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Abstract

We study large-amplitude collective motion in fission and heavy-ion
reactions by solving classical equactions of motion for the time evolution of
the nuclear shape. In the nuclear potential energy of deformation, we cal-
culate the generalized surface energy by means of a double volume integral
of a Yukawa-plus-exponential function, which was obtained by requiring that
two seni-infinite slabs of constant-density nuclear matter have minimum energy
at zero separation. The collective kinetic energy is calculated for nuclear
flow that is a superposition of incompressible, nearly irrotational collective~
shape motion and rigid-body rotation. Nuclear dissipation is included by
means of the Rayleigh dissipation function, which depends upon the physical
mechanism that converts collective energy into internal energy. For both
ordinary two-body viscosity and a combined wall and window one-body dissipation,
we calculate fission-fragment kinetic energics fer the fission of nuclei |
throughout the periodic table and compare with experimental results. Finally,
we study explicitly the one-body dynamics of nucleons inside a cylinder col-
liding with a moving piston by solving exactly the collis.onless Boltzman equa-
tion for the distribution function. By examining the relative phases of the
pressure at the piston and the piston's velocity, we are able to separately

ddentify a dissipative force and an elastic restoring force.
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As 1llustrated in Fig. 1, we study large-amplitude collective motion in
fission and heavy-ion reactions by solving classical equations of motion for

the time evolution of the nuclear shape.l’2

In the nuclear potential energy
of deformation, we calculate the generalized surface energy by means of a
double volume integral of a Yukawa-plus-exponential function, which was
obtained by requiring that two semi-infinite slabs of constant-density nuclear

matter have minimum energy at zero separation.3’4

The resulting potential for
heavy-ion reactions is compared with experimental results in Fig. 2 and with
other heavy-ion potentials in Fig. 3. As shown by the solid curves in Fig. 4,
our potential reproduces heavy-ion elastic scattering with approximately the
same accuracy as does a Woods-Saxon potential (dashed curves).

The collective kinetic energy is calculated for nuclear flow that is a
superposition of incompressible, nearly irrotational collective-shape motion
and rigid-body rotation.l’2 Nuclear dissipation is included by means of the
Rayleigh dissipation furction, which depends upon the physical mechanism that
converts collective energy into internal energy. Tigure 5 compares results
that have been calculated for various types of dissipation and an earlier
version of the potential energy with the result of a time-dependent Hartree-
Fock calculation.5 Figure 6 illustrates the type of potential-energy surface
that 1is involved in the macroscopic calculations.6

Figure 7 shows dynamical trajectories calculated with the Yukawa-plus-

exponential potential for both ordinary two-body viscosityl and a combined
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wall and window one-=body dissipation.7 In the latter case, the wall fornula
relative to the center of mass of the entire system is used until the neck
radius reaches the indicated value, at which point a transition is made to

a wall formula relativefto the centers of mass of the two nascent fragments
plus a window formula for the neck between them. As shown in Figs. 8 and 9,
experimental fission-fragment kinetic energies for the fission of nuclei
throughout the periodic table are reproduced by either ordinary two-body
viscosity with a coefficient u = 0.015 TP or by a combined wall and window
one=body dissipation with a transition neck radius Toeck = 2.5 fm,

In Fig. 10 we examine the ability of the wall formula to predict the
experimental widths of giant multipole resonances. By comparing the solid
curve with the solid circles (giant quad:upole)8 and the dashed curve with the
open circle (giant octupole),9 we see that for hoth resonances the wall-formula
predictions are about three times as large as the experimental values.

Finally, as illustrated in Fig., 11, we study explicitly the one-body
dynamics of nucleons inside a cylinder colliding with a moving piston by
solving exartly the collisionless Boltzman equation for the distribution
function. By examining the relative phases of the pressure at the piston and
the piston's velocity, we are able to separately identify a dissipative force

and an elastic restoring force.
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MACROSCOPIC APPROACH

Collective coordinates

Q=0 «en 5 G

Fundamental nuclear properties
1. Potential energy V(q)

2. Kinetic energy T(q,q)

3. Dissipation F(q,q)

Lagrangian L =T -V
Equations of motion
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Figure 1
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Exact Solution of the Boltzmann Equation

I v = vy cos wt

Oscillation period _ Vo _
= = 4 = 0.l
Transit time Ve
Pressure 4 _ Exact _ o~
1,2 7 X 7 /
5P ( \,‘\\ﬁ\\ -
\\__/ \\.../
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Figure 11 -



