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ABSTRACT

A review of the present status of the application
of Lie-group theory to the solution of first order ordinary
differential equations (ODE's) is given. A code writtenr
in the MACSYMA language is presented which finds and solves
first order ODE's invariant under group with infinitesimal
generation of the form U = A(x)B(y)d, + C(x)D(y)dy. An
algorithm is given by which one can begin with an ODE
y’= f(x,y) with known solution ¢(x,y) = ¢ and obtain a
pessibly larger class of ODE's with solutions given in closed
form. A final algorithm for forming a sequence of solvable
differential equations is suggested. The work can be
generalized to higher order differential equations, partial
differential equations, and difference equations.



"The problem of integrating a differential equation
will be reduced to the problem of finding a one-parameter
group which leaves the equation unaltered,... We do not
attempt to integrate the equation ignoring the data of the
problem in which it arose, but rely on the data to suggest
a group which leaves the equation unaltered." -

L. E. Dickson [5, page 303].
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1. INTRODUCTION

This paper reviews the present status of the contributions which

Lie group theory can make to the sclution in finite terms of first order

ordinary differential equations (ODE's):

Y = £(x,y)

The paper discusses four topics:

1.

A review of the relevant Lie group theory. This is
included since there is not an adequate summary in one place
of exactly those parts of Lie group theory relevant to the
above problem.

A code written in the MACSYMA language to find and
solve equations (l.1) which are invariant under the Lie

group with infinitesimal generator of the form
U= A(x)‘%(y)ax + C(x)D(y)By .

An algorithm by which one can begin with an equa-

tion (l1.1) with a known one-parameter family of solutions
¢(le) =C

and obtain, using Lie group methods, & possibly larger set
of equations of the form (1.1) with known solution. There-~
by, one can rake use of tables such as Kamke [8] and

Murphy [12] to extend the domain of equations (1.1) with
solutions given in finite form. The theory of such a pro-
ject is given, but is not implemented other than for two
examples. This theory makes possible a more systematic

organization and enlarging of tables of solved ODE's.

An algorithm .s outlined by which one can start with
an ODE with known solution and constroct 2 sequence of first
order ODE's with solution derivable from the »revious members

of the sequence.

(1.1)

(1.2)

(1.3)



(One would really like, for a given ODF, to find its invariance
group and thereby solve the ODE. It turns out that this task is exactly
equivalent to solving the ODE in closed form. However, Dickson [5] using
examples of ODE's from geometry, illustrates how in certain situations
one can guess the appropriate invariance group.)

By solving (1.1) in finite terms, we mean that f(x,y) is a given
elementary function of two variables (built up from algebraic, exponential,
and logarithmic operations) and one expresses the solution (1.3) in temms
of functions of two variables, built up from a finite number of algebraic,
exponential, and integral operations, when such a solution exists. One
goal of those who work in this subject is to determine, for a given elemen-
tary £, if such a ¢ exists and to determine its value when it exists. As
is well known, Risch ([14], [15]) has discovered and implemented such an
algorithm, loosely speaking, when f is a function of a single variable.

Future projects include the implementation of item 3, above, the
extension of this work to higher order ODE’'s, partial differential equations,
and di“ference equations.

The material of Part I is taken from Kamke [7], Markus [l11], and
Pontryagin [13] and is included in this report to bring into one place ex-
actly those parts of Lie group theory needed for integration of first order

ODE's.



Part I. Theory
2. Local Lie Group

A topological space G is a local grour if for some pairs a,b of
points in G, ab is defined and the following conditions are satisfied.
An upper case Latin letter denotes a neighborhood of its argqument.
a. (ab)C = a(bc) if the four products stated are defined.
b. If ab is defined, then for every W(ab) there exists
U(a) and V(b) so that U(a)V(b) C w(ab) where U(a)V(b) is
the collection of products xy, x € U, y € V.

C. There is an identity e € G so that ea is defined and ea = a
for all a € G.

d. 1If for b € ¢ there is a left inverse b;l € G so that
b;l b = e, then for every U(b;l) there exists V(b) =o that for
y € V(b) there exists y;l € U(b;l).

Lemma l. For any local group G and for any W(e), there exists
U(e) so that for a,b € V(e), ab € W(e).

Let the local group G have topological dimension r. We say that
a coordinate system is defined in G if there is a homeomorphism H of U(e)
onto V(g), where 9 is the origin of r-dimension Euclidean space Rr, so that
H(e) = 0.

For W(e), e € G, let U(e) be the neighborhood of e as defined in
Lemma 1. For X, y € G(e), put z = xy. If H(x) = fr , H(ly) = !r’ and

H(z) = zr. put

f are said to be differentiable if it is three times differentiable.
Definition 1. A local group G is a local Lie group if it is

possible to introduce differentiable coordinates into G. r is then called

the number of parameters of G.



Definition 2. Let G be an r-pararieter local Lie group and
I'and A be open sets in R with A O I'. Suppose for x € G, ¢x= ' A is a
homeomorphism so that ¢x(5) ic a continuous function of x for each fixed

EeT. G is a local Lie group of transformations if:

a. For e e G, ¢e(5) =§ for all £ e T
b. For x,y sufficiently small in the topology of G, ¢x(¢y(5)) = ¢xy(£).
c. ¢x = ¢e only if x = e.
d. ¢x(5), regarded as a map from R" x R" to Rn, is a three times
differentiable function.
(The reason for the appearance of the number "three" is that "three"
is number of derivatives which assures that other functions arising in most
traditional computations with Lie groups will have the correct number of

derivatives.)
3. First Order Ordinary Differential Equations

In all that follows, ( will denote an open connected set in R2. We need
the following existence theorem for first order ordinary differential equations,
taken from Arnold [l]. See pages 48 and 226 for what Arnold calls the recti-

fication theorem (the hypotheses are rather scattered in the book). Consider

t Xa

= V(x) , (3.1)

where x € R2 and V: 0 ~» R2. Let r # 2 be some integer, including =, Suppose

e 0 and v (xo) # 0.

0

Then there exists a solution x = ¢(t,xo) salisfying ¢(t0,xo) = %, in some

The function ¢(t,xo) in some .aeighborhood N of (to,xo)

the components of V are of class ct in 0. Suppose x

interval containing to.
is in Cr-l and for N sufficiently small, the solution is unique.

One can remove the restriction taat Y(fo) # 0 by combining theorems
ir Birkhoff and Rota [2, pages 151, 152, and 162]). Namely, if the components
of V(x) are continuously 2ifferentiable in a bounded closed convex domain 0,

then (3.1) has through each point xo of 0 a unique solution for some interval

lt-tol < T for scme T possibly depending on x_.
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4. Local One-Parameter Transformation Groups on x2

Theorem 1. Suppose £, (x) € c (0) for i = 1,2 and £ = (fl'fz) #0
in 0. Let

d«
u ={ — =
{dt f(f)} (4.1)

define a vector field in (. Let ¢(t,xo) be the unique solution curve of

(4.1) through X, € 0 at t

transformation group {Tt} on 0 which is said to be generated by U.

0. Then ¢(t,x) defines a one-parameter local

Proof. From Section 3, ¢(t,x) ¢ Cm in ﬁl x 0 where ﬁl is some interval
of the t-axis containing t=0. For t sufficiently small in magnitude,
] d_ x (s+t)

3s ¢ (5 + ' %)) = g0 -

= f(x(s+t)) = f(¢(s+t,x0)).

Thus for each fixed sufficiently small t and for sufficiently small s,

¢(s+t,xo) is the unique solution of [/ through ¢(t,xo) = x., at s=0. Thus

1l
¢(S+t.xo) = ¢(3.xl) . (4.2)

Now define the one-parameter transformation of 0 by
X) = 8(tyixy)

for tl sufficiently small. Put, for t2 sufticiently small,

Xy = kX))

Then

52 = ?(tzl?(tllfo)) . (4.3)
From (4.2 ,

fz = ?(tl + t2'§0) . (4.4)



Comparing (4.3) and (4.4), we see that ¢(t,x) defines a local one-parameter
transformation group.

Definition 3. The vector field (4.1) with f € CQ(O) and £ # 0

in 0 is called an infinitec.mal one-parameter transformation group on (.

Theorem 2. Eacl local one-parameter transformation group on 0
is generated by one and only one infiriitesimal one-parameter transformation

group.

Proof. Le%- ¢(t,x) be a local one-parameter transformation group

on 0. Define the infinitesimal one-parameter group U (see (4.1)) by

3¢

5% (t,x) = £(x) .

=0

Let ¢l(t,x) be generated by U as in Theorem 1. ¢ and ¢l have the same initial

-~ -~

1 .
value. We now show that ¢ and ¢ satisfy the same system of differential

-~

equations. £y the group property, when s and t are sufficiently small,
¢ (s+t,x) = ?(s,?(t,f))

so
dp (s, ) = ¢ (5,0(8,x)) .

Put s = 0:

gt(t,f) = gt(o.@(t,f)) .

Thus
&

?t(tlf) = £(¢(tlf)) .

Thus ¢ and ¢l satisfy the same ODE and have the same initial value and there-
fore in 0 are equal. Conversely, distinct vector fields have distinct integral

curves.

"heorem 3. Let h(x): O -+ Pl be real analytic (c“) and let

U= f(x) - ] ’ (4.8)

where 3 = (3/3x , 3/dx,), be a differential operator with f ¢ c“(0).



Define
h(t,x) = h(g(t.f)) ' (4.9)

where ¢(t,v' is defined by the vector field (4.1) in 0 and t is sufficiently
small in magnitude. Then

~

h(t,x) = e h(x) ,

where etU is the power series of operators:
[« <]
etU _2: ﬁ o
=0 n!

Proof. We first use an induction argument to establish that

o 3"nit, x)
U h(x) = ———n; . (4.10)
ot £=0
For n = 1,

Bh(t,x) 3

—_— = +— h(¢(t,x)) (4.11)
2

9t t=0 % ~ - t=0

= h;'f = Uh(f)
Assume
3" 1h (e, %) o1
——n—_l—”— =U “h(x) . (4.12)
3t =0
Then
u[u“'lh(x)] =g—s ™ (s, x) (E; (4.12))
- ~ s=0
_ 9 n-1
= 37 V" h(¢6sm) (by (4.10))
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Definition 4. If U is the vector field (4.1) with £ € C (0),
the operator U (4.8) is caliad the {infinitesimal) generator of the local one-
parameter transfoimation group on 0 given in Theorem 2.

Definition 5. Let U be the generator of a local one-paranmeter

1 -]
transformation group {Tt} in 0. A function h:x + R with h € ¢ (0) is

invariant under U if
h(th) = h(f)

for all x € 0 .

[« <]
Theorem 4. h(x) € € (0) is invariant under U if and only if

Uh =0
in 0.

Proof. Suppose h invariant. Then
he,x) = h(¢(e,»)

is independent of t:

a A
Y h(t,f) 0 .
But
a A
Y h vh .

t=0

Thus Uh = 0 for each x € 0 .

Conversely, suppose Uh = 0 in 0. Then



5 3t ~ -
8=0
o an-l
= 55 _.n-1 h( ?‘t'?‘s'flﬂ (by (4.9))
ot -
s=0
-1
3 3"
= =h (¢(t+s,x)
oS a¢h1 (~ ) £=0
s=0

(using the group property of ¢)

a Bl'l-]. A
v h (t+s,x) (by (4.9))
S 5¢h71 -
t=0
s=0
n A
= a_n h (t’x)
ot

t=0

This establishes (4.10).

Since ¢(t x) is analytic in t for each x in 0 for sufficiently

small t (see Lefschetz [9], page 14), h is analytic in t and therefore,

2 3
h(t x) =h(x) +tUh+;—!U2h+§—|Uh+

which is the conclusion of the theorem.

Corollary 1. For f € c®(0) and for t small,

¢i(t,x) = etU X, i=1,2,
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~

h(t+s,§o) = h(?(t+s,§g>

and
h(t+s,x) = h(¢(e,x)))
where
X) = ¢itexy) .
Then
g—t (t+s,x,) = Uh =0
= s=0 X=X,

by previous work. Thus

dh

3t (&%) =0
for each t, where defined.

We now use the notation x = (x,y).

Definition 6. A differential equation
d
D: 3L = £(x,y) ,

where f € C°° (0), is invariant under a local one-paramaster Lie group {Tt}
on 0 if (x,y) € 0 and (xl,y]) € 0 is on the unique solution to D through (,y)

then the same holds for (Ttx,Tty) and (T x_,T +v.).

717 e
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Defirnition 7. For a given open connected set 0CR2, let L(0) be the
cartesian product of 0 and S where S is the circle with the natural topology
of a circle, the circle being the one point compactification of the line.

2 o
>0 in 0, M,N e Cc ()

defines a differential surface in L(0) above 0 where a point of the surface is
given for (x,y) € 0 by the triplet (x,y, dy/dx = -M(x,y)/N(x,y)) where if N=Q,
dy/dax is associated with the exceptional point of the circle.

Lemma 2, A differential equation Mdx+Ndy=0, M2+N

Definition 8. A mapping f:O1 -+ 02, where 0i are open connected

-1 1
sets in R2, is a diffeomorphism if f is one-to-one onto and f and £ "eC™.

Lemma 3. A diffeomorphism U = U(x,y), V = V(x,y) between open sets
01,02C0 defines a diffeomorphism between L(Ol) and L(02) by the mapping

(x,y,p) » (U(x,y),V(X,y),9) (4.13)

where

L av _ av(x,y(x)/dx _ 3V/3x+pdV/dy

au = QU(x,y(x)/dax ~ U/3x+pou/dy (4.14)
Corollary 2. A local transformation group ?(t,f) = ($(t,x,y),
Y(t,x,y)) in O derines a local transformation group in L((0) by
(x,y,P) >(d(t,x,y), P(t,x,y), X(t,x,y,p)) , (4.15)
where
d
X(t,x,y,p) = SL = D/dX % S B—Uj oy (4.16)

d d¢/dx )
¢ ¢/ %% (t,x,y) +p 3‘3 (t.x,y)

5. Extended Transformation Group

Theorem 5. Let U = f(x,y)ax + g(x,y)By be the generator of a local

one-parameter group G on (. The generator of the associated local one-parameter

transformation group in LiU) is

= f(x,y)d + ,¥)9 + hi(x,y,p)d 5.1)
v (x,¥)3_ + g(x,y) v (x,y,p) b (
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where

h(x,vy,p) = = + (gy - fx)p - fyp2

U is called the generator of the once-extended transformation group Gl.

(5.2)

Proof. Expressions (4.15) and (4.16) define the group. To find its

generator, use the construction given in Theorem 2, when extended to three

variables. Thus

= g(x,y)

t=0

and

21
ot

t=0

£t
Using ¢ = etux, y = e L’y, one obtains

¢x. = ] ’ ¢Y = 0
| t=0 t=0
and
!.Ux = 0 ' ‘JJ -]
t=0 Y| rmo
Also,
¢ - f ’ ¢ - f
xt tm0 b yt tm0 Y
and
=g, o+ ¥ =g
xt =0 X Yt t=0 y

t=0 .

(5.3)

(5.4)

(5.5)

(5.6)

(5.7

(5.8)

Putting (5.5) through (5.8) into (5.4) and using (5.3),6 one obtains (5.1) and

(5.2).
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Definition 9. A surfac2 W in L(0) is invariant under a transforma-
tion T of L(0) if T(W) C W,

Theorem 6. A differential equation D:

0 (M2 +N°>0,M Ne€ C”(O))

Yy + M(x,y)/N(x,y)

is invariant under the local transformation group generated by

U= £(x,y)3, + g(x,y)d, (£,9 € C"(0)) (see Definition 7) if and only if the
surface defined by D in L(0) is invariant under the local group Jjenerated
by U (see Definition 9).

Proof. The surface defined by D is invariant under the
local group generated by v if and only if the trajectories of v/ remain in
the surface and this is so if and only if the vector (f,g,h) is tangent to the
surface. (f,g,h) is tangent to the surface p=w(x,y) if and only if

f(-wx) + g(-wy) + h(l) =0

or

U (p-w) = 0 . (5.9)
on the surface of D.
6. Integrating Factor

Theorem 7. Suppose D: Mdx + Ndy = 0 (M2 + N2 > 0 in 0) is local group
invariant under the lortal group generated by U = fax + gay, fM + gN # 0 in 0 and
f,M,g,N € Cm(O). Then U = 1/(fM + gN) is an integrating factor for D so that
(UM)y - (UN)x-

Proof. Choose P € 0 and zssume N(P) # 0; otherwise M # 0 and inter-
change x and y. Now v’ p + %) = 0 on D in the subset of L(0) lying above a
neighborhood of P. Thus

. 2 M
[fax + gay + igx + (g) - fx)P - fyP ) 3p] [P + N] ¢

or

M 2
+ g (ﬁ) tg,t (gy - fx) p - fyp =0 .
Y
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But

Thu.

which reduces finally to

+ +
M N/ EM+gN |

7. Independent Funct.ons

Definition 10 (Kamke [7, pages 3G<Z-3]). N functions
U (x), i=1,2,...,N,defined with continuous first order partial derivatives
N
on a closed bounded domain B C R, are dependent if there exists a function F:

RY + R! so that the following hold:

a) F is defined on RN with continuous first order partial derivatives;
b) F varishes in no subdomain of RN;

Definition 11. (Kamke [7, page 303]). N functions Ui(x): RN -+ Rl

are dependent in an open domain ( C R2 if each in bounded clcied subdcomain B C (

the_ are dependent by Definition 10. Else the Ui are independent.

8. Solution to U w=0

Definition 12 (Kamke [7, page 323)). A set of integrals (solutions)

wl""'wn-l in a domain G C R" of the differential equation
n
DT (8.1)
X) —/— = .
=t ey

is called a principal system of integ.als if the matrix:

(32)
™ /1 <i<n-1, 1< <N

whare x = (xl,xz,...,xn), has rank n-1 in each subdomai:: of G.
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Theorem 8. (Kamke [7, page 323]). Suppose the functions fi(f),
l & 3i<n, are continuous in a domain G C RM. T# mi(g), 1< 4is<n-l, are a
principal system of integrals of (8.1), then a frnction w(f) is an integral
of (8.1) if and only y and wi are dependent in G (Definition 11).

Proof. See Kamke [7].

Corollary 3. Let u and v be independent solutions of the partial
differential equation U'w = 0 in a domain 0 C R2, where U’ is given by (5.1)
and (5.2). Suppose f£,g € Cm(O)r An ODE £(x,y,y’) = 0 of first order is
invariant under the group generated by the infinitesimal transformation
U= fax + gBy if and only if for3each closcd bounded subdomain B C 0 there
exists a function F defined on R™, has continuous first order partial

derivatives, vanishes on no subdomain of R3, and in B, F(L,u,v) = 0.
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Part II. Applications

9. Algorithm 1.

We suppose that f(x,y), g(x,y) € Cm(O) and therefore satisfy a Lipschit=z
condition in a convex and compact subdomain U C ( (Arnold [1, pagz 218]). Iwo

independcnt solutions to the equation

vw=o (9.1)
can be obtained by solving the associated characteristic equations:

dx

at = f(le) ' (9.2)

dy _

at g(x,y) ’ (9.3)
and

dp _

at h(x,y.p) . (9.4)

See Kamke [7, page 321]. By eliminating t from (9.2) and (9.3), one obtains

dy = g(x,y)
a&x - Exy) €9.5)

Let (xo,yo) € 0 for which £ # 0 or else g # 0. Then in a sufficiently
small neighborhood N of (xo,yo) there is a one-parameter family of solutions
of (9.5),

y = 0(x,c) (9.6)

o0
where Yo = w(xo,O), f(xo,yo) # 0 and w(x,c) € C near (xo,O) or

where X, = G(yo.O). g(xo,yo) # 0, and 8(y,c) € C near (YO:O).

Then solving (9.6) or (9.7) for ¢ = u(x,y), u(x,y) is a solution to (9.1)

in the neighborhood N (Theorem 1 of Kamke [7, page 321]). A second solution,
independent of u (Definition 11), is obtained as follows. If (9.6)

is used, combine (9.4) with (9.2), else combine (9.4) with (9.3). If (9.6)
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is used, then (9.4) and (9.2) give

_dB = h(xl!lE) (9.8)
dx £(x,y) ) '

Using (9.6) in (9.8), gives

8p _ h(x,w({x,c),p)
dx f(x,w(x,e))

(9.2)
Solving (9.9) in a sufficiently small neighborhood of (xo,p) for any p, one
has a one-parameter family of solutions:

p(x,psc) =Y . (9.10)
Tucn

V(x,y,p) = p(x,P 0 (xX,y)) (9.11)

is a solution to (9.1l). Similar calculations hold if (9.7) had been used
in place of (9.6).

We now show that (9.9) is a Ricatti equation of the type that can
be solved by integration. By (9.2), eq. (9.9) has the form

dp . __ 1 -
dx f(x,w(x,c)) [gx(xlw(xlc)) + [gy(XIw(xlc) fx(xlw(xlc))]p
2
- fy(x.w(x,c))p l. (9.12)

The quantity

e 9(x,w(x,c)) _
P= fx,00(x,0)) (9.15)

satisfies (9.12) as can be verified by substitution. Put

- g(x,w(x,c)) 1
P f(x,w(x,c)) * b (X)

(9.14)

as the general solution to (9.12). Then H(x) satisfies

o1}

H

= +
dx

Y

2qf £
[gy-fx-—-f—y—]ﬂ-zy . (9.15)
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On solving (9.15) for H and substituting into (9.14) we finally obtain
the general solution to (9.12):

-f -2gf /f
3y 290/

fx,0(x,0)) X
- 9ix,0(x,c)) e (9.16)
P f(x,0(x,c)) fgz-fx-zgfy/f
£ f(x,0(x,c)) dx
?1 e dx + v

where Y is an arbitrary constant including . The constant ¢ in (9.16) is then

replaced by u(x,y). Cn solving (9.15) for y, one obtains

-Y = ————ee . e

g(xl!)
P~ F(x,y)

c + u(x,y)

-f -2gf /£f)/f dx
£ f(gY 29, /£)/
I ' ax (9.17)

c > Y(x,vy) .

Then if V(x,y,p) is set equal to the right hand side of (9.17), one obtains
a second solution to (9.1) in a neighborhood of (xo,yo) if f(xo,yo) * 0.

If f(xo,yo) = 0, then g(xo,yo) # 0, and an appropriate¢ formula to replace
(9.17) can be obtained by use of (9.7).

In summary, one can start with any £ and g € Cm(O). Obtain u

and V. Then the ODE
F(u,v) =0 , (9.18)

where Ff is described in Definition 10 when restricted to two variables, is
invariant under the local group generated by U = fax + gay. (9.18) is
solvable by use of the integqrating factor given Theorem 7 provided (9.18) can
be written in the form y’ = - M/N.
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If one selects one of the branches of (9.18) for V as a

function of u; v = w(u), then (2.18) gives:

-f -2gf /f)/f dx
f(gy x gy/)/

\9.19)
e + wix
.qy__ g(x.y) + ¢ wi( 'Y)
dx = f(x, (g -f -2g9f /f)/f dx
(x,y) . fgy x29%,
f?x . dx + WW(x,y)
c > wix,y)
We include, as a special case of (9.19), the case of w = ®©, so that
dy _ g(x,y)
dx f(x,y)
10. Applicacion of Algorithm 1
Suppose
U= A(x)B(y)ax + C(x)D(y)ay (10.1)

(=]
with A,B,C,D € C (e,f) for some interval (e,f). Equation (9.5) becomes

dy _ C(x) D(y)
dx A(x) B(y)

Suppose (a,b) and (c,d) are such that A(x) # 0, B(y) # 0 for x ¢ (a,b) and
y €(c,d). Put

- C(x) _ ()
u(x,y) fA(x) dx /D(y) dy . (10.2)

where the integrals are interpreted as indefinite integrals. Then w = uXx,y)

is a solution to (9.1). Put

ulx,y) = ¢ (10.3)

and select one of the branches resulting from solving (10.3) for y:

y = wilx,c) .
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Put
K(x,c) = c(x) D’ (w(x,c))=A (x)B(w(x,c))=2C(x)D(w(x,c))B (w(x,c)/B
' A(x)B(w(x,c)
- ceoD (w(x,e)) _ A (x) _ 2C(x)D(w(x,2)) B (w(x,a))
A(X)B(0(x,c))  A(x) A(x)B> (w(x,c))
Then
PCD’ gx 1l dD
(o100 = = d4dx in D
eJAB=efdedy - e =p ,
AI
- — dx
e '[A = 1
A ’
and
cp#® dy 1 d8
4 - ) AP R °J
zanzx zfdxadydx -2
e =e =B
So
fx(x,c)dx r
e =
Ap2
So from (9.17),
v(x,y,p) = 1 2
_Cbly) 52
A(x)B(y)

’

_fﬁ’3(m(x.c)) D(:Ex.cn dx
B™ (®(x,c)) x)
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or

v(x,y,p) = dx . (10.4)

. C(x)D(y) A(x)g3 (w(x,c))

D(y).’A(x)Bz(y) _ [B'((w(x.C)D(w(x.C))
A(x)B(y)

Thus a general first order ODE invariant under the group generated by

(1ol1) is given by

dy _ C(x)D(y)
dx A(X)B(Y)

r -, -l
w
+ D2 [:/B (@ (x,c)D(1(x,c)) dx + Wu(x,y)) (10.5)

3
AB A(x)B™ (w(x,c)) c=u(x,Y)

where W( ) is an arbitrary continuouc function of one variable and u(x,y) is
given by (10.2).

Eq. (10.5) is general enouch to include the short lists of groups
for first order ODE's given in Cohen [4], Dickson [5], Blumen and Cole [3],

and Franklin [6], with the exception of the last group in Franklin 5 list.

11. MAXSYMA Code for U = A(x)B(y)ax + C(x)D(y)By

MACSYMA is a general symbolic manipulation computer system in
operation at the Laboratc.y for Computer Science of Massachusetts Institute
of Technology. The MACSYMA system is deccribed in the MACSYMA Reference
Manual [10].

‘Table 1 gives a code (as described in Section 9) for obtaining
a general first order ODE invariant under the group generated by
Um A(x)B(y)ax + C(x)P(y)ay. The code is read as follows

on line O appears the title of the code: "Lie". The functions
A,B,C,D, and W ar: read in. These functions appear in (10.5). The output
of the code, ~r value of the function called “"Lie", are three things:
(1) The solation u(x,y) of (9.5) and denoted by B9 in the code.
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(2) The right hand side of (10.5), denoted by B8 in the code. (3) The
solution to the ODE (10.5) for the specified function W, the solution
being denoted by F5 in the code. The code makes use of an "integrate"”
code which in turn makes use of parts of the Risch algorithm ([14], [15]).
In line O, the symbol ": = Block" denote "function". " [Programmode:
true" is a print control and can be disregarded. "RAd EXPAND: all]" pro-
duces /(yz) = y, Line O also provides for inputs A, B, C, D, and W. The
colon in lines 1 to 19 is the replacement operator " + ". Line 1 evaluates
u(x,y) + Kl where Kl is the integration constant. Line 2 solves
ulx,y) + K1 = 0 for y = w(x,Kl). Lines 3 to 6 produce: B’ (y), B (Lx,K1)),
D(w(x,Kl), and B(w(x,Kl)). Line 7 produces

[D(w(x.xlj) B (K1)

A(x) B (W(x,K1))

Lines 8, 9, and 10 produce R(x,y) defined as the right hand side of (10.5).
Line 12 is an "administrative" matter., Lines 13-18 solve the differential
equation y' = R(x,y) for a given function U. Lines 1l and 20 print out the
three results: u(x,y), R(x,y), and the solution to y' = R(x,y) for a given
W.

The following are two examples of the application of the algorithm
in Table 1.
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0. LIE(A,B,C,D,W): = BLOCK (PROGRAMMODE: TRUE, RADEXPAND: ALL].
1. Bl: INTEGRATE (C/A,X)-INTEGRATE (B/D,Y)+K1,
2. B2: RHS(FIRST(SOLVE(B1,Y)}),
3. B3: DIFF (B,Y,1),
4. B4: SUBST(B2,Y,B3),
5. BS5: SUBST(B2,Y,D),
6. B6: SUBST(B2,Y,B),
7. B7: INTEGRATE(B5*B4/(A*B643),X),
8. BB: C*D/(A*B)+D/(A*B42)/(B7+R),
9. B9: Kl-Bl,
10. G:SUBST(B9,K1,B8),
11. DISPLAY(B9,G),
12. W:EV(W,INFEYAL),
13. Fl:SUBST(W,R,G),
14. M:RATSIMP(-Fl/(C*D-F1*A*B)),
15. N:RATSIMP(l/(C*D-F1*A*B),
16. F2:INTEGRATE(M,X),
17. F3:JIFF(F2,Y,1),
18. F4:INTEGRATE(N-F3,Y),
19. F5: RATSIMP(F2+F4)
20. DISPLAY(F5S);

Table 1. MACSYMA code for obtaining the general first order ODE
invariant under the group generated by U = A(x)B(y)d, *+ C(X)D(y)ay and for

solving special cases of the ODE.
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and

Then

u(x,y) = log(xy)

and (10.5) becomes

dy . ¥ |- 1
dx x [ 1+ W(Qn(xy))] ’ (10.1)

If W(x) is selected to be ex, then the solution to (10.1) is given by the

code as

log x - €
y™= x -

Example 2:
Aw=w]l,
Bwy
and
CmDm]
Then 2
u(XIY) = ¥— - X

and (10.5) becomes

2 =1
QX - l + !‘._ l + W(L - x) . (10.2)
dx y y2 Y 2

If W(x) is selected to be W(x) = x, then the solution to (10.2) is given by
the code as.

y4 -4 x y2 + 8y + 4 x2 = C,
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12. Group Derivable from ODE With Known Solution (Algorithm 2)

The purpose of this Section is to derive one-parameter Lie gronups
from first order ODE's which have a known solution. These Lie groups have
the given ODE as an invariant ODE and will include a larger set of ODE's
whose solution can be obtained from the derived Lie group. Thus lists of
solved first order ODE's, such as those given in Kamke [8] or Murphy [12],
can be used to substantially increase the list of solved first order ODE's.
This procedure can be iterated indefinitely. We hope to extend these ideas
to higher order ODE's. An advantage to such a program lies in constructing
better tables of ODE's and their solutions.

Theorem 9. 1If

Y’- wix,y) , (11.1)
with w(x,y) € CQ(O), has the one-parameter family of solutions

O(x,y) = c (11.2)
in a neighborhood of (xo,yo) € 0, then (11.1) is invariant under the
local group with generator

U=3d + g(x,Y)ay ) (11.3)
where

jwz(x,w(x,c))dx
fwl(x,w(x,c))

g(x,y) m e

- fwz(x.w(x.C))dx

e dx (11.4)
c + 8(x,y)

in which wl, v, denote partial derivatives with respect to the first and second
variables and {(x,c) is one of the branchaer of solutions of (11.2) for y.
(Note: The equation dy/dx = g(xX,y) may not be molvable in finite

terms, in which case, nothing is gained from Theorem 9.)
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Proof. From (5.9), p = w(x,y) is invariant under
Um ax + gay if and only if U/ (p=w(x,y)) = 0 on D: p = w(x,y). Thus g(x,y)

must satisfy

Iy + Wgy oW, vt W, . (11.5)

From the theory of characteristics for the nonhomogeneous equation (11.5)

(see Kamke [7, page 330]), the characteristic equations for (11.5) are

dx
at

and

dt

A solution to (11.6) is x=t. (11.7) then becomes

dy .

at w(tlY)

with solution
6(t,y) = ¢

with a branch

Yy = Y(t,c)

Eg. (11.8) then becomes

dat

which gives (11.4).

=1 , (11.6;

(11.7)

dg |
ng + W, (11.8)

gg - wz(tl W(t,c))q + wl(tlw(tlc)) ' (11.8)
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13. Examples of Groups Obtained from ODE's With Known Solutions

Example 1. Consider the ODE
‘e X 12.1
Yy = x ( )
with solution
y = cx . (12.2)

Then (11.4) gives

X

9%

Thus the pair (12.1) and (12.2) yield the group
umd +<L3 . (12.3)
X X Yy

The group with generator U yields the invariant ODE where W is arbitrary:

dy o ¥ Y
ax “x ¥ W(x) (12.4)

which includes (12.1). Eg. (l12.4), for any choice of W, yields a solvable

equation and the process can be repeated indefinitely.
Example 2. (Linear ODE).
Consider the equation

Y = = R(x)y + Q(x) (12.5)

with solution

-fR(x)dx fR(:-c)d:-c
y(x) = e Q(x)e dx + c| . (12.6)

Application of Theorem 9 yields the group G with generator

-fR(x)dx
Um Bx + -~ yR(X) + Q(x) + Ce :y . (12.7)
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The first order ODE invariant under the group G is

—‘/k(x)dx ‘/k(x)dx
Wy e

dy - =
ax + R(x)y - Q(x) e

fR(x)dx ]
'l/;Hx)e dx - cx ,

[« <]
where W € C 1is arbitrary.

14. Algorithm for Constructing a Sequence of Integrable ODE's (Algorithm 3)

In this section we mention a possible algorithm by which one could

begin with a solvable first order ODE, say

. dy .
dy: gk = w (ny) (13.1)

and construct. a sequence of solvable first order ODE's:
. Sy :
d,: ax wi(x:Y) ' (13.1)

where di-l is a special case of di' By solvable is meant that the solution to

(13.1) can be expressed by a finite number of algebraic and exponential operations

and integrations on w, and on the solutions to (13.3j) for j < {i.

One begins with the generator:
+ .
U, = ax wl(x.y)ay
By the method of Section 9 one can obtain an ODE
a
Ei = W2 (le)
which is solvable. Onue then forms

U2 - Bx + wz(x,y)ay ’
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and repeats the above procedure with v, in place of W) . This procedure is

continued indefinitely.

We hope to present this algorithm ir a future paper in greater

detail and precision.
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