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NUMERICAL TREATMENT OF LINEARIZED EQUATIONS DESCRIBING
INHOMOGENEOUS COLLISIONLESS PLASMAS

H. Ralph Lewia
Loa Alamoa Scientific Laboratory, P. 0. Box 1663
Loa Alamos, New Mexico 87545, U. S. A.

I. INTRODUCTION

There i8 considerable current interest in the initial-value problem for the
linecrized equations which describe small departures from equilibrium of a fully
ionized plaama in which one or more of the particle apecies can be treated as
collisionleas. Present-day research 1in controlled thermonuclear fusion requires
information about the stability of such aystems and the effects of phase mixing 1in
them; thia ia also true in other fields, such aa space physics, in which the physics
of ccllisionless plasmaa playa a role. During any specified period of time, the
collisionless description for a particular particle species in an experimental
plasma applies {f the temperature of the species 13 gufficiently high. The
linearized equations for spatially inhomogeneous plasmaa 1in which there 1s a
collia onless species « difficult to solve, e"en computationally, because all
three velocity compponents and at least one 2-1f1nl -sordinate must be conaidered as
independent variables in the analysis. This mesns tuat the equations are a system
of coupled 1integrodifferential equations 1in which there are at leaat five
independent variablea--time, three velocity components, and at leaat one spatial
coordinate. Recently, pro;ress has been made in the formulation of the problem in
terms of a dispersion matrix, and applications of the fomulation to interesting
equilibria with one ronignorable coordinate have bLeen made. When there is one
nonignorable coordinate in the equilibrium, only that spatial coordinate appears as
an Jndependent variable In the system of ({ntegrodifferential equations. The
formulation tfa in terms of a description of the three-dimensional equilibrium motion
of particles which 13 obtained by using an equivalent one-dimensional potential.
Integrals with respect to time arise which extend over the times appropriate ror the
equiva‘ent one-dimensional problem; for orhits which are trapped in the equivalent
one-dimensional potential, the integrals extend over the bounce periods 1in the
one-dimenaional potentlal and not over the infinite time history of the equilibrium
three-dimensional orbits. This approach has !‘e2n da2scribed 1in the context of a
general discussion of the 1initial-value probiem for linearized equations which
describe plasma systems in which there is a collisionless species.1 Applications of

the general formalism have been made to the stability of a plasma column within the



framevork of the Vlasov-fluid nodel2 and to the stability of large-amplitude
Bernstein-Greene-Kruakal aquilibria.3 The basic approach has also been used
independently in the context of the Vlasov-fluid model to study the stability of a
rotating theta pinch,“ and to investigate the effects of resonsnt particlea on

5
kinetic atabilization in screw pinchea. Additional work is in progreaa.

In Section II, the basic 1linearized equations are preaented in a general
context, specialization for one nonignorable coordinate ia 1indicated, and a
formulation for numerical work is introduced. Numerical aspects cf ¢he problem are
discugsed 1in Section 1II, including choice of matrix repreaentation and methods of

solution. Some concluding remarka are given in Section IV.
I1. GENERAL THEORETICAL FRAMEWORK

We consider a plaama which conaista of one or more collisionleaa particle
gpecies which are governed by a linearized Boltzmann equation for each collisionleas

apecies g,

(3—3t + 1L )elD) w v )

and we asaume that the plasma can be described by these equations and a aet of field

equations of the form

Ki(l) - lfd3! JB(EI!)fgl)(E'!'t) . (2)
a

The quantities La' Ua' usnd K are linear operators. and fgl) is the perturbation of a

single-particle distribution function f, about an equilibrium distribution function
f(U):
8

Eo (st = £y + £, Vrvi0) 3

The quantity 0(1) ia the perturbation of an array ¢ of potential functions about an

equilibrium array ®‘0):



o(r,t) = 6(0 ) + (0 (r,e) . %)

The aymbols r and v denote position and velucity vectors.

A 3imple example of equations of thris form ia the set of linearized equations
for a one-dimenaional electron gas 1, a background of immobile ions of number

density no(xi:

B,y 2, ed® 3, e 2@ 2

(a: v 9x + m dx av)f m ov ax ' <
2,01)

: ;i - 4refdv £ (x,v,0) . ©

Tihe aymbols x and v denote the one-dimensional position and velocity variables. The
quantity ¢ representa a single potential function, the scalar potential for the

electric field; ¢(°) ia a function of x only which ia related to f(O) by

24(0)
a—a‘ﬁ-z— « ane[fdv £00) (x.v) - ng(x)] . 7

The electron masa ia m, the electron charge i3 -e, and the ion charge i3 e.

An example of equations of the form of (1)-(2) which are useful for deacribing
a plaama 1in a magnetic field is given by the Vlasov fluid model.® This model is a
low-frequency model for an ion-electron plasma in which the 1iona are trested as
collisionleas and the electrons are treated as a masaleas, preasureleas fluid. The

linearized equations are

(0)
Jf(l) ._euv.g(l) . (9)
-~ de ~



4_1"[(!,‘2(0)),(2(1) + (!,‘E(l)),g(o)] - en(O)E(l)

- efddy (E(O) + % weB(0))e (1) 9

Here, e and M are the ion charge and masa, reapectively; c is the apeed of light; E
and B are the electric and mnagnetic fields, reapectively; f 18 the ion
aingle-particle distribution function; the equilibrium diatribution function 1is

aasumed to be a fuuction of the energy € only; and € and n, sre defined by

emam?+es@(n), (10)
n(® () = fady £ (e) (11)

The array of perturbation potentiala 1in (8)-(9) 1is the set of components of a

displacement vector E(E.t) from which E(l) and E(l) are derived:

(1) - _%:_f B0 yE®.g) (12)

E(l) - Y‘(E‘E(O)) , 13y
where

£-3(0) au ., (14)

For some exanples of equationa (1)-(2), it «can be wuseful to replace the
perturbation distribution function fél) by an auxiliary function 8g which 1s a

linear functional of the perturbation potentials:

gg = £$1) - p e, (15)



where P, 18 a linear or-rator. The equations for the auxiliary functiona and the

perturbation potentials are of the same form as (1)-(2):

¢ 9 (1
(55 *+ 1Lg)Bg = Wee(1), (16)

434 LYst) (17)

A¢(l) - Zfd3! Js(r"’)ss(

where
A=K -=-J[ddW I (r,v)P_ . 18
1ay Iyc0P, (8

The wutility of such a tranaformation of dependent variables is that the field
operator A which appears in (17) can chosen arbitrarily while preserving the form of
the equationa. In particular, the operator on the left hand side of (16) ia
unchanged by this transformation. The introduction of auxiliary functions in this
way can te advantageoua 1in numerical approximation schemes, a point to hich we
Teturn later. Of course, the original equations, (1)=-(2), are an exs" le of
(16)=-(17). The original field operator, K, involves time differentiation Lor some
physical systems of interest; an example is the case of the Vlasov-fluid model s
indicated in (9). For these systema it ia possible to introduce auxiliary functions
such that A does not involve t or the operator 3/3t. Henceforth, we consider

(16)=(17) as the basic equations and assume that A does not involve t or 3/3t.

It 1s convenient to consider the solution of (16)-(17) for the evolution of Bg
and the perturbatio. potentials in terms of Laplace trsnsforms. We denote the

Laplace transform of a function h(t) by a(w). where

h(t) -z—lnfcdm et (w) ,  hiw) = [Tdr el¥th(e) , (19)

snd C 1ia a suitable Bromwich contour. For the physical applications which we
envision, the linear operator ws may involve thé time differentiation operator 3/dt,
but time doea not occur in Wy in any other way. Therefore, it is appropriate to
define Qs(m) as the result of substituting -iw for 3/t 1in ws. The solution of
(16)-(17) for the lLaplace transforms és(m) and £(1)(m) is



(1) (w) = - tD'l(w):fd3! TlL, - el e, +g,000] , (20)

Ba(v) = = [Ly - ] W @)D" ()] [ddy J (L, - w] 1[040 () + g,-(0)]

8
- 1L, - w]7Heg(w) + 400 ] , (21)
where
D(w) = A+ 1 Jfddy I [ig - o] W (w) , (22)
8

and where ga(O) is the value of Bs(t) at t=f) a.u Qa(m) can be constructed from the
values at t=0 of ¢(1)(t) and its time derivativea. The contour C for the Llaplace
transforms must be above all =ingularities of $(1)(w) and gs(m). The inverae of the

operator [L - w] i3 nonaingular except on the real u axis because L is a Hermitian

9
operator-1 Singularities off the real axis and not associated with 1initial
conditiona are singnlarities or D~ !(w). The operater D(w) is called the dispersion
operator. It plays a crucial role in determining the stability properties of the
system, and it will be importan. 1in our diacussion of numerical approximation
achemes. Nate that the dispersion operator does not depend on the operators Py in

terms of which auxiliary fuvnctions 8y may be defined.

It can be shown! that the gingularities of i(l)(m) and és(m) are located at the

roota of the equation

[Ndet(L, - wl)|detD(w) = O, (23)
a

where I 1s the unit operator in (r,v) space. Because Ly is Hermitian, any root of
this eqaution which has an imaginary part, corresponding to exponential growth or
decay, must be a zero of detD(w). The ctability of the system (16)-(17) can be
gtudied numerically by finding a suitable finite-dimensional approximation to D(w).
A numerical approximation to the solution of che initial-value problem for a fixed
length of tine can be obtained by finding a suitable approximation of the roots of
(23) 1in terma of a finite number of points in the w plane. Since th. eigenvalue
spectrum of Ly 18 a set cof real continua, approximating the roots of (23) with a
fini.e number of points means approximating continuous spectra with discrete spectra

of finite s9ize. We now turn to the question of constructing numerical

approximations.



III. NUMERICAL ASPECTS OF THE PROBLEM

For mnumerical purpoaea it 1is useful to introduce eigenfunctions of L, as a
basia for the (E'!) space for speciee a. This is also uaeful for some analytical
calculations. The eigenfunctiona of L, are a complete aet of functions in

(r,v) apace vhich we take to be rthonormal: !
La¥ser = MarVsr ° (24)
(Mgrs Wgrs) = Sppe s (25)

where the index r stands for whatever set of labels is needed to specify the

Yer»
parentheais notation denotes an 1inner product, and 6rr’ stands for a product of
Krcnecker deltas and Dirac delta functions--one Kronecker delta for each pair of
diacrete labela, and one Dirac delta function for each pair of continuous labels.
IZ at most one coordinate is nonignorable in the equilibrium configuration, then the

eigenfunctions and eigenvalues ug, can be found explicitly in terms of definite

w
sr
integrals.! The eigenvalues Ugr Play an important role in resonance denominators

ariaing from the 1inverse of the operator [L - w] which appears in the Laplace

rransforms (20)-(21).

In order to have a watrix representation of D(w), we also introduce a basis for
configuration space with basis functions nn(g)- In <ome caaes, the basic equationa

can be formulated such that one of the eigenfunctions of the operator A which

appears 1in (17) 13 a good approximation to $(1)(w0) for a complex frequency wy of
interest. Then, choosing the basis functions n, to be eigenfunctions of A 1is
advantageous,

Ang = Apng - (26)

The operator A can be chosen to be Hermitian for most problems. However, it may not
be Hermitian, in which case it can be useful to define a dual set of functions

Cn(_l)v

(Gpe "pr) = Supe - 27

where again Gnn’ stands for a product of Kronccker deltas and Dirac delta functions.



Even if one of the eigenfunctiona of A ia not a good approximation to ;(l)(wo), [
lipear combination of a few of the eigenfuncticns may be good; in this caae it would
still be a good idea to let the basis functions 1, be eigenfunctions of A because a
small truncated matrix representation of D(uo) could be a good approximation. Of
course, the optimal choice of basis would be one with which the representation of
D (w) would be diagonal; then, detD(w) = 0 would be satisfied by setting any diagonal
element to zero. If the equilibrium is spatially homogeneous, D(w) can be made
diagonal by choosing basis functions proportional to exp(ix-r), a familiar situation
in the stability theory for an infinite homogeneous equilibrium in plasma physics.
However, when the equilibrium is spatially inhomogeneous, the basis functions which
diagonalize D(w) generally will depend on w, and are usually not known for any given

We

There 1a a systematic way of determining a A whose eigenfunctiona are good
basis functions. Sometimes the procedure can be carried out. The idea 13 to try to
diagonalize D(x) for a mode of interest whose frequency is near w = wg If the

-

basis functions are eigenfunctions of A, then the operators P, must satisfy
Walwg) =0,

which means
1(Lg = wg)Pg(wg)e ™ () = U)oV wy) - (28)

This corresponds to an approximate solution of tha original linearized Boltzmann
equation. The parameter wy 13 determined by solving the dispersion relation

obtained from the approximate solution of (28). The Py, deternined in this way

depends parametrically on w, and 1it determines, through (18), a A whose
eigenfunctions form a suitable basis for working with a severely truncated
dispersion matrix in the neighborhood of w = woe

The procedure Juse outlined for Iletermining the basis functions for
coafiguration space is good if it cun be carried out. For example, it was effective
in studying the stabiiity of a large-amplitude Bernstein-Greene-Kruskal
equilibrium.3 However, it does occur for some problems of physical interest that &
has to be chosen rather carefully. For example, in the case of a magnetized plasma,
there are modes for which spatial variations of short scale length, on the order of
the {on gyroradius, are present 1in addition to variations of much longer scale

leng:h.“" For the procedure of using only a few of the eigenfunctions of A to be



effective, they mugt be able t, represent all of the important apatial variations
with sufficient accuracy, the sho:t scale lenpth variations as well as those with
long acale lengt*. For a specific problem it may not be possible to solve (28) to

oufficienc accuracy, or it may be inconvenient to do so.

When it is not feasible to use a very small truncation of D(w) by caking the
eigenfunctions of a suitable A as the basia for configuration space, it 1is necessary
to choose a basis with which arbitrary variations of t-.e appropriate scale lengtha
can be adquately represented. This can eaaily lead to a matrix repreaentation of
D(w) vhose dimenaion i8 large enough that very serious computer storage problems are
encountered. If there is more than one nouignorable coordinate in the equilibrium,
there i3 at present no general numerical procedure for finding the eigenfrequenciea
of the ayatem. Even in the case of one ncnignorable coordinate, there has not been
a generally applicable numerical procedure so far. Recently, however, an approach
has been found which should render it feaaible to find the eigenf.equencies
numerically for a general equilibrium wfth one 1onignorable coordinate.® The
approach makes detailed uae of the explieit form of the eigenfunctions and
eigenvalues of the operator Ls.l organizes the computational work in a way which
minimizes computer storage prcblems, and relies on some empirical simplicity of the
dependence on w of elements of the dispersion matrix. A computer code based on this

approach is being constructed.

An approximation to the solution of the initial-value problem for (15)=(l7) can
be obtained by approximating the entire spectrum of solutions of (23), including the
continuous branches. The continuous part of the spectrum ic reaponsible for phase
mixing in the evolution of the system, an example of which is a decay in time of
electrostatic perturbations which 19 known as Landau damping. If a finite set of
basis functions Wgr 8nd n, 18 used, as will be the case in computational work, then
(23) 1is in fact always a polynomial equation.1 Despi.ite the fact that the polyromial
can be of very large degree, it can be evaluated because (23) represents the
polynomial as the pr. uct of the determinant of a diagonal matrix times the
determinant of the dispersion matrix. The determinant of the diagonal matrix 1is
trivial to evaluate, and the Jdeterminant of the dispersion matrix can be evaluated
if the number of basis functions n, is not too large. All of the roots of such a
polynomial equation of large degree can be found simultaneously by mears of a
quadratically convergent {teration method proposed by Aberth,9 Kerner,lo. and

Durand.!! The method also converges when there are multipie roots.



IV. CONCLUSION

The equati 'ms governing the amall-signal response of spatially inhomogenecu-
collisionless -lawmas have practical tfgnificance in physics, for example 1in
controlled thermonuclear fusion research. Although the solutions are very
complicated and the equations are difficuit to aolve numerically, effective methoda
for them are baing developed which are applicable when the equilibrium involves only
one nonignorable coordinate. The generrl theoretical framework probably will

provide u baais for progress when there are *two or three nonignorable coordinates.
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