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SOLUTION OF THE FOKKER-PLANCK EQUATION
FOR
CHARGED PARTICLE TRANSPORT IN ONE SPACE DIMENSION

Thomas A. Oliphant and Antonio Andrade
Los Alamos National Lahoratory
Los Alam~e, New Mexico

ABSTRACT

In the study of charzed particle transport in plasmas, numerical
techniques for molving the Fokker-Planck equation have been developed
vhich closely parallel those used in neutron transport. This wes a
natural step since the theory and methods of neutron transport have been
w21l developed. Moreover a line of treatment has been developed tailored
to the specific requirements of transport in mirror machines. Thia
approach involves the assumption that the distribution function remain
constant along a guiding center orbit. Diffusion techniques have been
developed in which sequential moments of the transport equation are taken
so as to generate & set of coupled equations. Here a method is developecd
which treats the treansport operator according to the utandard diamond
differencing techniques of neutrcn transport, but treats the collision
terms by a method designed to take advantage of the form of the
Fckker-Planck collision operator. 1his latter method makes use of matrix
factorization techrniques. In tha sbsence of applied external fields, this
method conserves particles rigorously. Deterministic methods run into
difficulty in the treatment of magnetized plasmes In cases in which the
guiding~center approximstion does not apply. Thus, there are some
situations in which one is driven to Monte Carlo techniques which are not
a subject of this paper.



1. INTRODUCTION

In the study of charged particle trasnaport in plasmas, numerical
techniques for solving the Fokker-Planck equation have been developed
which closely parallel those used in neutron transport. Thia was a
natural step in the development of solution methcda in charged particle
transport (CPT) in view of tha facf fhnt the theory and methods of neutron
transport have been well developed ’~, Moreover, since much of the
pioneering work in CPT was carried out in conjunction with the on-going
effort to build controlled fuaion devices, the early methodologies
developed to solve the transport equation were made more spplicable to
those machines. 1In th: weil known analysis of transport in mirror
machines by Killeen, et al” for example, the calculations of spatial
changes along the magnetic field are bhased on an assumption that the
diatribution function of ‘ons remain approximately constant along a
guiding center orbit; an assumption which is sufficiently accuraie and
more appropriate for low density mirror confinement systems.

Other authpors have used expansion methods“‘s or Aiffraion theory
techniques to solve the transport ecuation. The diffusion techniques
require that sequential moments of the transport equation he tsken so as
to generate & coupled get of equations, and further require that a
preacription for closing that set be given. The transport problem is then
reduced to the solution of that set.

In other methodn"s. the diffsrencing and multigrouping techniques of
neutronics are directly applied to yieid solutions to the CPY equation by
atandard slgorithms. 1In all of the methods meni!{oned above hovever, the
Fokker-Planck collision term is ususlly approximated ii: some feshion. The
diffusion techniques, for exsmple, usually include only a trostment of
collisional .lowing down without velocity space dispersion (“straight-line
ulowing down”)., The S8, techniques of Ref. 7 are also applied to a
Boltzmnann~like equation in which only straight-line slowing down 1
considered in a deceleration term, As will be discucsed in this
presentation tha exclusion cf velocity space dispersion may lecd to very
inaccurate results.

Recently, some researchers have attempted to solve the Fokker-Planck (FP)
equation without recoursa to approximations. This was done by either
reformulating the FP collision term 1nt8 a8 form which matches the
structure of a standard neutronice code such that existing co.npr.torl
programs can be used directly for CPT, or by deriving cross sections
vhich simulate the slowing down of ions to be used in sxisting nautronics
codes. The drawbacks that were found to tlase approaches were that the
large computer codes ware cumbersome to modify or as in the case of Ref.
9, the existing code _tructure forced a semi-{mplicit differencing of the
collision term which subsequently led to long computer runs,



More recently a method has been developed to eolve the Fokker-Planck
charged particle transport equation by simpif and efficient means, and
without approximation to the collision term "« In this method the kinetic
equation is integrated to yield the time dependent distribution function
of test particles fga(r,v,t) in a fully implicit manner by a r~ombination

of S5, methodology with a matrix factorization technique. The full three
dimensional velocity space dependence along with the radial configuration
space dependence of the distribution function 1s obtained as & function of
time by this method 1f sll of the phase apace variables are treated as
discrete. This latter method is the primary object of discussion in the
text thf’ follows. More details may be found in the dissertation of A.
Andrade””,

Although the method discucaed below can be applied to cylindricslly
symmetric problems, thc essential ideas ara contained in the ephericzally
symmetric case which ia the only one to be considered in this text,

II. THE FOKKER-PLANCK TRANSPORT EQUATION

The kinetic equaticn which characterizes the transport of charged
particles in a plasma as they suffer collisions which result in their
deflection by amall angles has come to he known as the Fokker-Planck
transport equation and is given by
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is the collision term of the equation. <¢> is the average electrostatic
pote~tial at r produced by the particles at other positions while !f*t

is the .~rce experienced by the plasma particles at r due to externally
applied ele-tromagnetic fields. Eq. (2-1), therefore is an equation for
the time evolution of the one particle distribution function of particles
of species 'a', as this distribution is affected by internal and external
forces and as it 1is affected by collisions with plasma particles of all
species 'b' withir. a given system, including collisions among its own
species 'a’,

Rosesnbluth, Machonald, and Judd!? firet formulated the averages <Av)> and
AvAv> {n Eq. (2-2) in terms of the potentisl-like functions hgp(v) and

Rap(Vv) as



Av> =T bvvhab( v) (2-3)
Buay> = TV, 8, (0) (2-4)
where
A+ A
hep(¥) = "a—xb—b Zy[du £, (x,u,¢t)|v-u| ™ (2-5)
and
fap(¥) = Zpfdu £ (x,u,e)|v-u]. (2-6)

Here '\ = ( /4nm. °)lnl\ and lnA = ln(Ad/h ) where A 4 18 the Debye
length la bzbez/kae ] and b ia the impact parameter for acat-

tering at 90° which ia equal to 7 yA be /4u: oV bV o Defining the
integrais in Eqa. (2-5) and (2-6) as

L,(v) = [du £ (r,u,t)|v-u|™! (2-7)
Ky (v) = [du fb(stg.t)|v-u| (2~8)

the potential-like relationship between Eqs. (2-5) and (2~6) 1s easily
shown with

v;!(b(g_) - 2L, (v) (2-9)
and
Vi, (w) = =gy (r,v,t). (2-10)

In this presentution, the effects of internal and external forces on
the evolution of £, will not be considered so that <4> and PeXt {p
Eq. (2-1) can effectively be set equal to gero.



II1. SPHERICAL SYMMETRY IN CONFIGURATION SPACE

A symmetric, field-free, spherical plasma configuration is a parti-
cularly simpie system i3 which new techniques for solving the transport
equation can be tested. Since results of benchmark calculations in
this type of system exist In abundance, comparisons can easily be made.

To this end, consider the time evolution of a distribution
fa(r,v,u,t) of test purticles in a fully symmetric state in a spheri-
cal configuration space and in a spherical velocity space in which the
distribution function will only be constrained to be azimuthally sym-
metric. In this caae the transport equation is written as

9f
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In the above equations and in the remainder c¢f thin work dimensicnless
variahles asre used which are defined as follows

- %_ t = %.
o c

vwhere N, and 1, are chosen tologit the problem at hand and where

Co 1s defined to be (2kT,/m,) « K is Boltzmann's conz:ant,

To is & standerd kinetic temperature and m, is the mass
correspanding to 1 AMU. With these scalings the scaled distribution
function is related to the unscaled digtrihution hy
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it 1s found that the Fokker~Planck transport equation retains_its

3
original form 1f the traditional rab is replaced by rahNoTo/Co'

In equations (3-1) through (3-4) the tildes have been dropped for
brevity. Here the functions Ky and Ly of the background

distributions fy, will remain isotropic for 2il time and the sums over
the species 'b' will not include the species 'a' so that the treatment
of Eq. (3-1) will *recome fully linear. The background Maxwellian
distribution functions in scaed variables have the form

-__b 27,2 -
fb(u) T2 5 °*P (-u /vob) (3-5)

v
m ob

where vqp, = (Tb/Ab)l/z.

With the definitions of K and L}, given by Egs. (2-7) and (2-8),
the derivatives in JY and J¥ can be computed as

aLb '
4n v 2 .
o = - :E fo u f, (u)du (3-6)
axb 4
vi 2 u ® 2uv
5 lmfo(u - ;;z)fb(u)du + lmfv =5 fb(u)du (3-7)
2
) Ky Y
v 2u “ 2
., = lm]o -3—;5' fb(u)du + lmfv 3 ufb(u)du- (3-8)

Defining the standard integrals in Eqs. (3-6) - (3-8) as

R, (V) = f:ufbdu (3-9)

Hy (V) = I;uszau (3-10)



v.h
Hb3(v) - fou fbdu. (3-11)

it 1s seen that the Landau-Fokker-Pianck compnnents can then be
rewritten as

v NoTo 2 Aa th(v)
J = -aanab = zb{;— f, >
b C° ) v

(3-12)

+ 333 ( —+ ybl(v))}
v

and
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(By,(v) = _hi‘i + %! Hpy (V)]

v

Since the background distributions are Maxwellian, the integrals Hyj.
Hp2, and Hy3 are easily evaluated as

n
exp(-vzlvib) (3-14)

ob

R, ,(v) =
bl Zw;'zv

L v

— — 2,2
“b2(v) - !3 2 4 erf(v/vob) - 2v°b exp(-v /vob) (3-15)
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2
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Equation (3~1) can be solved by a direct finite difference method which
is similar in many respects to the Sp technique used in neutron
transport. In this method the angular dependence of the distribution
function is not expanded via a complete set of functions but rather is
treated as discrete. The wav in which the methodology presented in
this chapter varies from the standard S, method iz in the treatment

of the collision physics. Here the collision effects will be solved
for separately from the streaming effects.

An operator x which will descretize all of the arguments of
fqa(r,v,u,t) through the transport equation 1is

t r v 7]
+
K - %Jts+l dt Ir1+l/2 r2ar fvﬂ+l/2 w2 dv fun 1/2 du (3-17)
1-1/2 g-1/2 ‘n=-1/2

3 3 3 3
where f = At _(Ar /3)(4v_/3)8u_ and bty = toyy = t,, bry/3 = (r1+/2 _

a
3 3 3 3
Ti-1/2) 30 Avg/3 = (Veuya = Vem172)/3 By = Vei1y2 = Va1 2
In this analysis the intervals on & mesh will be centered at integer
values of the indices s,i,g and n and the distribution function f,
will always be defined at t = tg4; i.e., implicitly, unless apecified
by a subscript to be otherwise,

Applying th operator x to Eq. (3-1) yielda the difference
approximation
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where V, = Ari/3, A1+l/2 - ri+l/2, and where the angular streamirg

term has been differenced as in the S, methodology of neutronicslu in
order to preserve conservation of particles for finite sized intervals
Aup. The subscript 'a' of the test distribution has been dropped
aince it is understood that this is an equation for fq.

By using the definitions

N T 72
o 0o”b

Bg = Aag‘rlb 'CT:— Hh2(vg) (3~-19)
o b

N T Hy (v )
- 1 00 .2, b3 ' g 2 -
Cq 3érab " 2, (——2-+ vgﬂbl(vg)) (3-20)
£
N T Zb 1 2
Dg - %l'.h ;—3—-—-3—— (Hbz(vg) - -3-;? “b3(vg) + ?’g"bl(vg)) (3-21)
o g -4

in Eqs. (3-12) and (3-13), the components of J in the collision term of
the difference approximation become

£ .. - f

v - b g+l " g )

Jg+l/2 2 {Bg+1/2fg+)/2 g+l/20—-——-—-——4} (3-22)
Vg+/2 g+1/2



Jv S LA £ +C (fﬁ~:_fﬁll)} (3-23)
g=-1/2 2 g=1/2"g-1/2 g~1/2'\ Av _1/2
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f - f
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J = -2np_{(1-u ) (3-24)
n+l/2 g n+l/2 Aun+1/2
£ - f
H 2 n n-1
I, = ~2aD {(1-p2 0y 2ol (3-25)
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The velocity grid interval edge values f in the J;:}/Z

gtl/2
components can be related to the centered Vfgues fg by the
interpolating relations of Chang and Cooper as

for1/2 ™ (0= 6oy y9) oy + Spnyyn £y (3-26)

fou1/2 = (L= 8oy e+ 61 n 0y - (3-27)
where

s - - (3-29)

and

Av_B
Yerr/o = ‘7';‘;%%2' (3-29)

By using these relations in Eqs. (3-22) and (3-23), the collision term
of Eq. (3-18) can be rewritten as the sum of two terms as

q =%+ %" (3-30)

vhere
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FE LB (1 -6y 4 2 (3-31)
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2 2
(1= wppyya) (D= ui g9
- £l Ay + Au ]
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2
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. n+1/2
Note that § is & sum of two 3-point differnce terws.
By further defining the quantities
4
Av_/4
£ -——5—3— (3-33)
ViAvs/S
A= v A /2814172 = A-1/281-172)
(3-34)

+ lopp/2fme1/2 = %n=1/2Tn-1/2!



and the. combining Eqs. (3-30) and (3-18), it is seen that the
transport equation can bYe written in the simple form

) EMe,
f - th' - f' - Ay . (3-35)
n

In this equation, it is seen that the collision terms are now on the
L.H.S. while the streaming terms have heen eeparated off into the
R.H.S. This formulation suggests that a splitting procedure may be
used to solve for che effecta of collisions and streaming on the
distribution separately and then combined in some self-consistent
fashion to yield an updated distribution.

Fa. {(3-%5) can be split into two, separate, fully implicit equations of
the fo.

EAAt.
[f ~ gAt]* = lf. - —a-u——]t -t (3-36)
n [ ]
and
EAAt. -
f + —Au—" - Q*At. + f.. (3-37)
n

Here Eq. (3-36) is seen to be an equation which modifies the
distribution function f for collision effects while using the streasming
terms as a constant known source term evaluated with quantities definad
at the previous time step while Fq. (3-37) is an equation which
corrects f for streaming and uses ti.e result f* of Fq. (3~36) as q* =
a(f*) as a constant. When Eqs. (3-36) and (3-~37) are solved together
wvithin a given time step, the distribution function

f(ri,v,.un.t.,+1'io then determined for all i,g, and n.

Consider first 2q. (1-36) and recall that q was defined as the sum of
two 3~point terms in Eqs. (3-30)-(3-~32). As such, Eq. (3-36) resembles
the ditferenced 2-dimenrional Poisson equation which has the form

1k 1k
!ng*ng + cnﬂwlk - sng (3-38)

1 = n=1,n,n+l

k = g-1,g,g+]



where the matrices E and G contain the coefficients of the two 3-point
terms qV and q" respectively and where sng corresponds to the

source term on the R.H.S. of Eq. (3-36). Ei: and Gik are actually
supermatrices with the properties

1k 1k
E s:zng (3-39)

clk . gkglk (3-40)
ng =~ g ng

where the first pair of upper aund lower indeces indicate the position

of an elemental matrix in the aupermatrix and where the second pair

indicate an element in the elemental matrices. Heace g and G have the
forms

x/ NGXNG

X a .
plk o [

ng X X Z£
X X

(3-41)

L
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where NG iy the number of intervals on the g grid and NN is the number
of intervala on che n grid. The supervectors Y1y and Spg have the
forms

(3]

Y1k = ng (2-43)

XM M M M M X X %
[
® X R K H X K K K

-

The notation of Eaq. (3-38) can be simplified somewhat if the index g ia
taken to be vector index so that it can “e rewritten as

1+ X
Ewn + Gy = §n . (3-44)

Thies equation merely indicates that each multiplication .. a superrow

of Eqs. (3-41) and (3-42), by a suparcolumn of 7. will be treated
separately. The following treatpert of Eq. (3~44) 1s based upon a
method given by Buzbee, et. al. .

In general the matrix E will not be symmeiric tridiagonal but a matrix
D can be found that vi}} symmetrize E through a similarity

transformation £ = DED ', If D is allowed to operate on Eq. (3~44)
from the left, it.then takes the form

oy, + oy = 08 . (3-45)

It 1s fnoily shown that D has a diagonal form such that it commutes
with G, as indicated.

The symmetric matrix ¥ hae a complete set of eigenvectors given
by !Eu - Auzu so that the vectors D¥ and D& can he expanded as

Dby = [ aygb, (3-46)



bsn- z bnctu . (3-47)

Using these expansion in Eq. (3-45), it is found that it can be
rewritten as

1 1
[Gn + Gnkulalu b, (3-48)

Eq. (3-48) 18 recognized to be a tridiagonal system in the coefficients
8)1q for each index a. This equation can be solved readily by a
factori=ation of the tridiagonal system into upper and lower
off-diagunal matrices. Tris ia a standard technique in matrix
analysis, the details of which will not be given here. For an
excellent presentation of this technique, the readar is referred to
Ref. 17.

Once the ccefficients ajy are determined, the solution of Ea. (3-45)
can be constructed uiing Eq. (3-46) as

- -1 -
wlg Z .luDg €ag’ . (3-49)

This 1s the 'intermediate' distribution function f* which has bheen
modified for collision effects. It is noted that for the case in which
the background plasma remains Maxwellian, the coefficients in Ea.
(3-45) remain unchanged such that the eigenvalues & A corresponding
eigenvectors nead be computed caly once. But the counstruction
indicated in Bq. (3-49) must be performed at every time step since the
Alq will differ as the source teim (and therefore the (h,,) of Eq.
{3-45) changes 1in time. This procedure is carried out for every gone
ry{ in a given time step.

Ea. (3-37) remains to be solved. This equation is actually equivalent
to Eq. (3-18) i.e., the difference approximation except that the
coliision terms on the R.W,.S. are now known as aq* such that

"
f(ri'vg'"n'tn+l) -f, . unAv!/& A . o . :
At ) 141/2°1+1/2 1-1/2%1-1/2
s ViAv./S
(3-50)
Av“/‘

+

[ lun+l/2fn+l,’2 = °n-l/2fn-l/2) - 3.
VaA”nAVg/3



Eq. (3-50) has the form of the neutron traneport equation which has
been differenced for S, treatment and as such, it can be solved as in
neutronica. To outline this method, note that Eg. (3-50) is an
equation in five unknowns £; fy4)/2, and f,_1/7, can be determined

from boundary conditions or from a previous time step. The other three
quantities can be related by some scheme so that a system of three
equations in three unknowns can be formed.

The diamond differen e relationa
2f = fn+,/2 + fn-l/2 (3-51)

are chosen for thia purpose. It is seen in Fig. 1 that these relations
linearly interpolate between quantities defined on a topologically
rectangular mesh, Using these relations in Fq. (3-50) and solving for
f in terms of the known quantities f,.; /2 and fy4)/2 yleida

A:unAv“/a
£ o {at + £ - 3 [Agurs2 * Apc1p2! 4172
ViAv /3
g
AtAv“/é
+ [a +a 1t (3-53)
3 n+l/2 n=-1/2""n=-1/2
viz\unuvgla
AtAv;/4 1
rd -
{1+ o B @12 ¥ %-172) " ValAiyse t Ay )).
viAvg/S n

This equation can be used to solve for the updated distributions for
all zones i, starting at the boundary of the sphere by calculating the
cell centered distributions f and then extrapolating inward for the
cell edged distributions f4.;/,. Since the calculation proceeds

inward toward the center of tne sphere, it should only be performed for
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Yig. 1.--The diamcnd structure of the interpolating
procedure shown on a partial r-u mesh

angles directed inward to avoid the ac:umulation of numerical error!
i.e., for the directions u such that =1 < u ¢ 0. A similar equation
can be derived for outward directions by considering fi41/2 to be
unknown and again using the diamond difference c¢quations in conjunction
with Bq. (3-50) to yleld

M
Atu Av /4
£ o {qrat + £ + ——E

A +A It

1-1/2

Yy
AtAv_ /4
- —K

] +a _ 1t - -
ViANnAV:/3 n+1/2 n-1/2'"n=1/2} (3=54)

i
A
At v./‘ [ 1,

(1 + Aun‘°n+l/2 + °n-l/2) + u:\“1+l/2 + A1-1/2)”'

3
ViAv‘/3

The outward integrations can be started by using an isotropy condition
at the center of the sphere which {s just



f = f

r'o'noutward r=0

’ninward

(3-55)

NN+1

Moutward “Mynward .

This integration ia done after all of the inward calculations have been
performed. In this way, f(r,v,u,t) is calculated at the updated time
t = tos for all zones, speeds, and angles.

In the next section, vome results obtained hy this method are
presented.

III. RESULTS

The calculation of the enerpgy deposited by faat test ions as they slow
down on a background plasmu during the collisional transport procesa is
typical of the benchmark problems which have evolved within the
literature on charged particle transport. In a pellet plasma, for
exanple, it is of interest to determine how thie energy is distributed
spatially while being partitioned to the background electrons and
ions. It is also of intereat to be ahle to determine the time history
of the deposition, Some of the more important applications of these
type of calculations include the treatment of fusion product transport
and the analysis of injected charged particle beams, In order to
demonstrate the matrix factorization (MF) method of the last sections,
the transport of fusion alpha particles and beam deuterons and protons
will be considered.

Before proceeding further, it is to be noted that in the transport
equation, the factor I, has consistently heen . 2pt within the
summation over the species 'b'. This is because of the dependence cf I
on ¢the background species through the Coulomb logarithm as

Inh = In(A,/b) = InlA,/(2 2 > fane_u  v?)). (3-56)

In this work the arguments A; and Ay will be approximated as

Abvne m
PO BN s SR 1, (3-57)
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and

- 36 (3-58)

which are valid approximations for cases where the electron thermal
velocity Ve is greater than the test ion velocities v, but where
th
v > vy « The test ion energy E in 7.q. (3=57) is set to the thermal
th
ion energy to be definite, and the HMarshak correction factorle
appiied in Bq. (3-58) when applicable.

is

The case of 3.5 MeV fusion product alpha parti les trunsporting in a
spherical plasma is considered first. In this example, ths background
electron and hybrid D-T ion dengities will bhe 0.2125 x 107 kg/m while
their temperatures are taken to bhe equal at 50 keV, Although here the
temperatures are set equal, the code does allow for different electron
and ion temperatures.

It is chosen to compare the results of the MF calculations with those
given by Mehlhorn and Duderstadt in Ref. 9 since their method also
allows for wvmlocity aspace dispersion. In order to mstch the zoning
used in their modified neutronics code TIMEY~FP, 13 radial zones are
used while the velocity space variables are discraztized by 4 u
directions gnd an 18 point spaed grid. The zone wid:h is taken to bhe
«7742 % 10 “m which s equivalent to .035)\, where A  is the range

of alpha particles on electrons at the density and temperature given
above., Further, in this problem, the arguments of the Coulomb
logarithm are nor calculated by Eqo. (3~57) and (3-58) but the values
of 1aA are set as InAg = 8.25 and InAjy = 1B8.56 as they were in

Ref. 9. The details of the energy deposition calculation are given in
In Figures 2 and 3, the fraction E4/E, of the initial alphaparticle
energy E; depcsited per zone to the backpround electrons and ions,
reapectively, is plotted for each zone. It can be seen that the MF
nethod ylelds results which are in very good agreement with those
reported in Ref. 9. In both Figures 2 and 3, the peaka of the spatial
deposiiion profiles occur in the same zones and are nearly identical in
magnitude. Similarly, the stopping leniths calculated by the MF method
enjoy close agreement to thuee previously reported. Althougr small
differences occur in the two methcds' calculations of the amount of
energy deposited in the first few zones to both electrons and ions, the
resulte of the MF method chould be reliable since it doea not seem to
encount.r the difficulties near lfcalized sources that the S,
techniques used in TIMEX~FP might".
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In order to study the effects of the diapersion in velocity space which
the alpha particles undergo as they scatter on the plasma, the number
of angles NN, used in the calculations was varfed. In Figures 4 and 5
the spatial deposition profiles are again given for electrons and ions
separately., It ia seen that by increasing the number of directions in
which the alpha particle distribution function can be defined, for the
case of deposition to electrons, the spatial profile's peak is
decreased while deposition to the outer zones is increased. In the
case of the ions, the peak ls also diminished but shifted to the right
with the deposition to the outer zones again increasing. This behavior
18 to be expected for the following reasons. Since the initially
isotropic alpha particles are at higher energies than the background
elzctrons and ions, their distribution will depart from the isotropic
form &s they scatter in an attempt to reach a thermal equilibrium.
Although the alpha energy may dirinigh after the first few collisions
in zones near the center of the sphere, the energy is more directed in
the outward directions in these zones. They will approach a thermal
aquilibrium after enough coilisions have occurred along their path, so
that their distribution will again acquire an ieotropic character in
the outer zones of the mesh, At this time the particles will have no
preferred direction, so that the amount of backscattering will become
the same as th.e amount of forward scattering, thus resulting in higher
depusition to these outer zones., That this behavior i1s indeed tne
case, is established by following the distribution of the cosine (u)

— NN 4
| veeeNN® 8
. err NN 16
. o
f’ro. oo -

e Y oo 2

Pig. &.--Fractional depositior. per zone to electrons
for an increasing number of directions (KN)



eseee NN 8
oS NN s 16
el
Qo 0.10r o bobey
ll-" boood o b3
0.05F 1 g
.‘.1!." ---E
o ol Y A A F R 4 " 4 ..-L"""."A.m_
0O I 2 3 4 8 67T & 9% O N
Zone

Fig. 5.--Fractional deposition per zone to ions for
for an increasing number of directions (nn)

of the alpha particles' velocity vertors vith respect to the radial
vector as a function of time. In Figure 6 this spectral information is
shown for the center zone at t » 0 while the curves at other times are
appropriate to the third zone on the mesh, It is seen that the
distribution (normalized to unity on the ahscissa) becomes peaked
toward a positive cosina almost instantaneously, showing that the elpha
energy is highly directed toward the outer zones. As time (NT)
progresses, the particlea scatter and loae their energy and the
distributicn tends toward a Maxwellian at the background temperature.
From this information, it can be concluded that by using too few angles
in this type of calculation, the reaults may become biased in showinrg
too much deposition in the first few zones and in ignoring the
backscattering effects in the outer gones.

It is interesting to note that the plots in Figure 6 contain data
points which avpzar jagg. Thia is due to the use of a large time
step in the algorithm, wh..n gives rise to small fluctuationa in the
distribution information, s common occurrence in some finite difference
schemes. Although this phenomenon could be detrimental in zome
algorithms, the MF method remained absolutely conservative and
convergent,
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Fig. 6.--Angular gpectra of the distribution function at
the 3rd position on the zone grid. At the first time
step (NT), the spectra is shown for the first zone

In FPigure 7 the time dependent energy deposition history is shown for
both depoaition on electrons and on ions. As a check on thke accuracy
of this method, the curve ghowing the total energy fraction deposited
to both ions and electrons was calculated using the appropriate moment
of the L.H.S. of the transport equation, Eq., (3-18), It can be seen
that the code remained energy conserving.

Time B9

Fig. 7.--Time history of deposition to both electrins
and ions



The efficiency for the MF method 1s demonstrated in Figures 8 and
9., The same computations described above for four angles, 13 zones and

18 velocity grid points were performed using 150 time steps (NT) at a
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time increment of .01 and then carried out again using 1500 time steps
at At = ,00l1. Here the time increment At is scaled to the slowing-down
time of algha particles due to electrons at 50 keV which is equal to
8.47 x 10 ° sec, It can be seen that very little accuracy is lost by
using the larger time step. The calculation using 150 time steps
required 5 seconds of CPU time on the CRAY I computer,

It is noted that the total deposition friction in time tends towards
unity but becomes asympto:ic at a value less than unity. This 1is, of
course, due to the fact that the alpha particle does not lose all of
its kinetic energy but only slows down to an energy defined by the
temperature at thermal equilibrium.

The energy depoaited to a plasma by an injected Leam can be calculated
by introducing a distribution function characterizing the beam at the
outermost zone of the system, In the examples which follow, the zoning
used in the previous examples is retained but a delta function
distribution (in speed) defined at one ingoing angle is uaed to
simulate a beam entering at the boundary.

In the first example, &8 beam of 1 MeV deuterons impinging on D-T plasma
(at the same temperature and density as before) at the outermoat zone
(zone 13) is considered. The delta function is defined at their
veloc.ty corresponding to that energy which 1s v = 9,823 x 10" m/sec.
In Figures 10 and 11, the deposition profiles are shown for the case in
which the beam consists of an initial burst of .Angoing deuterons.

Since the beam velocity is much lesa than the electron thermal velocity
in this case, the deuterona should tend to depoait their energy on the
background ions in greater proportion. This is seen to be the case.

0.0}

2 35 46 6 T 8 0 0 &5

Fig. 10.--Fraction of initisl deuteron energy depositsd per
sone to electrons for a beam entering at zone 1)
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In Figures 12 and 13, the deposition profiles are shown for an initial
burst of 500 keV ingoing protgnc. Since the proton velocity is the
same as above (v = 9.823 x 10 m/sec) the same tendency to deposit more
anergy to the ions shoull be observed. In addition though, since the
mass of the protons is less than that of deuterons, they are more
easily deflected and so should deposit their energy such more quickly
i.e., within the first few zones. Again, this behavior is verified in
the figures. Both of the above calculetions required about 4.5 seconds
of CPU time on the CRAY 1I.
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