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ABSTNiCT

A review of the present status of the application
of Lie-group theory to the solution of first order ordinary
differential equations (ODE’s) is given. A code written
in the MACSYMA language is presented which finds and solves
first order ~DE’s invariant under group with infinitesimal
generation of the form U = Ajax + Cay. An
algorithm is given by which one can begin with an ODE
y’= f(x,y) with known solution $(x,y) = c and obtain a
possibly larger class of ODE’s with solutions given in closed
form . A final algorithm for forming a sequence of solvable
differential equations is suggested. The work can be
generalized to higher order differential equations, partial
differential equations, and difference equations.
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“The problem of integrating a differential equation

will be reduced to the problem of finding a one-parameter

group which leaves the equation unaltered,... We do not

attempt to integrate the equation ignoring the data of the

problem in which it arose, but rely on the data to suggest

a group which leaves the equation unaltered.” -

L. E. Dickson [5, page 303].
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1. INTRODUCTION

This paper reviews the present status of the contributions which

Lie group theory can make to the sclution in finite terms of first order

ordina~y differential equations (ODE’s):

# = f(x,y) (1.1)

The paper discusses four topics:

1. A review of the relevant Lie group theory. This is

included since there is not an adequate summary in one place

of exactly those parts at Lie group theory relevant to the

above problem.

2. A code written in the MACSYMA language to find and

solve equations (1.1) which are invariant under the Lie

group with infinitesimal generator of the form

u= A(x)?(y)~x + C(X)D(y)~y .

3. An algorithm by which one can begin with an equa-

tion (1.1) with a known one-parameter family of solutions

o(x,y) =C

and obtain, using Lie group methods, a possibly lar9er set

of equations of the form (1.1) with known solution. There-

by, one can r.nkeuse of tables such as Kamke [8] and

Murphy [12] to extend the domain of equations (1.1) with

solutions given in finite form. The theory of such a pro-

ject is given, but is not implemented other than for two

examples. ‘~llistheory m~kes possible a more systematic

organization and enlarging of tables of solved oDE’s.

(1.2)

(1.3)

4. An algorithm :.soutlined by which one can start with

an ODE with known solution and construct ? sequence of first

order ODE’S with solution derivable from the ,?reviousmembers

of the sequence.



2

(One would really like, for a given ODE, to find its invariance

group and thereby solve the ODE. It.turns out that this task is exactly

equivalent to solving the ODE in closed form. However, Dickson [5] using

examples of ODE’s from geometry, illustrates how in certain situations

one can guess the appropriate invariance group.)

By solving (1.1) in finite terms, we mean that f(x,y) is a given

elementary function of two variables (built up from algebraic, exponential,

and logarithmic operations) and one expresses the solution (1.3) in terms

of functions of two variables, built up from a finite number of algebraic,

exponential, and integral operations, when such a solution exists. One

goal of those who work in this subject is to determine, for a given elemen-

tary f, if such a ~ exists and t.odetermine its value when it exists. As

is well known, Risch ([14], [15]) has discovered and implemented such an

algorithm, loosely speaking, when f is a function of a single variable.

Future projects include the implementation of item 3, abov~, the

extension of this work to higher order ODE’s, partial differential equations,

and difference equations.

The material of Part I is taken from Kamke [7], Markus [11], and

Pontryagin [131 and is included in this report to bring into one place ex-

actly those parts of Lie group theory needed for integration of first order

ODE’S.

.
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Part

2.

I. Theory

Local Lie Group

A topological space G is a local group if for some pairs a,b of

points in G, ab is defined

An upper case Latin letter

a. (ab)C=a(bc) if

b. If ab is defined,

and the following conditions are satifified.

denotes a neighborhood of its arqwnent.

the four products stated are defined.

then for every W(ab) tnere exists

U(a) and V(b) so that u(a)v~b) C W(ab) where U(a)V(b) is

the collection of products xy, x E U, y E V.

c. There is an identity e E G so that ea is defined and ea = a

for all a E G.

d. If for b c G there is a left inverse b~l s G so that

b;’ b = e, then for e~~eryU(b~l) there exists V(b) so that for

y E V(b) there exists y~l E U(b;l).

Lemma 1. For any local group G and for any W(e), there exists

U(e) so that for a,b E V(e), ab cW(e).

Let the local group G have topological dimension r. We say that

a coordinate system is defined in G if there is a homomorphism H of U(e)

onto V(0), where O is the origin of r-dimension Euclidean space Rr, so that

H(e) = O.

For W(e), e G G, let U(e) be the neighborhcd of e as defined in

Lemma 1. For x, y E U(e), put z = xy. If H(x) = Xr , H(y) = yr, and

H(z) = Zr, Pllt

r
z = g (Xr, yr) .-.

: are said to be differentiable if it is three times differentiable.

Definition 1. A local group G is a local Lie group if it is

possible to introduce differentiable coordinates into G. r is then called

the number of parameters of G.
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Definition 2. Let G be an r-pararileterlocal Lie group and

I’and Abeopensetsin Rwith ~~r. suppose forx EG, $:r+ Ais a
x

homomorphism so that $x(~) iz a continuous function of x for each fixed

ccr. G is a local Lie group of transformations if:

a. FOX e E G, +e(~) = E for all ~ c r

b. For x,y sufficiently small in the topology of G, $x($Y(&)) = @xY(E).

c. $x S $eonly if x =e.

d. $x(~)t Xegard* as a maP fr~ Rr x Rn to Rnr is a three times

differentiable function.

(The reason for the

is number of derivatives

traditional computations

derivatives.)

appearance of the number “three” is that “three”

which assures that other functions arising in most

with Lie groups will have the carrect number of

3. First ‘OrderOrdinary Differential Equations

In all that follows, ~ will denote an open connected set in R*. We need

the following existence theorem for first order ordinary differential equations,

taken from xnold [1]. See pages 48 and 226 for what Arnold calls the recti-

fication theorem (the hypotheses are rather scattered in the book).

:= v(x) ,
. . .

where x E R.2and V: ~ + R2. Let r > 2 be some integer, including =.

the components of V are of class Cr in ~. Suppose ICOc ~ and V (XO)

Then there exists a solution x = @(t,~O) satisfying $J(tO,xO)= xO in. .
interval containing tO. The function $(t,xO) in some .leighborhoodN

is in C
r-1

and for N sufficiently small, the solution is unique.

Consider

(3.1)

Suppose

# ().

some

Of (to,xo)

One can remove the restriction that V(~o) # O by combining theorems

in Birkhoff and Rota [2, pages 151, 152, ~d 1621. Namely, if the components

of V(x) are continuously differentiable in a bounded closed convex domain ~,-.

then (3.1) has through each point x of 0 a unique solution for same intezwal

It-t,I < T for sane T possibly de~~ding on :..



4. Local One-Parameter

Theorem 1. Sup.Wse

in 0. Let

[1
&f

u. == f(x)
dt. .

5

Transformation Groups on K2

fi(x) c C=(o) for i = 1,2 and f = (fl,f2) # O
. .

(4.1)

define a vector field in ~. Let o(t,~o) be the unique solution curve of

(4.1) through to c ~ at t = O. Then $(t,x) defines a one-pazameter local
.%

transformation group {Tt} on ~ which is said to be generated by U.

Proof. From Section 3, @(t,x) c Cm in ~1 x ~ where filis some interval
.-

of the t-axis containing t=O. For t sufficiently small in magnitude,

a
-- $(s+t, xo)=&@+t).

= f(x(s+t)) = f(l$(s+t,:o)).
-- --

Thus for each fixed sufficiently small t and for sufficiently SIM1l s,

f(s+t,:o) is the unique solution of IIthrough @(t,~O) = VI at s=O. Thus

f$(s+t,xn)= $(3,X1) . (4.2)
.V -A

Now define the one-parameter

= o(tl,xo)
?1 - .

transformation of ~ by

for tl sufficiently small. Put, for t
2
sufficiently small,

= l$(t2,xl) .?2 . -

Then

= mt2,wldco)) -:2 . - .

From (4.2) ,

(4.3)

= ml + t2,xo) .:2 . .
(4.4)



,—

6

Ccmparing (4.3) and (4.4), we see that $(t,x) defines a local-.
transformation group.

in O

Definition 3. The vector field (4.1) with f E Cm((?)and

one-parametez

f#o

is called an infinitesimal one-parameter transformation group on 0.

Theorem 2. Eacl.local one-parameter transformation group on ~

is generated by one and only one infinitesimal one-parameter transformation

group.

Proof. Wt @(t.,x)be a local one-parameter transformation group
. .

on 0. Define the infinitesimal

af$ I
- (t,x)

%. = f(x)
. .

,t=o
.

one-parameter

.

group U (see (4.1)) by

.
Let $L(t,x) be generated by U as in Theorem 1. @ and ~~ have the same initial

value. We now show that $ and I?lsatisfy the same system of differential

equations. By the group property? when s and t are sufficiently mall,

g(s+t,x) = @(s#$(t#:)).- ~

so

~t(S+t,K) = ft(s,o(t,x)) ●,. . .

Puts=o:

ft(trx) =qt(od$(t,x)) .. .

Thus
*‘e

ft(t,x) = f($(t,x)) ..

Thus $ and $1 satisfy the same ODE and have the same initial value and there-

fore in 0 are equal. Conversely, distinct vector fields have d!,stinctintegral

ewes.

‘nheorem3. Let h(x): O + R1 be real analytic (Cw) and let

U=f(x). a, (4.8)

where ~ = (~/3x~, a/~x2), be a differential operator with f c CU(0).
.



Define

A

h(t,x) = h($(t,x)) , (4.9)---

where $(t,~l is defined by ttievectx field (4.1) in ~ and t is sufficiently*.
small in magnitude. Then

-
h(t, x) = e‘u h(x) ,

tu
where e is the power series of operators:

w

tu = Zn
n

e
=0

;Un.

Proof. We first use an induction argwnent to establish that

a’$(t,x)
Un h(x) = .

For n = 1,

ai(t,x)

Assume

Then

atn t.o

= ~h($(t,x))
t=o ‘ - - t=o

= hx-f = Uh(x) .

a
n-lA

h(t,x)
u
n-l= h(x) ,

atn-l t=o

[
Uu ‘-lb(x)-1 a “n-l

(s,x)‘Z”.
S=o

a=—
as u

‘-lh@(s,~))
S=o

(4.10)

(4.11)

(4.12)

(k~ (4.12))

(by (4.10))
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Definition 4. If U is the vector iield (4.1)

the operator U (4.8) is calied the iinfiniteaimal;

with f c C“’(o),

generator of the

parameter tX&nSfOi_tiOn group on 0 given in Theorem 2.

Definition 5. Let U be +Je generator of a local one-pax&meter

transformation group {Tt} in ~. n function h:x + R1 with h E Cm(o)

invariant under U if

h(Ttx) = %(X)

forallxEO.

Theorem 4. h(x) c Cm(())is invariant under U if and only if

Uh=O

in 0.

Proof. Suppose h irlvariant. Then

is independent of t:

But

g; =Uh.
t=o

local one-

is

Thus Uh=Oforeachx E ~.

Conversely, suppose Uh S O in 0. Then



8

aa
n-l A

)

h (I#$(s,:)

= G atn-l - t.o
S=o

c\ a
n-1

)
= -—h( $(t,$(s,)cl)

a9 atn-l - -
t= o

2 an-l
(

—- h $(t+s,x)
= 5 atn-l . )1t=o

(using the group property of 0)

2 ‘P ; ~t+s, xl=.—

asatn-l t-o

(by (4.12))

(by (4.9))

(by (4.9))

This establishes (4.10).

Since $(t,x) is analytic in t for each x in ~ for sufficiently.- A

small t (see Lefschetz [9] , page 14) , h is analytic in t and therefore,

t2 3 “3h +;(t,x) =h(x) +tUh+~U2h+~ ....

which is the conclusion of the theorem.

Corollary 1. For f c Cw(~) and for t small,

$i(tlx) M etuxi , i = 1,2.
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L;(t+s,yO) = h +(t+s,x))

and

where

Then
h

* (t+s,xo) =Uh =0
S=o

by previo’~swork. Thus

for each t, where defined.

We now use the notation x = (X,y)e*

Definition 6. A differential equation

D: ~= f(xty) ,

m (~), is invariant under a local one-parameter Lie group {Tt}where f c C

on 0 if (x,y) c O and (Xllyl) c O is on the unique solution to D through (x~y)

then the same holds for (TtX,Tty) and (TtXl,Ttil).



11

Dcfit.ition7. For a given open

Cartesian product of ~ and S where S

connected set 0CR2, let L(o) be the

is the circle with the natural topology

of a circle, the circls being the one point compactification of the line.

Lemnla2. A differential equation Mdx+Ndy=C),M2+N2>0 in ~, M,N C C-(L?)

defines a differential eurface in L(o) above ()where a point of the sur?ace is

given for (x,y) E ~ by the triplet (x,y, dy/dx = -M(x,y)/N(x,y))where if N=O,

dyfdx is associated with the exceptional point of the circle.

Definition 8. A mapping f:Ol + ~2, where Oi are open connected
-lccl

sets in R2, is a diffeomorphism if f is one-to-one onto and f and f .

Lemma 3. A diffeomorphism U = U(x,y), V = V(X,Y) between oPen sets

~.,(laC(ldefines a diffeomorphism between L(().)and L(U.) by the mapping
*4 L

(X,Y,P)+ (u(x#Y)#v(x/y)#q)

where

q.Q!Jm

Corollary 2.

dV(x,y(x))/dx- awax+pwiay
dU(x,y(x))/dx wax+pavay

A local transformation group

(4.13)

.

$(t,x) - (f$(t,x,y),

$(t,x,y)) in Odeiinen a local transformation qroup in L(d) by

(x#y#p) +($(t,x,y), $(t,x,y), X(t,x,y,p)) ,

where

?!4!(t~x’y) “M’ (t,x,y)+F ~y
9.Qk!.@mL ______X(t,x,y,p) - do

Q (t,x,y)d@/dx ~ (t,x,yl +P ~y

(4.14)

(4.15)

(4.16)

5. Extended Transformation Group

Theorem 5. Let U = f(x,y)~x + g(x,y)~y be the generator of a local

me-parameter group G on (?. The generator of the associated local one-parameter

transformation group in Li~) is

d - f(x,y)ax+g(x,y)ay +h(x,Y,P)ap (5.1)
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where

h(x,~,p) = gx + (g - fx)p - f
Y ?2 “

Lfis called the generator of the once-extended

(5.2)

transformation group G1.

Proof. Expression~ (4.15) and (4.16) define the group. TO find its

generator, use the construction given in Theorem 2, when extended to three

variables. Thus

aJ- f(x,y) I at = g(x,y)
t=o t=o

and

tu .
L9ing $ = e x, ~ = etby, one obtains

and

Also,

and

$Xt

V-J
Xt

Putting (5.5)

(5,2).

-fx,@
t-o

yt

- 9X ~ *yt
t-o

(5.3)

t-o . (5.4)

(5.5)

(5.6)

(5.7)

-9Y. (5.8)
t-()

through (5.8) into (5.4) and using (5.3),one obtains (5.1) and
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Definition 9. A surfac~ W in L(o) is invariant under a transforma-

tion T of L(~) if T(W) C W.

Theorem 6. A differential equation D:.

y’ + M(x,y)/N(x,y) = O (M2+N2>0, M, NCC%?) )

is invariant under the local transformation group generated by

u = f(x,y)ax + 9(X,Y)3 (f,g E Cw(~)) (see Definition 7) if and onlY if thev
surface defined by D in L(o) is invariant under the local group ~enerated

by ~ (see Definition 9).

Proof. The surface defined by D is invariant ~der tie

local group generated by ~ if and only if the trajectories of U’remain in

the surface and this is so if and only if the vector (f,g,h) is tangent to the

surface. (f,g,h) is tangent.to the surface p=w(x,y) if and only if

f(-wx) + g(-wy) + h(1) = O

or

d (p-w) = o ●

on the surface of 9.

6. Integrating Factor

Theorem 7. Suppose D: Mtix+ Ndy = O (M2 + N2 > 0 in ~) is local group

invariant under the local group generated by U = fax + gay, fM + gN # 0 in ~ and

(5.9)

f,M,g,N C C–(o). Then P = l/(FM + gN) is an integrating

(l.lM)y- (llN)x.

Proof. Choose P c ~ and ZlssumeN(P) # 0; othezwise

change x and y.
()

Now U’p+~ m O on D in the subset of

neighborhood of P. Thus

factor for D so that

M # o and ~nt~r-

L(())lying above a

[
fax + ga + {Yx + (g - fx)p - fyp2) ~

Y 1
J[P+:]=C

or

f(:)x+g(:)y+gx’ (gY-fx)p-fYp2-o
.



,...., -,,.

But

P- -M/N .

Thus

f (I)x + 9(:)Y + ‘x ‘gY - ‘x) (- $)

-f
()

M2

Y ~=o

which reduces finally to

(*); (*)X -
7. Independent Funct’.ons

Definition 10 (Kamke [7, pages 3Gz-31). N functions

Ui(~), i= 1,2,...,N,defined with continuous first order partial derivatives

on a closed bounded domain B C RI’,are dependent if there exists a function F:

RN + R1 so that the following hold:

a) F is defined on RN with continuous first order partial derivatives;

b) F var,ishesin no subdomain of RN;

c) in B, ~fU.(x), U2(X),....UN(X)) = OJ..

Definition 11. (Keunke[7, page 3031). N functions Ui(x): RN + R1

are dependent in en open domain ~ C R* if each in bounded clcde.dsubdomain B C U

the.

8.

are dependent by Definition 10. Else the Ui are independent.

Solution to U’W-O

Definition 12 (KanW [7, page 3231). A set of integrals (solutions)

$1 . . . ..+..-lin a domain G C Rn of the differential equation

n

z fi (:) + “ 0
i=i i

is called a principal system of integ.~ls if the matrix:

(-)avj

axjl<i<n-l,l<j<~

(8.1)

where x = (xl,x2,...,xn), has rank n-1 in each aubdomai:-of G.
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Theorem 8. (Kamke [7, page 323]). Suppose the functions fi(x),

1 G i <n, are continuous in a domain G C R“. ~f I!J (x), l<i<n-ll are a
i-

principal system of integrals of (8.1), then a fvnction ~(x) is an integral

of (8.1) if and only $ and $i are dependent in G (Definition 11).

Proof. See %amLe [7].

Corollary 3. Let u and v be independent solutions of the partial

differential equation U’W = 0 in a domain O C R2, where U’ is given by (5.1)

and (5.2). Suppose f,g E Cm(o), An ODE ~(x,y,y’) = O of first order is

invariant under the group generated by the infinitesimal transformation

U = fax + gay if and only if for each closod bounded subdomain B C ~ there

exists a function F defined on R3, has continuous first order partial

derivatives, vanishes o,]no subdomain of R3, and in B, F(L,u,v) = O.
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Part XI. Applications

9. Algorithm 1.

We suppose that f(x,y), g(x,y) E C@((?)and therefore satisfy a Lipschitz

condition in a convex and compact subdomain U C ~ (Arnold [1, pags 218]). Two

independent solutions to the equation

dw=o

can be obtained by solving the associated

dx—= f(x,y) t
dt

~=
dt 9(X,Y) #

(9.1)

characteristic equations:

(9.2)

(9.3)

and

(9.4)*= h(x,y,p) .
dt

See Kamke [7, page 321]. By eliminating t from (9.2) and (9.3), one obtains

q=. g(x,Y) .
dx f(x,y)

19.5)

Let (XO,yo)E u for which f # O or else g # O. Then in a sufficiently

small neighborhood N of (Xo,yo) there is a one-parameter family of solutions

of (9.5),

Y = (IJ(X,C) (9.6)

m
where y. = @(xo~O), f(xo,yo) # O and w(x,c) E C near (xo~O) or

x = e(y,c) (9.7)

where x = f3(yo,0),g(xo,yo) # O, and ~(y,c) E Cm near (yO,O).
o

Then solving (9.6) or (9.7) for c = u(x,y), u(x,y) is a 501utiOn to (9.1)

in the neighborhood N (Theorem 1 of Kamke [7, page 3211). A second solution,

independent of u (Definition 11), iS obtained as follows. If (9.6)

is used, combine (9.4) with (9.2), elm Combine (9.4) with (9.3). If (9.6)
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is used, then (9.4) and (9.2) give

*= h(x,y,p)
dx f(x,y) “

Using (9.6) in (9.8), gives

(9.8)

*= h(x,o(x,c),p)
dx

(9.9)
f(x,u(x,e)) -

Solving (9.9) in a sufficiently small ne~qhborhood of (XO,P) for any p, one

has a one-parameter family of solutions:

P(x,p,c! = Y . (9.10)

T;len

V(X,Y,P) = P(x,p,al(x,y)) (9.11)

is a solution to (91). Similar calculations hold if (9.7) had been used

in place of (9.6).

We now show that (9.9) is a Ricatti equation of the type that can

be solved by integration. By (9.2), eq. (9.9) has the form

*= 1
dx f(x,w(x,c))

I
[ 1

9X(X,W(X,C)) + qy(x,w(x,c) - fx(x,w(x,c)) p

I-fy(x,w(x,c))pz . (9.12)

The quantity

g(x,(ll(x,c))
p = f(x,w(x,c))

satisfies (9.12) as can be verified by substitution. Put

g(x,fu(x,c))+~
p = f(x,u(x,c)) }.(x) “

as the general solution to (9.12). Then H(x) satisfies

(9.13)

(9.14)

(9.15)
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On solving (9.15) for H and substituting into (9.14) we finally obtain

the general solution to (9.12):

g -fx-2gf /f

f(x,u(x,c))
dx

g(x,~(x,c)) + _ e

F = f(x,(o(x,c)) bg -fx-2gf /f —

\

f(x,a(x,c);
d%

Le
f

dx+y

(9.16)

where y is an arbitrary constant including m. The constant c in (9.16) is then

replaced by u(x,Y). On solving (9.ltIJfor y, one obtains

I (gy-fx-2gfy/f)/fdx
1

Y= e
c + U(x,y)

J I (gy-fx-2gfy/f)/fdx
.. Le

f dx (9.17)

Ic + U(x, y) .

Then if v(x,y,p) is set equal to the right hand side of (9.17), one obtains

a second solution to (9.1) in a neighborhood of (XO,YO) if f(xO,yO) # O.

If f(xO,yo) = O, then g(xO,yo) # O, and an appropriate formula to replace

(9.17) can be obtained by use of (9.7).

In summary, one can start with any f and g E Cm(~l. Obtain u

and v. Then the ODE

F(u,v) = O , (9.18)

where ‘F is described in Definition10when restricted to two variables, is

invariant under the local group generated by u = faX+ga. (9.18) is
Y

solvableby use of the integrating factor given Theorem 7 provided (9.18) can

be written in the form y’ = - M/N.
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If one selects one of the branches of (9.18) for v as a

function of ~: v = W(u), then (3.18) gives:

I (gy-fx-2gfy/f)/fdx

e I c + W(x,y)
i9.19)

!21= g(xly) +
dx f(x,y)

s
(gy-fx-2gfy/f)/fdx

.

J
>e dx + W(w(x,y))

c + W(x?y)

We include, as a special case of (9.19), the case of u S m, so that

q= g(x,y) .
dx f(x,y)

10. Application of Algorithm 1

Suppose

u = A(XJB(y)~x +

with A,B,C,D E Cm(e,f) for

tJ_ C(x) D(y)
dx- A(x) B(y)

Suppose (a,b) and (c,d)are

y c(c,d). Put

C(x.)D(y)~
Y

some interval (e,f). Equation (9.5) becomes

(10.1)

.

such that A(x) * O, B(y) # O for x c (a,b) and

Jc(x) dx -l.l(x,y)= !‘~ dy .
A(x)

(10.2)

where the integrals are interpreted as indefinite integrals. Then w = U(X,Y)

is a solution to (9.1). Put

U(x,y) = c (10.3)

and select one of the branches resulting from solving (10.3) for Y:

y = U(X,C) ●
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Put

Then

K(x, c) =

=

●CD’
J~F =

C(X)D’(OJ(X,C))-A’(X)B(U(X,C))-2C(X)D(U(X,C))B’((II(X,C)/B
Afx)B(Lu(x,c)

C(X)D’(O(X, C)) AI (X) 2C(X)D((I)(X,C)) B’(Ol(X,C))-— -
A(x)B(u(x,c))

.—
A(x) .

A(x)B2(w(x,c))

-1$ dx

e 1=—
A’

and

-2
J

C D Bidx -2

J
~L& &

A B2 dxBdy -2
e = e =B.

so

I K!x,c)dx ~
e =—

AB2 “

So from (9.17),

1
V(x,y,p) =

C(X)D(Y)
‘- A(x)B(y) 5

-JB’(LIJ(xrc))D(OJ(X,C)) ~ ,

B3(~(x,c))
A(x)
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D(y),ZA(X)B2(y) -
V(X,Y,P) =

\

B’((o(x,C)D(~(X,c)) ~ .
p -.C(X)D(Y)

A(x)B(y)
A(x)B3(d(x,c))

(10.4)

Thus a general first order ODE invariant under the group generated by

!10.1) is given by

*= C(X)D(Y)
dx A(x)B(y)

r ~,,u(x,clD(u(x,c))

[/
1

-1

.L --—. — dx + W(u(x,y)) (10.5)
.AB2 A(X)B3(U(X,C))

C=U(X,Y)

where W( ) is an arbitrary continuous function of one variable and u(x,y) is

given by (10.2).

Eq. (10.5) is general enough to

for first order ODE’s given in Cohen

and Franklin [6], with the exception

11. MAXSYMA Code for U = A(x)B(y)~
x

include the short

[41, Dickson [5],

of the last group

+ Cay

lists of groups

Blumen and Cole [3],

in Franklin,s list.

hiACSyL~ is a general symbolic manipulation computer system in

operation at the Laboratccy for Computer Science of Massachusetts Institute

of Technology. The NACSYMA system is described in the t4ACSYi~Reference

Manual [10].

Table 1 gives a cmie (as described in Section 9) for obtaining

a general first order ODE invariant under the group generated by

U = Ajax + Cay. The code is read as follows

On line O appearz the title of the code: “Lie”. The functions

A,B,C,D, and W arz read in. These functions appear in (10.5). The output

of the code, r,r value of the fu.net.ioncalled “Lie”, are three things:

(1) The solution u(x,}’)of (9.5) and denoted by B9 in the code.
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(2) The right hand side of (10.5), denoted by B8 in the code. (3) The

solution to the ODE (10.5) for the specified fumc~ion W, the solution

being denoted by F5 in the code. The code makes use of an “integrate”

code which in turn makes use of parts of the Risch algorithm ([14], [15]).

In line O, the symbol “: = Block” denote “function”. “[Programmode:

true” is a print control and can be disregarded. “RAd EXPAND: all]” pru-

duces ~(y2) = y. Line O also provides for inputs A, B, C, D, and W. The

colon in lines 1 to 19 is the replacement operator “ + “. Line 1 evaluates

u(x,y) + K1 where K1 is the integration constant. Line 2 solves

u(x,y) + Kl = O for y = u(x,Kl). Lines 3 to 6 produce: B’ (y), B’(b(x,Kl)),

D(u(x,K1), and B(~(x,Kl)). Line 7 produces

\

D((O(X,K1)) B’ (U(X,K1)) ~
.

A(x) B3(~(x,Kl))

Lines 8, 9, and 10 produce R(x,y) defined as the right hand side of (10.5).

Line 12 is an “administrative”matter. Lines 13-18 solve the differential

equation yl = R(x,y) for a given function U. Lines 11 and 20 print out the

three resultq: u(x~y), R(x,y), and the solution to y’ = R(x,y) for a given

w.

The follwing are two examples of the application of the algorithm

in Table 1.
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0. LIE(A,B,C,D,W): - BLOCK(PROGRAMMODE:TRUE, RADEXPAND: ALLI.

1. Bl:

2. B2:

3. B3:

4. B4:

c-. B5:

6. B6:

7. B7:

8. B8:

9. B9:

INTEGRATE (C/A,X)-INTEGRATE (B/D,Y)+Kl,

RHS(FIRST(SOLVE(Bl,y))),

DIFF (B,Y,l),

sUBST(B2,Y,B3),

SUBST(B2,Y,D),

SUBST(B2,Y,B),

INTEGRATE(B5*B4/(A*B6+3),X),

c*D/(A*B).+D/(A*B~2)/(B7+R),

K1-B1,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

G:sVBsT(B9,Kl,B8),

DIsPmY(B9,G) ,

W:EV(W,lNFEYAL),

F1:SLIBST(W,R,G),

M:RATSIMP(-Fl/(C*D-Fl*A*B)),

N:RATSIMP(l/(C*D-F1*A*B),

F2:INTEGRATE(M,X),

F3:JIFF(F2,Y,1),

F4:INTEGRATE(N-F3,Y),

F5: RATSIMP(F2+F4)

DISPLAY)

Table 1. M.ACSYMAcode for obtaining the general first order ODE

invariant under the group generated by U = A(x)B(y)~x + C(X)D(Y)3y and for

solving special cases of the ODE.
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Example 1:

A-X,

B=l,

C=-1,

and

~wy.

Then

U(x, y) - 109(XY)

and (10.5) becomes

&-y

[

1——
dx X 1- 1 + w(~+n(xy)) “

(10.1)

If w(x) is selected to be ex, then the solution to (lo.1) iS 9iven W the

code as

logx-~
Y“ .

x

Example 21

A-1,

B.y

and

C=D=l.

Then 2
U(xly) = F -x

and (10.5) becomes

(

2

)

-1
dJ=~+~ ~
dx y y+w(~-x) .

Y2

(10.2)

If w(x) IS selected to be W(X) - x, then the solution to (10.2) is 9~ven bY

the code asl

Y4 - 4 X Y2 + 8y + 4 X2 -c.
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12. Group Derivable from ODE With Known Solution (Algorithm 2)

The purpose of this Section is to derive one-parameter Lie groups

from first order ODE’s which have a kncwn solution. These Lie groups have

the given ODE aB an invariant ODE and will include a larger eet of ODE’s

whose solution can be obtained fran the derived Lie group. Thus lists of

solved first order ODE’s, such as those given in Kam.lce [B] or Murphy [12],

can be used to substantially increase the list of solved first order ODE’e.

This procedure can be iterated indefinitely. We hope to extend these ideas

to higher order ODE’S. m advantage to such a program lies in constructing

better tables of ODE’S and their solutions.

Theorem 9. If

yl- W(x,y) ,

with w(x,y) c Cm(o), has the

e(x,y) - c

in a neighborhood of (XO,YO)

local group with generator

u - ax + g(x,y)a
Y

*

(11.1)

one-parameter family of solutions

(11.2)

E O, then (11.1) is invariant under the

(11.3)

where
P

Jw2(x,$(x,c))dx

J

Wl(x,$(x,c))
g(x,y) - e

J w2(xWx,c))dx I
e dx (11.4)

c + e(x,y)

In which Ml, W2 denote partial derivatives with respect to the first and second

variables and IJI(X,C)is one of the brancher of solutions of (11.2) for y.

(Note: The equation dy/dx = g(x,y) mny not be nolvable in finite

terms, in which caae, nothing irngained from Theorem 9.)
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Proof. From (5.9), p = W(X,Y) is invariant under

u = ax + gay if and only if ~ (P-w(x#Y))= O on D: P = w(xIY)= Thus 9(x~Y)

must satisfy

gx+wgymqJ2+wl .

From the theory of characteristics for the nonhomogeneous

(11.5)

equation (11.5)

(see -e 17t wge 3301)#the characteristic e~ations for (11.5) are

q=l
dt 8

~=w,
dt

and

q-w +W
dt 21”

A solution to (11.6) is x-t. (11.7) then becomes

*
dt = W(tty)

wjth solution

e(t,y) - c

with a branch

y - $(t,c) .

Eq. (11.8) then becomes

* = w+ $(t,c))g + Wl(tt$(tlc)) F

(11.6)

(11.7)

(11.8)

(11.8)

which gives (11.4).
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13. Examples of Groups Obtatied from ODE’s With Knwn Solutions

Example 1. Consider the ODE

Yf-:

with solution

y-c%.

Then (11.4) gives

Thus the pair (12.1) and (12.2) yield the group

u=ax+Ya
XY”

(12.1)

(12.2)

(12.3)

‘ITEgroup with generator U yields the invariant ODE where W is arbitrary:

()QY=Y+XW :
d% X

(12.4)

which includes (12.1). Eq. (12.4), for any choice of W, yields a eolvable

equation and the process can be repeated indefinitely.

Example 2. (Linear ODE).

Consider the equation

Y1 - - R(x)y + Q(x)

with tiolution

-J R(x)dx

[/

I R(~)d;
y(x) - e Q(x)e

J
dx+c.

Application of Theorem 9 yields the group G with generator

( ‘)

R(x)dx
u-a x+ - yR(x) + Q(x) + Ce m

‘Y “

(12.5)

(12.6)

(12.7)
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The first order ODE invariant under the group G is

f- R(x)dx r fR(x)dx

‘+ R(x)y
dx

-Q(x)=e J

J- Q(x)e

1
J

Wye

JR(x)dx 1dx-cx ,

where W c Cm is arbitrary.

14. Algorithm for Constructing a Sequence of Integrable ODE’s (Algorithm 3)

In this section we mention a possible algorithm by which one could

begin with a solvable first order ODE, say

‘1:

and construct.

di:

where d “
i-1 ‘s

(13.i) can be

&
dx

= Wl(x,y) , (13.1)

a sequence of solvable first order ODE’s:

CIJ
dx

= Wi(x,y) , (13.i)

a special case of di. By solvable is meant that the solution to

expressed by a finite number of algebraic and exponential operations

and integrations on Wi and on the solutions to (13.j) for j < i.

One begins with the generator:

U1 = ax + Wl(x,y)a ●

Y

By the method of Section 9 one can obtain an ODE

y
dx = W*(x#Y)

U2 - ax + w2(x,y)a ,
Y
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and repeats the above procedure with w~ in place of WI. This procedure is

continued indefinitely.

We hope to present

detail and precision.
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