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UNCONDITIONALLY STABLE DIFFUSION-ACCELERATION
OF THE TRANSPORT EQUATION

Edwsrd W. Larsen
University of California
Los Alamos National Laboratory
P. 0. Box 1663
Los Alamos, New Mexico 87545

The standard iterative procedure for solving fixed-source discrete-ordinates
problems converges very slowly for problems in optically large regions with
scattering ratios c near unity. The diffusion-synthetic acceleration method
has been proposed to make use of the fact that for this class of problems,
the diffusion equation is often an accurate approximation tn the transport
equation. However, stability difficulties have historically hampered the
implementation of this method for general transport differencing schemes.

in this article we discuss a recently developed procedure for obtaining
unconditionally stable diffusion-synthetic acceleration methods for various
transport differencing schemes. We motivate the analysis by first dis-
cussing the exact transport equation; then we illustrate the procedure by
deriving a new stable acceleration method for the linear discontinuous
transport differencing scheme. We also provide some numerical reuults.



UNCONDITIONALLY STABLE DIFFUSION-ACCELERATION
OF THE TRANSPORT EQUATION

I. INTRODUCTION

The standard power method for iteratively solving the neutral percicle
transport equation has the following well-known physical interpretation.
With a starting guess of zero, the n-th iterate is the flux consistiug

of all particles which have underxgone up to n collisions. For transport
problems in optically large regions with scattering ratios near unity,
most of the particles undergo a large number of collisions and the power
method converges very slowly. However, for this same class of problems,
the transport solution is often well approximated by the solution of the
standard diffusion equation. The "diffusion-synthetic” acceleration
method?”7 has been proposed to exploit this fact by alternating tramsport
and diffusion calculations, but it is only fairly recently that numerical
stability problems? have been overcome and that a comnon procedure for

developing stable methods for fairly general transport differeacing schemes
hes been formulated.3~7

In this article we discuss the diffusion-synthetic acceleratiou method, first
from the point of view of the exact transport equation (Sec. II), next from

the point of view of the discretized transport equation, with emphasis placed
on a new and simpler acceleration method for the linear discontinuous spatial
differencing scheme®’® (Sec. III), and then from the point of view of numerical
results (Sec. IV). For simplicity we restrict our attention to fixed source
problems for the one-group treznsport equation with isotropic scattering. We
briefly discuss extensions to multigroup anisotropic transport in other
geometries in Sec. V.

II. EXACT TRANSPORT EQUATION
We wish to solve the equation

)
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At this point we shall not specify the spatial domain or the boundary con-
ditions. The standard power iteration method for solving Eq. (2.1) is

ined by
L+y
AR R R TN (2.2)
e 1 oy (2.3)
% 3 {1 ¥ I :

where Qg, the initial guess, is often chusen to be zero. To determine the
convergence properties of this method we define
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as the difference Letween successive iterates of Eqs. (2.2) and (2.3). The

rate at which ?£+5 and ¢£ tend to zero is the rate of convergence of the
power method (2.2), (2.3).

By subtracting two of the equation (2.2) and (2.3) for successive values of
2, we obtain
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To determine the convergence rate, we neek eigenvalues w and eigenfunctions
of this method of the form

02 = (m)2 eiAx R ~®m<CAD> o | (2.7)
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for which Eqs. (2.6) become

f(p,AN){HAp + 1) =, (2.9)
1 1
w=3 [ fdp . (2.10)
-1
Hence,
R
£N = 75T (2.11)
and
1
w = % f '—"92—2-—2' dp . (2.12)
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The spectral radius of the method is then

Spr T sup w = ¢, (2.

13)

vhich is attained for A = 0. Thus, for A ~ 0 and ¢ ~ 1 (whick corresponds
physically to an optically large system with a wcattering ratio near unity),

the spectral radius is close to one, and the power iteration method con-
verges very slowly.

To sccelerate this iteration method, we shall keep Eq. (2.2) but r~place

Eq. (2.3) by a formula which treats the A ~ 0 modes more accurately. To
reformulste this idea, we rewrite Eqs. (2.8) and (2.11) as
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Thus 1if Pn(“) ie the m-th Legendre polynonial, we have
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In particular, Wl+k is nearly a linear function of p. Thus, to better treat
the A ~ 0 modes, we shall roplace Eq. (2.3) by an equation which computes

£2+1 Lo o Rth

¢ exactly if ¥ is a linear function of p.

To do this, we take the zero-th and first spatial moments of Eq. (2.2) to
obtain

dx °£+¥ ¢z+g = °°§ +s (2.16a)
2d 04y 1d a4l 04k _
3ax %2 3ax % *t 9 , (2.16b)
where
1
¢, =3 J B (W) Ox,p) du . (2.17)
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Upon convergence, Eqs. (2.16) become
g o +(1-c)e,=5 (2.18a)
x 'l 0 i ’

14 _
¢2+§a¢o+¢l-o » (2. 18b)
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where the converged quantities are indicated without iteration superscripts.

Now let uz define two equations for ¢: 1 and ¢£+l

Lalra-a et =s (2.198)
2 d 2+ 1 d £+l 2+1
2 o ' sl e =0 . (2.19b)

We note that Eq. (2.19a) is the standard balanrce equation. For the eigen-
functions of this iteration scheme, the first (unaccelerated) term in Eg.
(2.19b) is - by Lq. (2.15) - O0(A%). while the second and third (accelerated)



terms are 0(A). Thus, Eqs. (2.19) can be expected to treat the A ~ 0 modes

very accurately. Additionally, we see that if ¢£+5 is a linear

function of y, than 02+¥ = 0 and Eqs. (2.19) can be solved for ¢g+1 and

2
¢f+l exactly.

To proceed, we write

y mn=0,1 (2.20)

and we subtract Eqs. (2.16) from (2.19) to get

d _2+1 _ 241 _ 2+ 2

= fl + (1 c) fo = c(Qo 00) , {(2.21a)
1d _f+1 241 _

3 ax fo + f] =0 . (2.21b)

Eliminating f£+l, we get an equztion only for f£+l. The full iteration
> 1.2 : ! 0
scheme, using this equation, is defined by

u g; ¢£+g . ¢£+5 - COS 4 Sx) (2.23a)

Og“’ = % {1¢£+5 a’ (2.23b)

_14% 1. (-0 21 e o -8y (2.23c)
342 0 0 0 0

¢§+1 - ¢§u, . fgn . (2.23d)

The eigenvalues and eigenfunctions of this method can be computed just as
before, with the resuit

(2.24)
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vhere equality holds for ¢ = 1. A numerical search gives
spr < c (0.23) , (2.25)

and thus the spectral radius is less than 1/4 for all values of ¢ < 1. For
¢ = 1, the plots w(A) for the unaccelerated [Eq. (2.12)] and accelerated
[Eq. (2.24)] methods are displayed in Figure 1. We see that the accelerated
method treats not only the A = 0 mode exactly, as it was designed to do,

but in fact it treats all the modes, for 0 < A < =, more accurately than the
unaccelereted method.

The diffusion~synthetic acceleration method of Eqs. (2.23) [together with

its spectral radius (2.25)] has been known for some time, and was originally
derived in a substantially different way.! The derivation of unconditionally
stable discretized diftusion synthetic methods however was an unsolved prob-
lem for several years® and has only been accomplished recently.® The advan-
tage of the analysis presented above ig that, starting from the exact trans-
port equation, we systematically derived the exact diffusion-synthetic
acceleration method; in a similar manner, if we start with the discretized
transport equation and follow the above procedure, basically line-for-line,
we can derive a discretized diffusion-syanthetic acceleration method which

is, for all of the tramnsport differencing schemes we have considered,
unconditionally stable.®'? In the next section we carry out this procedure
for the linear discontinuous differencing scheme.

III. LINEAR DISCONTINUOUS SCHEME

The linear discontinuous scheme for spatiaslly discretizing the discrete-
ordinstes equations is based on a linear representstion for the angular
flux within each cell,

WO = v k) b (3.1)
k

This equation holds in the k-th spatial rell xk-ﬁ < x < ‘k+§’ with midpoint
x, = (xk-& + xk+5)/2 and width hk = xkﬂ T Xy The subscript m refers to
the discrete-ordinates directicn Hy' the corresponding weight is W normalized

n
so that X wo o= 1. Equation (3.1) holds not onlv within the k-th cell, but
1

also on the right edge for My > 0 and on the left edge for Ha < 0. Thus if

wn’ki§ = wl(xktﬁ)’ then



;m - ¢m K+ = ll'mk 'Jm ’
k
wmk ¢ Jhk=% um

For a constant source § = S, , the linear discontinuous wethod is explicitly

defined for the k-th cell by

M 24y o+y Ay 2
B o key ™ Yo x-y) * Tk* = %%k * Sy o (3.2a)
3y A5 THUINE 24 SRR 2*5) +o t¥h -, ;2 (3.2b)
B, Ya,ket’ Yo,y 2 Ve Tkbwe = %skCok :
1+a 1 -a o
2y _ z+5 mk, 2%

These are three equations for three unknowns, ¢£+§, & , and either

fL+y AL _ .
wm,k+¥ or wn,k-&' Equations (3.2a) and (3.2b) are the zero-th and first
order spatial balance equations, into which we have introduced Eq. (3.1).

Equation (3.2c) follows from introducing

2+ 2+h
Yo eey ~ Vo , w0,

5:? T oaey  ae (3.3)
wllk = ¢n’k_,’ ’ p <0 ,

into Eq. (3.2b), rearrenging, and defining

LT

o= . (3.4)

3+ IoThk/p-|

Equations (3.2) coanstitute the discretized version of the transport
equation (2.2), with the total and scattering cross sections 0, and O
vritten explicitly. The unaccelerated method is based on the ?ollowigg
discrete form of Eq. (2.3):



. N
o =¥t T I uncH (3.50)

N
;3:1 =t 5 gﬁ;* w o . (3.5b)

The spectral radius for this iteration method is found by determ..ing eigen-
iAx iAx

g 81,2 Mk L2 g-1 _ & k
functions of the form 0, ¢0k = (w) e , COk COk = (w)~ ue for
systems ip which oTk’ oSk’ and hk are constants independent of k. The eigen-
valu. w has a complicated form which (just as in Sec. II) equals ¢ = os/o,r
for A = 0 and monotonically tends to zers as A+. Thus, as beiore, convergence
will be very slow for ¢ ~ 1 and A ~ 0.

To derive the acceleration equations, which will replace Egs. (3.5), we
first define Py Yok’ and Bnk as

N
Pk = Z Hlok¥m (3.6a)
1
a.k = 3 pkp- + Ymk , (3.6b)
Mok = Px * BIlk ’ (3.6¢)

Because ook is antisymmetric, i.e.,
Wy = 7 My P % = 7 % o G.7)

then Yok and ﬂnk have the properties

N

E Pn(u') Ynkwi =0 , n=20,1, 2 , (3.8a)
. R |

N

E Pn(um) ﬂ.kwn =0 . n=0,1 . (3.8b)
s}




The procedure which we use is patterned directly on the method presented

in Sec. II for deriving the acceleration equations (2.23) from the single
equation (2.2). Our starting point here however is not Eq. (2.z), but
rather Eqs. (3.2). We begin by taking the zero-th and first angular moments

N N
of Eqs. (3.2), i.e., by operating by I (°) w_ and I pm(°) w Thi-
m=1 m=1
results in the following six equations:
1 [ 25 TN 2 _ LYy _ 2 2+5
B; (¢1’k+¥ ¢l,k'5) + (oTk Sk) ¢ = Sk(¢°k ) + S ’ (3-93)
L+ 2+5 l__ 2+ _ 2+% 2+§
3 24% L+ £+§ 2+ 2+§
b (1, ken’ ®1,i0n " 200t O i) Sox = %skllox - Lok )
(3.9¢)
2 L+k 24y £+¥ 1 f+h 24% z+y 2+ _
b 42,key" #2,k-5 7~ 22k * B @o,ie” 0,4 7 200 ) * Orbuc T O

(3.9d)

oy 2+ o+y 3 o+y 9,+s, S Y
¢0k (¢o k"’& + ¢0,k'}|) + 2 Pk(¢l’k+;‘ ¢ 5) + LY(le“& wk_a) ’

(3.9e)

24y _ 1 _2+4 JAR Y 1 2tk _ 2+Y 1 22 Y 2+%
i ~ 2(4] ey 0 k) 228 ey Y0 k) Y L“(¢k+5 Vi-y)

sk
¢
Tk

- 0

%% o ok ° (3.9f)
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Here we have defined

N
¢nk = mZI Pn(p-) ¢mkwm ’ (3-108)
Cox = mz:ll’n(um) Eaia (3.10b)
N
Lka = :E: Yﬂkwhkwh ’ (3.10C)
m=1

etc. Now we define acceleration equations ia the following way:

2+1 2+1 241 _

1
he (1, key ™ 1,ky) * Opy - 0g) € =8, (3.112)

24y o+l 1, .24 2+1 241 _

2

ST;; (¢2,k+~- Qz’k_s) + 3—h—k-(¢0,k+¥- Qo,k'ﬁ) + OTkQIk =0 ’ (3-llb)

3, 241 2+1 241, 241 _

by Preen * ® ey T 2000t oy mog) Lt =0, (3.11c)

2 f+h By ey 1941 241 g1, 241 _

b (2, key * 92 kg = 205, + hk(’o,k+5* o,y " 2 0t ol =0,
(3.114d)

241 1 , 2+1 41 2+1 2+1 2+ L4

1
pk(¢l’k*~ = ¢l,k'5) + i LY(¢k+5 = "k'~) ’

NiWw

Yoh T2 (o kay * ¥ kay) *

(3.1:ie)
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2+1 2+1 l 2+1 £+l L+ 2+§

0

241
- P C

(3.111)

241 _f+1 2+1
.nk 1 ’n k+k ? an ?
o =0 and 1. They were defined by altering the suyperscripts in Eqs. (3.9) in

a manner that is consistent with Eqs. (2.15) and (3.8). Specifically, for the
eigenfunctions of this itcration scheme and for small A the accelerated terms
in Eqs. (3.11b, d, e, and f) are respectively 0(A), 0(A%2), at worst 0(1),

and 0(A), while the unaccelerated terms are respectively 0(A3), 0(A3), 0(A%),
and 0(A%2). Thus in these four equations the unaccelerated terms are, for
soall A, negligable compared to the accelerated terms. In Eqs. (3.11a and c),
all of the teims are acrelerated. 1In these two equations one cnnnot compare
cthe magnitude of the various terms with respect to A because 0 lnd

Sk cun, in principle, have values which vary from zero to 1nfix¥ty

Tuese are six equacions for the six quantities:

Equations (3.11) satisfy the property, enuciated in Sec. II, that if ¢ 1is
linear function of y_ then all of the terms with 2+% superscripts vani

and the six unknowns“can be determined exactly. The acceleration method
based on Eqs. (3.11) hus been coded, tested, and reported elsewhere®’’; we
shall refer to it as method A. In the following we discuss in detail a
closely related method (referred to as method B) which (i) does not satisfy
the above property, (ii) is computationally simpler than method A, and (iii)
performs for most problems about as wel' as method A. In Sec. IV we present
numerical results to compare the two methods.

Method B is based on the observation that if the eigenfunctions of any
itecration scheme satinfy Eq. (2.15) for small A, then the accelerated term
on the left side of Eq. (3.11e') and the first accelerated term on ihe right
side are 0(1), while the aecond accelerated term on the right side is 0(A%)
Thus this latter term should be negligable when compared to the others for
small A, and one ought to be able to treat it as unaccelerated. In other
words, one ought to be able to replace Eq. (3.11e) by

241 _ £+1 101 l*l. hs L+4 244

(3.11e’)

This metbod has been ccded; ve have found that for small spatial cells the
spectral radius is (experimentally) identical to that of wmethod A, but as
the spatisl cells increase in width, the spectral radiu. tends to c. Thus,

12



the new method is stable, but it does not accelerate effectively for large
spatial cells. This unfortunate behavior of the spectral radius as a
function of the cell width could not have been predicted from the analysis
of the exact acceleration equations in Sec. II. However, it can be over-
come by adopting the following strategy.

The purpose of any acceleration method is to obtain accelerated values of
Q:;l and {;;l. By Eqs. (3.11e) {or (3.11e’)] and (3.11f), these quantities
are given in terms of accelerated cell-edge scalar fluxes and currents.

An acceleration method which accelerates effectively for all spatial cell
widths is defined as follows. We take Eqs. (3.11c,b,c,d,e’, and f) and
solve these for the accelerated cell-edge scala: fluxes and currents; then
we use theae results in Eys. (3.1le and f) to obtain the accelerated cell-

average quantities Q::l and ;:;l. In other words, we use Eq. (3.11e’)

in the first half of the calculstion and Eq. (3.11) in the second half.

If we follow thir nrocedure, which we define as method B {or, if we use

Eq. (3.11) in both halves, which is method A] we obtain an acceleration

method which accelerates effectively for all cell widths. If we use Eq.
(3.11e') in both halves, we obtain an tcceleration method which only accele-
rates effectively ifor small cell widths. There is a computational simplifi-
cation which occurs however in using Eq. (3.11e’) rather than Eq. (3.1ie) in

the first half of the calculstion, and this simplificetion may be crucial in
multidimeasional proh’ems. In the following, we carry out the algebraic mani-
pulations described above for method B so that it is recast in a computationally

useful form. We point out, »s a detail, that for method B, the symbol 0::1 in
Eqs. (3.11a, 4, and e') should be replaced by some other symbol, such as
03:3/6; however, for brevity, we shall not do this here.
The first step is to continue following the procedure in Sec. Il and sub-
tract Eqs. (3.9) from Eqs. (3.1l1a,b,c,d,e’'. and f). Defining
g1, WA (3.12a)
LI A A (3.12b)
ve get
1 2+ 2+1 - 2+ ey 2 q 1
hk(fl,h 1ok P O - 0g) £ = 0, (4,7 - 0) (3.132)

13



1 2+1

(f

£+1

2+1

3 To,key fo.k-% * Orefix =0 (3.13b)
3 241 A0 SRR 2 21 _ 2+§
(3.13c)

1 2+1 +1 £+1 _
E; (5, kep* fl fz OrBiy =0 (3.134)
2+1 +1 2+1
fox = 2 fﬂ 0,k+y ¥ k-ﬁ) ' (3.13e)
£2+1 1 +1 24-1 2*1 +1
e = 306 ekt E k) 2P (g ey T - £ k=)

- oSk z+1 Czoy ¢ 3.136)

Kk oTk ok ¥

We note that for method A, Eq.

(3.13e) would contsin an extra term on the

right side; this tevm would, in the ensuing manipulations, produce extra

algebraic compl . cations.

Thus wmethod B, the subject of this article, is

algebraically sicpler than method A.

To proceed, we solve Eqs.
terms of the unknown cell-edge quentities and known

to obtain

(3.13¢) and (3.13f) for f‘ and g2 in

gell-lvergse quantities

241 _ 1, 441 2+1

fix 2 Uy ey ? fl.k-ﬁ)
(3.14)

1 +1 £+1 24y
¢ P (O ) 2 (Oqy k)(f‘ o,k+y ~ fo k-4’ ~ %k Cox - Lok
K OTa 6pk se * b Og - 0g)
241 21 ) Ay

o1 _ P %o mey ~ To,k-) * sl by - 6P (g - Loyp)

Ok 60,05y * (B (o= |7
(3.1%)
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Next, we use Eqs. (3.13e) and (3.14) to eliminate f;;l and ff:l from (3.13a
and b). To simplify the notation, we define

D, = 5%- + 25 - i (O 1 ?k)( S Sk) 5| (3.16a)
Tk PpOgk * (Oqyby) (Ogy = Ogy
%k = %Tk ~ %k R (3.16b)
£+5
o+ _ P sk Otk k)(c - Lok
Ry T Epo. + (0. B - o) ° (3.16¢)
sk ¥ (Opyby) (0 - g
pith, 1 +h_
Py = 3 (ogh t)(°o °0k) : (3.16d)
Then we obtain
N RN R e I Dk(f£+l forh )+ R (3.17a)
2 () ke Y =B Yo,k Y ' '
1, 241 (241 1 241, 041
280 ke T T ke’ T 7 G Rk o, ket Tokey) YR (3.18a)

Adding and subtracting these equations, we get

241 _ k £+l +1 £+l
ey ™ 75 Mo, key ~ fg by (£5 o,k+y ¥ fo,k-y) * R Py
(3.19;
Now we take the equation for ff i -y and replace k by k+l to obtain a second
2+1 .
equations for fl kﬂ.; equating these expressions and rearrang.ng, we obtain,
?

finally,

15



Dk+l 241 £+l D

k 2+1 2*1

- B £
By (fo,x+372 = fo,uen) * b, (fo, x4y ~ To k-3
1 2+1 2*1 +1 +1
* 21% ke1Pre1 (o ko372 * To,key) ¥ OriDi( fz 0, k+h fﬁ,k-s)]
= () ,*P) - (R, , -R) , (3.20)

which is a discretized diffusion equation, analogous to Eq. (2.23c).

To complete the iteration scheme, we must obtain expressions for ngl
and C . Subtracting Eq. (3.9e) from Eq. (3.11e), and using Eqs. (3.12a)
and (3.17.), we get
241 z+s RS P 23 241 3 2+i 241
Pox % 2“2 o,k+y ¥ To k-8 T 2 PRty ey T f1 Ry
_ Loty 1 241 241
=0t Py (Opy ki(fo kit fo,k-y) 3PPy (3.21a)
and from Eqs. (3.12b) and (3.15), we obtain
+1 +1 2+§
Cz+1 z+s . 39k°ru(f£ u+5 fz k-3) * O (Opehy - 6 ) (L, LOk

(o

6P gy * Oyby 9y = Ogy)

(3.21b)

The derivation of the acceleration method is now basically complete. First,
we perform the transport sweep of Eqas. (3.2). [This is analogous
to solving Eq (2.23a).] Next we introduce these results into Eqs. (3.5)

to obtain Q *h and C£+5. [This is analogcus to Eq. (2.23b).]) Then we
solve Eqs. (3.16) and (3.20). ([This is analogous to solving Eq. (2.23c).]
Finally, we obtain Qg:l nd CE 1 from Eqs. (3.21). |[These equations are

analogous to Eq. (2.23d).]

16



We have not analytically computed the spectral radius of this method for
infinite medium problems. However, we have done this for method A and have
obtained the upper bound

spr < ¢ (0.300) . (3.22)

Moreover, numerical results show that methods A and B generally require almost
the same number of iterations to obtain any prescribed accuracy, and so we
believe that the bound (3.22) gives a good approximation to the spectral radius
for method B. Thus, the method is unconditionally stable and accelerates
effectively for all size of spatial meshes.

Two subjects remain to be discussed before the acceleration method derived
above can be implemented. First, we must derive boundary conditions fgr Eq.
(6 .20), and second we must descr1be how to select the initial values ¢0k and

Sox-

The subject of boundary conditions for Eq. (3.20) is important. In
calculations, we have observed that with any iwproper choice the acceleration
method becomes unstable for large spatial meshes, but with a correct choice

the method remains unconditionally stable.’ Let us suppose that at the left
bcundayry, xk, vwe have a prescribed incident flux, x o for My >90. If, for

the 2-th iteration, the full angular flux is a linear function of Ho
this point, then we can write

Yoy =¢g‘:2 3 o’“z : (3.23)

Taking the incoming partial cuirrent, we get

2+ 2+
Zw,“-“‘; bap Y08 *F O (3.24)

Hy > ]

We require accelerated flux and current to also satisfy this equation.
Subtracting the two equations and using Eq. (3.12a), we obhtain

[ Z ] 21, % f’l“; . (3.25)

Finally, we use Eq. (3.19) to eliminate f£+

from Eq. (3.25) and obtain
4y,

+1
0,k and 13’3/2. The boundary

condition at the right edge of the system, as well as the treatment of
reflecting and periodic boundary conditions, are all handled analogously.

a (boundary) condition explicitly relating f

17



The determination of initial values for ¢°k and Lgk i less crucial
because the acceleration method is linear and its convergence rate is in-
dependent of the initial choice. Nevertheless, an accurate initial choice
can obviously reduce the number of iterations for any given problem and
thereby reduce the computational effort. Our experience has shown that
the following procedure works very effectively. In Eqs. (3.11), delete

all terms w..h "2+%” superscripts, and in the remaining terms set £ = -1.

This gives six equations which can be collapsed, as above, into a single

(diffusion) equation for ’0 snd auxilliary equations to determine ¢°
0,kt+} Ok

and (ok. Boundary conditions for the diffusion equatioun are determined,
for egample, by setting £+% = 0 in Eq. (3.24). The details are straight-
forward and analogous to the manipulations described above.

IV. NUMERICAL RESULTS

Here we shall consider a model shielding problem to illustrate the statements,
made in the previous section, regarding the estimated spectral radius and
stability of methods A and B. The physical syatem consists of four regions.
From left to right, the first region is 12 cm thick with o, = 3.333,

Oy = 3.3136, and S = 1.0; the second region is 3 cm thick with o, = 3.333,
Og = 3.3136, and 8 = 0.0; tue third region is 6 cm thick with 0. = 1.333,
os = 1.1077, and S = 0.0; the fourth region is 9 cm thick with 8 = 3.333,

(o} 3.3136, and S = 0.0. (Dimensions of all croas sectious are cm~!.).
Tﬁe left boundary is reflecting, the right boundary is vacuum, and we use
the standard S, and S, quadrature sets. The linea - dincont&nuous method,
accelerated by coarse-mesh rebsiance as encoded in ONETRAN, requires in
excess of 440 iterations to converge to a 10™ pointwise error for this
problem, for any spatial mesh. The number of iterations required by methods
A and B to converge to 10™¢ und 10”8 pointwise errors for fine and coarse
seshes are displayed in Table 1. The fine mesh consists of 40, 10, 8, and
30 equaliy-sraced cells in the four regions, while the coarse mesh consists
of 1, 1, 2, and 1 cells in the four regions. We observe that for both
methods, both spatial meshes, and both quadrature sets, the number of
iterations required to deciease the pointwise error from 10-4¢ to 10-8

does not exceed six; this translates into a spectral radius of 0.215, which
is well within the bound given by Eq. (3.22).

V. DISCUSSION

The full implementation of the acceleration method discussed above will
require generalizations in s:veral directions. First, the extension

to anisotropic scattering must be made. This is straightforward, and one
can use the fact that the acceleration method produces accelerated scalar
fluxes and currents to accelerate the zero-th and first angular moments

in an anisotropic scattering problem. (This procedure gives significant
computational savings in problems for which the anisctropic scattering
kernel is sharply peaked in the forward direction.®"7) Second, the inclusion
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of a linearly-varying rather than constant source in each cell must be made;
this also is straightforward.® Third, the extension tc the multigroup

srena must be made, together wiin a proper formulation for the ensuing inner
and outer iteration strategies. This has been accomplished with the diamond
difference scheme3’1? and ve see no conceptual difficulty with the linear
discontinuous scheme.

The exteasiou of this acceleration method to other geometries is another
matter. One can certainly formulate equations such as (3.2) and then compute
angular mcments and derive a system of acceleration equations, such as (3.11),
but it is not yet clear whether it ic always possible, as it is in slab
geometry, to reduce this system to a computationally manageable form. We
plan to consider this difficulty in detail in our future research efforts.
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Method A Method B
Quadrature Set 8‘
Zoav. Criterion 10-4 :l 10-8 10'“ 10-8
e —
Fine Mesh 5 10 5 11 10 5 11
Coarse Mesh 7 12 8 14 10 7 12
Table 1: Number of Iterations Required by
Methods A and B for Convergence
of the Model Shielding Problem
w
A
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\ e ———————
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o 253 50 100

Figure 1:

w (unaccelerated and accelersted)

versus A for ¢ = 1.

21




