)

Am-//ATnyd.A, FI//A(p—p.)d.A.
s



We now compute arca and moment integrations of the con-
sttutve equations (1.2) 10 obtain equations for the resultants
Ay, Az, A3a, A131, A2, The necessary iniegrations are

/_/;ﬂ.z)nldA. //4("2)22“' //A(l.z),,u,
/Lz(u)ndA. //Avﬂl)ndA. (T11.3)

Once again, in a calculation involving integration by parts and
Leibniz’ rule, all of the boundary termns cancel in each of these
'mtc%:wd equations,

us, we have the gnod fortune of ioundary values of stress
not entening into the soess resultznit equatons and integrated
conservatiuon equations. The integrafion technique has Eou-
pled the boundary value unknowns pls . T:jla from the princi-
pal modal variables v, ¢\, 2. 1. $2. P, Al. An, Ay,
A1, Anz . Information on the boundary value unknowns pL,
Tijla can be obtained g posteriori from the free surface stress
boundary conditioas (I1.4) and the solution of the modal equa-
tons. Since for the Maxwell-Jeffreys model] the boundary value
unknowns are independent of the principal modal variables, the
streas boundary conditons (I1.4) do not coastin‘te constraints
on the modal variables, as they did in the previous approach in-

volving power scrics ¢ for stress ang pressure. This is
thccruc:aladmmgu;uwdwmgmud:mandpmm
modal variables, as opposed o the coefficients in power series

w. the exact equations for A,,, An, An, A,
Ap2 couple additonal, higher moment stress resultants, Ay,
Aina. Ann ., Anx. Ayn. where, for instance

Amn!l/L Tt dA.

We arz thus led to the classic closure difficulty, where next we
seek equatons for these second mormrent arca averages, which
coupies new streas resultanty, and 30 o As expected, there is
no exact closure.
(We nose that the closure difficulty exists oniy if A; » 0 in
the Maxwell-J sffreys constitudve If Ay =0, ie, for the
ial casos of an inviscid fluid () = Ay = A2 = 0), Newtonisn
uid(A.-A:-O)mdmdadul‘luid(h-O).mel-D
model is closed: however, the model is overconsrained in these
degenerass cases by the kinetic free surface boundary condition
(IL4), s0 thes only very limited classes of solutions exist. We
comment ia pasung tha: the same asympeotic analysis which
will bs found in the following sections w produce closure in the
case of A, ¥ O also relieves the overdeterminism of the
caset with A, = 0. A compiete treatment can be
found ia (7))

b

The next step is to restrict the exact insegrased equations toa
“slenderness” re , by introducing a scaling analysis which is
mdmvhhﬁnd:ﬂ:dnlm velocity ansace (I1.1).
mluu.ll;:!‘h after that of Schultz & Davis (8] in their
study of axisymmstiic Newtonian jew. First we nondimensiun-
alize the coordinases (3, y, #, t) and the modal velocity vani-
nblu(n‘.ns. v). Let ro = a typical iengih scale in the jet crots
sectuon, Le = a typical length scale in the axial direction.
The scaling hypothesis is:

xefdrg, yojro, 5=, t=it, (IV.1a)
and the small parameter ¢ is the rato of length scales.

¢-L3<< ' (IV.1b)
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Thus, the approximaton is that a typical radial scale is much
shorter than .1 rypical axial scale. and therefore is called the slen-
demess scaling.

The free surface and velocity riodal vanables are nondi-
mensionalized as

- I | _
$e = $af0. Ca™¢a G. v = Uy, (IV.1¢)

where v, Is a characterisuc axial velocity. To preserve the in-
compressibility condinon and kinemarc boundary conditons
upon scaling, the characteristic velocity, length. and time scales
must be related as

L, 0
- —a—, Iv.ld
Ve t o ( )
Then
v = ev, 2 + (C),
@ a v pf + ), (IV.1e)
) w p 8+ ),
30 that the slendemness ximation in combinaiion with the
von Kérmén velociry is equivalent to a slowly varying
axial versas radial velocity ansatz.

REMARK The scaled velocity formuls (TV. le) includes higher
order corrections, 0(¢?) , to the von Karmadn ansarz (IL 1). These
camtpondnhi;luadapolymdm (=2, 5%, zy) , in
a general power serics Connmq'dcm_nnds
that we retam 1 the . inueulndmommu.nneqqapom.

Next we scals the 3 D pressure and stress cormponents as
r(!.v.l.t)-#(!.ﬂ.l.i);,g.

T‘j(’l | .lt) - T\'f(’l ¥ ‘li) él (w”)
€ 7=123,
where [ Is a characteristic farce scale. With scalings (IV.1) we

fionalired: the scaling of the resultants in the integrated equa-
tons follows from the 3-D scalings (TV.1), e g,

All('.‘)-/f‘rl!""
-//. ;’zfuriﬂdi-llu(l.b-

To the asympeotics. we must also expand the non-
dependent variables v, . 0, ¢1. ¢2. B.
Aija: Aijap inpowersof ¢, e g,

vevQievs. .., papPsple.
P
=P+ (IV.2)

We now list the nondimensional asymmpeodc integrated
equanons, retaining only the lowest power of ¢ within each

7



physical term. Thus, specifying the physical properties will alter
the relanve order of these lowest terms we keep. but these will
be the leading order conmbutons of each physical property no
mater which physical properies dominate. (All dependeat varni-
ables in (TV.3) are the leading order contributions: we omit the
superscript (0) )

I
B(An =P = phihxl” - éé}h(m * v+ o),
B(An-P = %‘lhx(.m - éﬁﬁ(m +ue, + D),
-1
BlAnss —P,) = b+ mdiadx® + brabix?)
+ 1d2(vy +vv,),

vyt + =0,
Pas tVPas ™ bafa, a=l,2

A +A(Ang+vAy, - ((2a+ I +0)AN]
= 2Z$1al51 + A2{q1 s + o1 — 2067 )],

An+ A[Any +vAn, - (2a+ )y + ) An]
= 2Z$1éley + A2{2y + w02 — 2047},

Axy+ A[Ay3g+ vAyy 5 — () + Q2 + 289 ) A33]
= 2Z¢1#1v, + A2{v.0 + V9.5 — 2090 }],

A+ A [Apg +vA, - (20 + 0 +al( +v,))AI)]

= L hnlas+ Ar{om + o0

+ 0,21 = &)y - 20+ L)), (Iv.3)
Apy + A\[Apys +9Am, — (20 +0 +al(y +v,5)An:]

- ?%lm + A2 {020 + 9020

+ 02,1 - o)y — (28 = I)w,)}],

where
m . _h# /" cos’de
X r Jo @ nnto+ ottt
m . _hh /" sin20de
Xe r Jo ($ani0+@dcosity i
and

Be f - /
woril,  wprivi
o Viscoelasic and constraint pressure effects

1 ﬂ - m__vity effecn

F L. incral effecs’

A

N (]

. surface tension (capillary) effects
inertial effects '
8




tOf' Lcl '

A A2
A w2 Ay =22
1 tO' 2 :

Equarions (IV.3) derive from, respectively, the integrations
of components of balance of lincar momentem indicaied by
(100.1). the incompressibility constraint (1. 1¢), the kinemaric free
surface conditons (1L 3a.b), and the integrations of the Maxwell-
Jeffreys constitutive model indicated by (I1L3).

The non-dimensional parameters F', W, (BZ)™! and A,
are recognized as the Fronde, Webcr, Reynolds, and
Weissenberg numbers respectively. Z, A;, A; are the non-
dimensional zero strrin rate viscosiry, relaxation dme and retar-
daton time, respectively, of the fluid.

We emphasize that equasons (TV.3) depict the balance
among all the physical effects that are incorpcrated. In the slen-
demess approximation, 0 < € << |, these equasions yield the
ability to perform theoretical experiments in which the relanive
physical effects are adjusted through the non-dimensional pa-
rameters. Thatis, {B, i‘ , A1, Az, Z}. which mcasure

the various properties of jet, are scaled in powers of the
sizenderness rano e,
i 1 1 1

- — —-—(l

BB, Zeg F R
Aj=Apd, ZaZld. (TV.4)
We assume By, ..., Zo are O(1), and vary the rela‘ive .
crues of the fluid by ing the inseger exponents in (TV.4).
Wedeﬁnemem”expamhﬂvoum

regime of free jet behavior, as this choics reflects the reladve
magnitudes of competing physical cffecty.

We are now in & position to exhibit lowest arder 1-D jet clo-
sure models. We specify a particular je: regime through a choice
of integer exponents in (TV.4) and obeaia equations av3)
to arbimary order in ¢. There is cizarly a remendous amcunt
of latrude in exploring all the specialized closure models which
derive from our gepéral coastruction.

As will be shown in the next sectrion, existing | -D theories
correspond to the axisymmesric, steady forms of the lowest or-
der equations with certain effects suppressed to higher
order. Before connecting the existing models, however,
we frst ilustrase with dawres mor: general (nonaxisymmetric and
ume dependest) regimes.

As one example of a 1-D clorare model for a particulsr jet
regime, consider the cass where ull of the parameters in the set
(BN,},A..A:.Z) are 0(c?), Le., we choose all exponents
in (TV.4) to be zero. The lowest ardar equations in the asymptotic
expansion are then

Bl - P) = 5o,
BlAn - P = h#ol”,

1 1
B(An,~P,) = -ghhr+ ALY
+ 0,0 + dia(vs +ve,),
v+ +ta=0

‘l.l"'“‘l.a"'lﬂ- *u+'h;'-h°l (WS)
An +A[Ang+vA - (28 + D +q)Anl

= 2Z¢1l01 + Aa(f1s + w1 - 2acD)],
9



An+A[An,+vAn, — (2a+ Da +q)An]
=2Z i1l + Ao + vers — 2a63)],

A3+ A[Ayy +vAyy, — (Q + @ +2av ) A]
=22Z$1 (v, + Ay(v g +vv,, — 2au_2,)] .

In this regime, inertial effects, surface tension and gravity are all
leading order in the axial direction (see equation (IV.5¢)). Note
that this demands inertial effecis 1o be higher order in the trans.
verse direcrions (see equadons (IV.5a,b). Viscosity, relaxadon
and retardation effects are all leading order in the constitutive
model in this regime.

In this 1al regime. the lowest order equations are &
closed set of nine umons for the nine modal variables
97, 60, v®, ;“”,;(‘” PO, AD, AD, AS). The shear suress

resultants A(lg)l. A.,m decouple to lowest order from equatons
(TV.5), and appear in the problem for the first order corrections
#(), 43, v, erc. (see [9]). The behavior predicted by (TV.5)
fou- one set of stcady nozzle conditdons and parameters is shown
in Figure 2. Note that these solutions predict swell of the ellipu-
cal extrudate (increase Of the uct ¢, ¢, from the value | at
the nozzle) and distortion (change of the aspect nto é2/$).
Addinional cases and complete discussions of the behavior in
this regime can be found in (4, 10, 11].

As an example of a 1-D closure model for a diffzrent jet
regime, consider the case where A, is 0(e?),and B, b, }, A2,
Z are ((¢?). Fo this regime the lowest order equations in the
ASymptotic expansion are

BlAn - ) = hidax? ~ golatag + vaa+ o),
Bldz - P) = 160 - 18410+ 90+ D),

0= gieg(vy+vy,), Iv.6)
vata+a=0,

‘l.l*'"‘l,l-‘lﬂn ‘2.‘*'"‘7-.'"‘2(2!
An+A[Ays+vA ;- ((2a+ 1) +q)Ay] =0
Ag +A[An, +vAn, -~ ((2a+ ) +0)An) =0

thhbm;imei.nuﬂnleﬂocumﬁormmfamodm
within the jet cross section (see [V.6a,b), gravicy is neglected
w leading order. These choices demand that momentum i3 con-
served in the axial direction (equadon IV.6c). Only relaxation
effects are included to leading order in the consttutive model,
equations (TV.6f,g).

In this regime, the lowest order equations are a closed set

of dahl equatons for the eiyAs modal vaisbles ¢, ¢<°> o,
62,60 P, AP, AY . The axial swress resultant A3,
shear stress resulunu Am. A(& decouple from this lowcn

lg behavior by the closed equations (TV.6) dif-
fers significandy the behavior predicted equations
(TV.5), areflecton of the disparate parameter specifications. The
behavior predicted for one set ¢f ters and steady nozzle
condidons is shown in Figure 3. Note that these solutions
dict oscillation in # of the major axis of the free surface clhpd-
cal cross section between the ¢, and e; directons. Addinonal
cases and discussion can be found in (10]. In particular, the spe-
cial cases of elliptical inviscid and Newtonian free jets, subject
only to surface tension and gravity, are considered. Our model

10



predicts oscillation of the major axis of the free surface cross
section between perpendicular directions and draw down of the
CTosS section, in agreement with observed behavior

As a third example, consider the particular jet regime where
B.g, $ are 0(c). Then, from (IV.3), we obtain the lowest
order equanons:

0= $lda(s1e + ¥01s + 1), 0= dIdi(cos + v, +P),
o.élh(",l +uv,), ",J*'(l*'Q-On (Iv.7)
Pri+vh, =m0 Tt vd = 0.

In this regime, only inertia! effects are leading order. Here
the lowest order equations are a set of six equations for the five
unknowns ¢{¥, &S 0@, o?, 3, which are easily shown to be
ovcrconsuuned. md. in flCl. mooqnuble With this regime we
have demonstrated another impormnt result of this analysis: the
ability to determine what properites of slendex viscoelastic free
jets combine to pro. _.& consisient |-D closure, and which do
not.

Many other specialized closurs models are clearly availabie.
We refer w (3, 4, 10, 11] for applications which have already
derived from this work. Additional applicatons are planned.

In (8] we exhibit and analyze the order corrections to the
lowest onder equations. These higher order equations allow us
10 1est the predictions of tho lowest order models, to determine if
neglected effects become imparant, and to obtain more dewiled
information ahout the 3-D flowm

V. CONTACT WITH EXISTING | — D THEORIES

To ilustrate the compret naive nature of the above analy-
sis, we now indicam how severul widely referenced i-D models
for Newtoruan and viscoelastic free jets are obtained by specifi-
cndmofpndmﬂnjammmuymducdmwmwy.
axisymmetric forms. We list the order of nagnitude of the hr
rameters B, W, F, Z, A,, /7 inthe slendemess natio w
pmdwcemplryexidn'modeuh'ommlyucm(w3)u
the lowest order equations. - ”hrmofdn

The axisymmesric, lowest order equa-
tdons with punmewrs B, W, F, Z al (¢®) and the
parameters Mg Ag bostlk (¢) is the Newwonian thin Alament
model, &4) ran 2], In thig regime, Newtonian vis-
cosity, surface asien and gemvity are leading order, with the
eludcnndncodaﬂ-vtmdtyeﬂmmpptunedwm;hu
orGer. (Recall the ~BH")

The u‘yfunohheloweuorderﬁua-
sonswiththe paramessrs B, W, F, Z, Aj alls
o), Ay lpld.ﬂd.O(().lndrhennmmaukenu
—1 (lower convecisd ram) is the

The 1-D viscoelastic model in [12] (equadons (7.31) -
(7.33)) ls obtained as the , steady form of the low-
¢st order equations from (TV.3) with the parameters B, Z, A,
specified as O(1), the perameters W, F', A; (), the rate
panumeter o takon as 1 (upper convected rate), and the choice

of nowtion
An=P¢, . An=T¢.
Recalling the definidons
A|| | | /[ T“M,
aross seetion
An = // ﬁndA,
cross secdoa

An m // Nsda,



we see that T'(s) is the average normal stress over the jet cross
section in the axial direction ey, and P(s) is the average nor-
mal stress in the transverse directions. In this regime the leading
order effects are viscosity and elasticity, with inemia in the axial
direction, surface tension, gravity and retardation ime cffects
suppressed. The axisymmerric, sieady form of this regime with
upper convected rates is also the steady form, equations {16) and
(17). of the viscoelastc model in [13] with the power law vis-
cosity parameter n in their model set equal to 1, the madel of
[6] (equnuonl (18), (19)), with the ratio v of stress differencss
in their constitutive model taken as zero, and the model of [14],
with a spectrum of one relaxaton tme.

The |-D model in [15] for a free jet of an Oldroyd fuid B
is obmined as the axisymmemic, rteady form of the lowest order
equadons from (V1.7) with the parameters B, Z, A;, Az all
0(}).mcpnnmcm W, F both (1), and the rate pammeter
2 i1sken as | (upper convected rates).

V. CONCLUDING REMARKY

We have satisfied the goals sei in the absract and introduc-
don. Beginning with the full 3-D viscoelastic free boundary
value problem, we have derived, by slenderness asympiorics,
s comprehensive frmmework of 1-D closure models for slender,
free viscoelastic jets. The physical effects of inertia, gravity, vis-
cosity, elasticiry, surface tension, curvature, and the free surfuce
boundary conditicns involving surface tension, ambient pres-
sure and the curvature of the free surface, are represented in the
1-D modal equatons, and most importandy, these effects appear
as they derive from the full 3-D free surface boundary value
problem. These resultant 1-D equations have the ﬁe:u'bililg w
vary the relative strengrhs of the physical propertes of the fluid
and interface. Exisdng 1-D theories correspond to special cases
within our general framework.
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