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NUMERICAL TREATHSNT OF LINEARIZED EQUATIONS DESCRIBING

INNOHOGENEOUS COLLISIONLESS PLASKAS

H. ILslph Lewis

Los Alamoe Scientific Laboratory, P. 0. Box 1663

Loa Alamon, New Mexico 87545, U. S. A.

1. INTRODUCTION

There is considerable current interest in the initial-value problem for the

line~rized equarions which describe small departurea from equilibrium of a fully

ionized plasma in which one or more of the particle species can be treated aa

colliaionless. Present-day resesrch in controlled thermonuclear fusion requires

information about the stability of such systems and the effects of phase mixing in

them; thie ie also true in other fields, such as apace physics, in which the physlca

of collisionless plasma9 plays a role. During any specified pariod of time, the

collisionless description for a particular particle specie9 in an experimental

plaama applies if the temperature of the 9peciee ia sufficiently high. The

linearized equations for spatially Inhomogeneoua pla.amas in which there ie E

collisonles9 9pecies , difficulc to solve, ~-rnn computationally, because all

three velocity compponenta and at lenst one E,?!l,?l ‘aordinate must be considered as

independent variables in the analysis. This means that the equations are a ay.stem

,0f coupled Integrodifferential equations in which there are at leaat five

independent varlablee--time, three velocity components, and at leaat one spatial

coordinate. Recently, pro[;resg hag been made in the formulation of the problem in

terme of a di~persion ❑itrix, and application of the formulation to interesting

equilibria with one r:onlgnorable coordinate have been ❑ade. When there is one

noninnorable coordinate in the equilibrium, only that epstial coordinate appears aa

an ~ndependent variable in the ❑ystem of lntegrodif ferential equations. The

formulation is in terms of a description of the three-dimensional equilibrium motion

of particles which ie obtained by using an equivalent one-dimensional potential.

Iritegrale with respect to time arise which extend over the timee appropriate for the

equivalent one-dimenaional problem; for orbits which are trapped in the equivalent

one-dimensional potential, the integrals extend over the bounce perlode in the

onp-dimensional potential and not over the infinite time history of the equilibrium

three-dimensional orbits. This approach has ‘een described in the context of a

general discussion of the initial-value problem for linearized equations which

describe plasma systeme in which there ia a colliaionless species. 1 Applications of

the general formalism have been made to the stability of a plasma column within the



.
framework Of the Vlaaov-fluid model’ and tO the otabilicy of lar8e-emplitude

3
Bernstein-Creene-Krunkal ●quilibria. The basic approach hae alno been uned

independently in the context of th~ Vlaeov-fluid model to etudy the stability of a

rotating theta pinch, ” and to investigate the effects of renonant particles on
5

kinetic stabilization in screw pinchee. Additional work is in progrees.

In Sect Ion II, the banic linearized equations are presented in a general

context, specialization for one nonlgnorable coordinate is indl:ated, and a

formation for numericn’1 work is introduced. Numerical aspects cf che problem ara

discussed in Section 111, including choice of matrix representation and methods of

nolution. Some concluding remarks

11. GENEML THEORETICAL FRAMSWORK

are given in Section IV.

We

species

species

(:

consider a plaama which consists of one or more collision leas part f.cle

which are governed by a linearized Boltzmann equation for each collisionlees

a,

(1) -+ iLB)f~ us@(l) ; (1)

and we assume that the plasma can be described by these equaciona and a eet of field

equations of the form

The

K~(l) - ~Jd3v J~(z, y) f:l)(~, y,t) . (2)
B-

quantities Le, Us, ~nd K are linear operators, and f~l) is the perturbation of a

single-particle distribution function Es about an equilibrium distribution function

ego):

fq(~,y,t) - fg(o)(~,y) + fa(’)(~,y,t) . (3)

The quantity 0(’) is the perturbation of an array $ of potential functions about an

equilibrium array @:0):



(4)

The oymbols : and ~ denote position and velucity vectors.

A jimple example of equations of ttis form is the set of linearized equations

for a one-dimensional eJ.ectron gaa i-, a background of immobile ions of number

deneity no(xj:

(5)

azt(i)- /+~e)dvf(]) (x, v,t) .
axz (6)

The eymbole x and v denote

quantity $ represents a

the one-dimensional position and

~ingle potential function, the

velocity variablee. The

scalar potential for the

electric field; $(0) is a function of x

~ - 4ne[/dv f(o)(x.v) - no(x)]

only which is related to f(o) by

(7).

The electcon maae 1S m, the electron charge is -e, and the ion charge is e.

An example of equations of the form of (1)-(2) which are useful for describing

a plasma in a magnetic field is given by the Vlaaov fluid model.$ Thie model is a

low-frequency ❑odel for ❑n ion-electron plasma in which the ions are treated as

collisionless and the electrons are treated as a masslees, pressurelees fluid. The

are

df(o) (c)0) +~vxB(0)]~~vjf(l) - ‘e dc
c -- y.~(’) , (9)



*[(#b@) + (pq(l))q(o)j - ~n(o)g(l)

e~d3v (E(o) +1 y.~(o)]f(l) . (9)-. c

Here, e and M are the ion charge and mee.e, respectively; c ie the speed of light; ~

and B are the ●lectric and magnetic fields, reepectivaly; f iu the ion

single-particle distribution function; the equilibrium distribution function is

assumed to be a function of the energy c only; and c and n o are defined by

1M-vz+ e+(o)(~) ,E--
2

n(o)(r)- /d3vf(o)(~) .

(lo)

(11)

The array of perturbation potential in (8)-(9) is the set of componenca of a

displacement vector ~(~,t) from which ~(]) and ~(~) are derived:

~ ac
~(l) --- = q(o) --- V(E(0) .$) ,

c at

fi(l). vx(~xEl(o)) ,
. --

where

~.B(0) - (J ,
.-

(12)

(13)

(14)

For some exa.nples of equations (l)-(2), it can be useful to replace the

perturbation distribution function f$]) by an auxiliary function g~ whict, is a

linear functional of the perturbation potentials:

(15)



where P~ is a linear o~:rator. The equations for the auxiliary functions and the

perturbation potential are of the same form as (l)-(2):

‘ a + iLa)sa - Wa$ (1) ,
~m

(16)

(17)

where

A - K - ~~d3y J~(~,y)Pa . (18)
9

The utility of such a transformation of dependent variables ia chat the field

operator A which appears in (17) can chosen arbitrarily while preserving the form of

the equations. In particular, the operator on the left hand eide of (16) la

unchanged by this transformation. The introduction of auxiliary functions in this

way can te advantages in numerical approximation ❑chemem, a point to hich #a

return later. Of course, che original equati0n9, (l)-(2), are an exe.,ld of

(16)-(17). The original field operator, K, involves time differentiation Lor s~me

physical systems of interest; an example is the case of the Vlasov-fluid model us

indicated in (9). For these systems it is possible to introduce auxiliary functions

such that A does not involve t or the oper~tor slat. Henceforth, we consider

{16)-(17) as che basic equations and assume that A does not involve t or a/at.

It is convenient to consider the solution of (16)-(17) for the evolution of ga

and the perturbatio,l potentials in terms of Laplace transforms. We denote the

Laplace transform of a function h(t) by h(w), where

h(t) - ~-Cdw e-i’dt~(w) , h(w) - f’~dt eiwth(t) , (19)

and C is a suitable Bromwich contour. For the physical application which we

envision, the linear operator W~ may involve the time differentiation operator 3/3t,

but time does not occur in W8 in any other way. Therefore, it is appropriate to

define W~(u) as the result of substituting -i(ti for 3/2t in W9. The 901ut10n of

(16)-(17) for the Laplace transforms &(uJ) and b(l)(m) la



where

(10)

(21)

(22)

end where sS(0) is the value of g~(c) at t=O a.,~ OS (u) can be constructed from the

values at t-O of $(])(t) and its time deri~stivee. The contour C for the Laplace

tran9f~rm5 must be above all singularities of $(l)(m) and g~(w). The inverse of the

operator [La -u] isnonaingular except onthereal ~axisbeca”ae Llaa HermitIan

operator. 1 Singularities off the real axis and not associated with initial

conditions are sing!!laritiea 01 D-1(w). The operatcr D(u) 19 called che dispersion

operatar. It plays a crucial role in determining the stability properties of the

ayatem, and it will be importan. in our diacuaaion of numerical approximation

schemes. F!9te that the dispersion operator dots not depend on the operatora Pa in

terms of which auxiliary functione g~ may be defined.

It can be shovnl that the singularities of $(l)(u) and ga (u) are located at the

roots of the equation

[~det(Lg - w~)~detD(w) - 0 , (23)

where ~ is the unit operator in (~,~) space. Becauae L~ la Hermitian, any root of

this eqaution which haa an imaginary p~rt, corresponding to exponential growth 01

decay, must be a zero of detD(fu). The stability of the system (16)-(17) can be

studied numerically by finding a suitable finite-dimensional approximation to D(w).

A numerical apPr~~ximation to the solution of che initial-valur problem for a fixed

length of tl,[. can be obtained by finding a suitable approximation of the rooco of

(23) in t[,rms of a finite number of points in the w plane. Since th eigenvalue

npectrum of Ln is a get c.f real continua, approximating the roots of (23) with a

Einiie number of points means approximating continuous spectra with discrete spectra

of finite size. We now turn to the question of c0n9tructing numerical

approxlmat i0n9.



III. NOHERICAL MPECTS OF TRE PROBLEM

For numerical purposee it is useful CO introduce eigenfuuctions of La ae a

baaie for the (~,~) ❑pace for speciee s.. This is alao useful for some analytical

calculation. T%e eigenfunctions of Ls are a complete aet of funccione in

(~,~) space which we take to be ,rthonormel:i

Law~r - ‘erwsr ‘
(24)

(25)

where the index r stands for vhatever set of labela is needed to specify w~r, the

parenthesis notation denotes an inner product, and 6rr. stands for a product of

Krcnecker deltas and Dirac delta functions--one Kronecker delta for each pair of

discrete labels, and one Dirac delta function for each pair of continuous labela.

If at ❑ost one coordinate la nonignorable in the equilibrium configuration, then the

eigenfunctione v~r and eigenvalues u~r can be found explicitly in terms of definite

integrala. 1 The eigenvalues !Jar play an important role in resonance denominator

ariaing from the inverse of the operator [L - w] which appears in the Laplace

pransf0rm9 (20)-(21).

In order to have a Matrix representation of D(w), we also introduce a basis for

configuration space wfth basis functions nn(~). In .ome caaea, the basic equations

can be formulated such that one of the eigenfunctions of the operator A which

‘(:) (ko) for a complex frequency w. ofappears in (17) is a good approximation to $

interest. Then, choos<n~ the basis functionm on to be eigenfunctions of A is

advantageous,

ArIn - Annn . (26)

The operator A can be chosen to be Hermit Ian for ❑ost problems. However, it may not

be Hermitian, in which case it can be useful to define a dual set of functions

(27)

where again 6nn. stands for a product of Kronccker deltas and Dirac delta functions.



Ewen if one of the eigenfunccionm of A is not a good approximation to Wdo), a

linear combination of a fav of the ●igenfuncticno may be Sood; irI this came it would

still be a good idea to let the baaia funcLions IIn be eigenfunctiona of A becau~e a

small truncated matrix repraaentation of D(uo) could be a good approximation. Of

course, the optimal choice of baais would be one with which the representation of

D(m) would be diagonal; then, detD(u) - 0 would be saciafied by setting any diagonal

element to zero. If the ●quilibrium is opatially homogeneous, D(w) can be madr

diagonal by choosing baaim functiono proportional to exp(i~.~), a familiar situation

in the stability theory for an infinite homogeneous equilibrium in plasma physics.

However, when the equilibrium ie spatially inhomogeneous, the baai.s functions which

diagonalize D(d) generally will depend on w. and are usually not known for any given

w.

There ia a ❑yatematic way of determining a A whose eigenfunction.s are good

basis function.a. Sometimes the procedure can be carried out. The idea is to cry to

diagonalize D(w) for a mode of interest whose frequency is neer u = mo. If the

basis functions are eigenfunctions of A, then the operators ~~ ❑ust satisfy

ia(wo)-0,

which means

I(LS - -(1)(Q = Of; .uo)~~(uo)$ (28)

This corresponds to an approximate solution of th? original linearized Boltzmann

equation. The parameter
‘o IS determined by solving the dispersion relation

obtained from the approximate solution of (28). The ; ~ determined in this way

depends parametrically on W. and it determines. through (18), a A whose

eigenfunctions form a suitable basis for working with a severely truncated

dispersion matrix in the neighborhood of d = Uo.

The procedure just outlined for Determining the basis function9 for

co,lfiguration space is good if it can be carried out. Foc example, it was effeccive

in studying the stability of a large-amplitude Bern:Jtein-Greene-Kru9kal

3 However, it d0e9 Occ”r for 90me problems of phy9ical interestequilibrium. that A

has to be chosen rather carefully. For example, in the case of a magnetized pla9ma,

there are modes for which spatial variations of short scale length, on the order of

the ion gyroradius, are present in addition to variations of ❑uch longer scale

length. ~.? For the procedure Of “9ing only a few of the eigenfunctions Of A to be



●ffective, they mwet be able t] represent all of the important npatial variations

with sufficient accuracy, the eho:t scale lenprh variation as veil ●e thoee with

long ■cale Iangt’. For a opecific problem it my not be poonible to solve (28) to

nufficienc accuracy, ar it may be inconvenient to do so.

When it IS not feasible to use a very tmall truncation of D(u) by caking the

●igenfunctione of n suitable A aa the basis for configuration apace, it ie necessary

to choose a baais with which arbitrary variations of :~.eappropriate scale lengths

can be adquately represented. This ,.an easily lead to a matrix representation of

D(w) whoee dimension la large enough :ha~ very serious conputer storage problems are

encountered. If there is more than one nouignorable coordinate in the equilibrium,

there is at present no general numerical procedure for finding the eigenfrequenciee

of che system. Even in the ca.ae of one ncnignorable coordinate, there has not been

a EenerallY applicable numerical procedure eo far. Recently, however, an approach

has been found which should render it feasible to find the eigenfiequencies

numeric~lly for a general equilibrium w! th one ,mmignorable coordinate.5 The

approach makes detailed uae of the explicit form of the eigenfunctiuna and

eigenvalues of the operator L9,1 organizes the computational work in a way which

❑ inimizes computer storage prcblem,j, and relies on some empirical simplicity of the

dependence on u of elements of che dispersion matrix. A computer code based on this

approach is being constructed.

An approximation to the solution of the initial-value problem for (15)-(17) can

be obtained by approximating the entire spectrum of ~olutions of (23). including the

continuous branches. The conrinuoua part of the mpeccrum ic responsible for phase

mixing in the evolution of the system, an example of which i9 a decay in time of

electrostatic perturbations which is known as Landau damping. If a finite set of

basis functions Wgr and nn is used, as will be che case in computational work, then

(23) is in fact always a polynomial equation. 1 De,gp:te the fact that the pOlyr.Omial

can be of ve~ large degree, it can be evaluated because (23) represent9 the

polynomial as the prL:,lct of the determinant of a diagonal matrix times the

determinant of the dispersion matrix. ‘TI)e determinant of the diagonal matrix is

trivial to evaluate, and the determinant of the dispersion matrix can be evaluated

if the number of basis functions nn i9 not too large. All of the roots of such a

polynomial equation of large degree can be found simultaneously by meats of a

quadratically convergent iteration method proposed by Aberth, 9 Kerner, ,10 and

D“rand. ll The method also converges when there are MultiPle rOotS.



IV. CONCLUSION

The equacima Soverning the nmall-eignal reeponee of spatially inhomogeneou.

collinionleee ,-lamas have practical t{.gnificance in physics, for example in

controlled thermonuclear fudion reeearch. Although the .eolucionn are very

cmlicaced and the equmtione are difficult to solve numerically, effective methods

for tham are being developed which are applicable when the equilibrium Involves only

one nonignorable coordinate. The genarrl theoretical framework probably sill

provide u baeia for progress whtn there are ●WO or three nonignorable coordinates.
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