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Abstract

We study large-amplitude collective motion in fission and heavy-ion

re.:ctionsby solving classical equations of motion for the time evolution of

the nuclear shape. In the nuclear potential energy of deformation, we cal-

culate the generalized surface energy by means of a double volume integral

of a Yukawa-plus-exponential function, which was obtained by requiring that

two semi-infinite slabs of constant-density nuclear matter have minimum energy

at zero separation. The collective kinetic energy is calculated for nuclear

flow that is a superposition of incompressible, nearly irrotational collective-

shape motion and rigid-body rotation. Nuclear dissipation is included by

means of the Rayleigh dissipation function, which depends upon the physical

mechanism that converts collective energy into internal energy. For both

ordinary two-body viscosity and a combined wall and window one-body dissipation,

we calculate fission-fragment kinetic energies fcr the fission of nuclei

throughout the periodic table and compare with experimental results. Finally,

we study explicitly the one-body dynamics of nucleons inside a cylinder col-

liding with a moving piston by solving exactly the collis.onless Boltzman equa-

tion for the distribution func’tion. By examining the relative phases of the

pressure at the piston and the piston’s veloclty, we are able to separately

identify a dissipative force and an elastic restoring force.
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As illustrated in Fig. 1, we study large-amplitude collective motion in

fission and heavy-ion teactions by solving classical equations of motion for

the time evolution of the nuclear shape.
1,2

In the nuclear potential energy

of deformation, we calculate the generalized surface energy by means of a

double volume integral of a Yukawa-plus-exponential function, which was

obtained by requiring that two semi-infinite slabs of constant-density nuclear

3,4
matter have minimum energy at zero separation. The resulting potential for

heavy-ion reactions is compared with experimental results in Fig. 2 and with

other heavy-ion potentials in Fig. 3. As shown by the solid curves in Fig. 4,

our potential reproduces heavy-ion elastic scattering with approximately the

same accuracy as does a Wood~-Saxon potential (dashed curves).

The collective kinetic energy is calculated for nuclear flow that is a

superposition of incompressible, nearly irrotational collective-shape motion

1,2
and rigid-body rotation. Nuclear dissipation is included by means of the

Rayleigh dissipation function, which depends upon the physical mechanism that

converts collective energy into internal energy. Figure 5 compares results

that have been calcul,]tedfor various types of dissipation and an earlier

version of the potential energy with the result of a time-dependent Hartree-

Fock calculation.5 Figure 6 illustrates the type of potential-energy surface

th6t is involved in the macroscopic calculations.
6

Figure 7 shows dynamical trajectories calculated with the Yukawa-plus-

exponential potential for both ordinary two-body viscosityl and a combined
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wall and ~iidow

relative to the

one-body dissipation.I In the latter case, the wall foruula

center of mass of the entire system is used until the neck

radius reaches the indicated v@ue, at which point a transition is made to

a wall formula relative;to the centers of mass of the two nascent fragments

plus a window formula for the neck between them. As shown in Figs. 8 and 5$,

experimental fission-fragment kinetic energies for the fission of nuclei

throughclutthe periodic table are reproduced by either ordinary two-body

viscosity with a coefficient v = 0.015 TP or by a

one-body dissipation with a transition neck radius

In Fig. 10 we examine the ability of the wall

experimental widths of giant multipole resonances.

combined wall and window

= 2.5 fm.
‘neck

formula to predict the

By comparing the solid

8
curve with the solid circles (giant quadxupole) and the dashed curve ti.ththe

9open circle (giant octupole), we see that for both resonances the wall-formula

predictions are about three times as large as the experimental values.

Finally, as illustrated in Fig. 11, we study explicitly the one-body

dynamics of nucleons inside a cylinder collidir,gwith a moving piston by

solving exactly the collisionless Boltzman equation for the distribution

function. By examining the relative phases of the pressure at the piston and

the pistonts velocity, we are able to separately identify a dissipative force

and an elastic restoring force.

Acknowledgmentts

We are g’ratefulto G, FL Bertsch, K. T. R. Davies, S. E. Koonin, H. J.

Krappe, P. M&ller, J. W. Negele, and W. J. Swiatecki for their collaboraticnl

on some cf the studies reported here. This work was supported by the U. S.

Department of Energy.

-2-



1. K. T. R. Davies,

2. J. R. Nix and A.

3. H. J. Krappe, J.

4. H. J. Krappe, J.

5. J. W. Negele, S.

Rev. C=, 1098

6. P.

v8* J.

w.

8. F.

9. M.

tiller and J.

References

A. J. Sierk, and J. R. Nix, Phys. Rev. C13, 2385 (1976),,

J. Sierk, Phys. Rev. CIS, 2072 (1977).

R. Nix, and A. J. Sierk, Phys. Rev. Lett. 42, 215 (1979).

R. Nix, and A. J. Sjerk, Phys. Rev. C, to be published.

E. Koonin, P. M&ller, J. R. Nix, and !..J. Sierk, Phys.

(1978).

R. ~iX, Nucl. Phys. A272, 502 (1976).

Elocki, Y. Boneh, J. R. Nix, J. Randrup, M. Rebel, A. J. Sierk, and

J. Swiatecki, Ann. Phys. (N. Y.) , 330 (1978).

E. Bertrand, Ann. Rev. Nucl. Sci.

Sasao and Y. Torizuka, Phys. Rev.

26, 457 (1976).

C15, 217 (1977).

-3-



MACROSCOPIC APPROACH

Fundamentalnuclearproperties

1. Potentialenergy V(q)

2. Kinetkenergy T(q,~)

3. DissipationF(q,~)

LagrangianL = T - V

Equationsof motion

CollectWe coord~nates

q=qls ’00 9qn

()d 31 *3F w=o—— —-— i=l, ....n
‘t \aii a:i aqi ‘

Figure 1
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F! TSION-FRAGMENT KINETIC ENERGIES
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Exact Solution of the Boltzmann Equation
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