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ARSTRACT

The aross features of plasma ecuilibrium and dvnamics in thke
ideal maanetohydrodynamics (MHD) model can be understood in terms
of a dvnamical svstem which clesely resemhles the equations far a

deformable ayroscope.

INTROCUCTION

In the ideal maanetohydrodynamics (MHD) model, electrically
neutral plasma convects like an adiabatic fluid that carries an
embedded maanetic field., Durino convection, induced electrical
currents flow instantaneously to onpose chanae of maanetic flux
throuak each comovina surface. 7The resultant maanetic stresses
alter the convectjve motinn of the rlarcra 1 orposira bendine !

maanetic {ield 1inrs,

ke shall seek motionns in three=dimensional MHI* for which the
vnlacity varies lincarly in space. Far such flows, time
derendence factorizes oat from all of the fluid variables in the
laaranar representation, The dvnamical zvstem which then resultes
from Hamilton's principle c¢loselv resembies the eauations Yor a

deformahle avroscone,



Reduction to gqyroscopic motion of fluid flow with linear
velocity profiles was noted already in 1879 hv Greenhill . .r
circulation of a fluic of constant density within an ellipsoidal
cavity. PRefore Greenhill, fluid tlows with linear profiles bhaAd
also been studied Ly Dirichlet, Dedekind, and Riemann, in
connection with ellipsoidal fiqures of fluid equilibrium. The
history and development of the latter topic is given with comple:te
references by Chandrasekhar (1969). Rotatina ellipsoidal fluid
solutions are also treated in the classical texts on fluid
mechanics by Basset (1RB8) and lLamh (1932).

More recentlv Parker (1987) bhas studird the expansion of «a
maanetic gas cloud which underaqoes ‘omoaereous dilation with
linear velocity profiles, bhut which does not rotate or circulate,
Likewise, Dvson (1968) has studied isothermal expansion and
circulation of an ideal fluid whose velocitv profile is linecar and
whose density profile is of Gaussian shape. Before Dyson,
compressihle fluid flows with linear profiles had alsno heen notedl
by Ovsjannikov (1956). Suhsequently Anisimoy and lysikov (1070)
have found specjal solutions to DNyson's eauatiors, that ipvalue

eliiptic inteqrals for y = /3 ideal aqas.

In the next section we explain haw time dependence factoriee:
out for MHD fluid flows with Tipear profiles, in the Tavrann
representation. We then derive the eaquations of motion fr-owr
Ramilton's principle, and analyz« the resultsnt dvnamical svetoes

for the time dependence of the flow.

The results provide an analonay hetween circulation ot
maqnetic fluid and anqular momentun of a avroscone, In thin«
analoqy, magnetic stresses produce elastic=like forces within tha.
fluid which tend to restore hoth the circulatorv motion and
expanaion of the fluid. In fact the ecauations for MHAD with linecou



velocitv profiles separate into two qyroscope eijuations which in
general are coupled co each other by bsth maaqnetic stresses and
deformations of shape. In the planar case with fixed elliptical
boundary the equations reduce to the equation for a simple

pendulum.

2. THE MHD EQUATIONS

In the Lagranaqe representa'ion the particle paths are

fundamental objects, and partial derivatives of the particle paths
are hasic dependent variabhles. The paths of fluid particles
throuah fixed Fulerian space are aiven by vector functions

x(t,x%) with initial conditions x(0,x%) = x®, the laqranae
rrordinate. The partial derivatives of the particle paths

x(t,x9) prodvece the kinematival variakles, velacity v and

displacement aqradierts I's witt components
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for variations of the particle paths 4x), that vanish on the
boundaries of the Laqgranqge domain of inteqration. The added
notation in FKamilton's prirciple (3) defines p© = n(orio) as
the initial density distribution, and e(n,s) as the specific
internal eneraqy of the fluid whi~h is a function of density, r,

and specific entrany, s.

The variations of particle paths must he performed suhiect to

the constraints of the following subsidiary conditions for MHD

fﬂ;(Tr' i )’n T, (’"')‘)’o.) (1)
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These subsidiary conditions impose resnectively conservation o
mass, Faraday's Taw of maanetic induction, and the cauations of
state for adiabatic convection with the prescribed specific
inteirnal encray. In Faradav's law and in the mntion ecanation n-u.
uses Ampere's law, curl R = 4nd/c, and Ohr's lLaw for the cane !
infinite electrical conductivity, E 4 v x /e = 0, an order to
eliminate current density, J, and electric field, I, in favar of

maagnetic field, B, and particle velocity, V.

Faraday's Law implies preservation of the diveraence easat o
b4 p

Aiv R = 0, which thus may be reaarded ac an initial condition,

3. FACTORIZATION ANSATYZ
By inspection of the suisidiary condition: Tor MID one n o
that time dependence factorizes in all of the variahles, prowvi-e!

the displacement aqradient is a function of time onlvy,



Foo = F 1D (8)

Once factorizea, ideal MHD motion reduces to a dynamical system

for the nine components of Fiq(t). Hamilton's principle then
acquires the matrix form

\
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with variations ‘Fii(t) and constants To, "o, €® defined by

intearals over the initial distributions of matter and maanctic
firlds,
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YiaftY vroevinees the folloawina motion eqnation whien one choonen

e pedlytrarie adiabat o 0o 0 /0T,
) O)
. e R ) E o g7
( f-T . — fe ¢ ;FH . “;:_F (11)
,4r1[) el b Jet F

. ] .
In the coase that maanet jeo streass tensor !<L 1 1n abeent and the

initial moment of dipertia in o unity, 19 = 'L, one recover:

Pycon's eauations for the seinninag aas clond,



4. MATHEMATICAL RFEMARKS

Before discussion of the motion of the fluid in detail, let

us remark briefly on a mathematical aspect of the factorization
Ansatz. The particle trajectories x(t,x9) arise from a smooth

one-to-one mapping q, that depends on time.

q ‘Kax N o> ﬂ? X Ltllf\ = ?}tfxo) (12

- —

A smooth, one-to-one mabpinag whose inverse is also smooth is
called a dijfeormorphism, and such diffeomorphisms form a I

aroup under functional compnsition.

The fluid velocity alona each particle path is related to tlo.

curve of mappinas a, in the diffeomorphism qroup hy

. N

H { . - - N o] _ [ 7 o )
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or eauivalently
R -\
Fit, ¥y = 31"054(‘/\) (149

Thus, the fluid velocity field along the particle tratectaries i
determined from the lLie alaebra of voctor fields acsoviate:] witl,

the Aif feomonrphism aroup,

Likewise, the displacement aradient 1o jidentificed with
dqt

is a function of onlv time, thr particle paths bhecome linear

. qzl(i), the .Jacobian of the map q,. When this Jacobian

functions of the initial coordinates



where the time dependent matrix F;;(t) represents a general

linear transformation of Cartesian coordinates, i.e., F(t) ¢
GL(3,R). Thus, the diffeomorphism group for fluids specializes to
the Lie group GL(3,R) when the .Jlacobian of the evulution map
depends only on time.

5. DYNAMICAL DESCRIPTION IN THRFF DIMFNSIONS

After the factorization Ansatz, the velocity alonqaq particle

paths is aiven by

\ i
ot gy = !f R 4 S (1F)
l [ - — - .} l
or, in terms of laaranar coordinates,
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Phen thois time dependence oy vl by, e sl astituted into
Mamilton'» prineiple for MDD, there recults tine dynamical syatoem
(11) tr the linear transformation:n Fii("' such
trannformations stroetech the initial confiauration of particles,
and rotate the particle econfiaquration relative to both I'mlerian
and laaranage coordinate framen,  Aecordinaly the divplacement

aradient Fii(t) may be decomponed into a matrix product



F= R, LR, (20)

where R; and R, are orthnannal and D is diaaonal. Fach matrix

depends upon time, and the decomposition F = R DR. turns out tn
separate the motion into Fulerian rotations (k,), dilations (),
and Laqranage rotations (R»), the last of which represent
circulatory motions of the fluid.

Upon suhstitution of the triple product F(t) = R:DR. into thc
dynamical system (11) one ohtains the followina separated
equations

J = 0O
K‘ -— ___‘— ‘ v o FTF
i . - il
deti - ° - - (2
Ky 2
J.o= -, \ (
D Su, YD)
where the skew-symmetric matrices J,¥ reiresent fluaid ananlar
momentum and circulation resnectively
' . . 1 s ;- )
J = d ' - v, = FF - b 1'1

. . : -

(2o
K= "vik-vk O R F = #'F F7F
The bracket in the K cauation is the matrix commutator, aml th.
potential function U'(D) in the ecauation for the dilation matprix |
is qiven hy

\ -~ 2

VY = o (el Lrw,N) + E ldedF ) 4 .l‘iff .

with dynamical quantities w;, w:., I, N, S* acfir~d hy



= . 2 2 ~ a,
N = R_JKF\.J_ = I a)z+u71b - 2w, b
~ - ro .-i
— = K: ‘) Kl
The auantities .,, .+ are anaular velocitirs of rotation an-
circulation respectively. The auantities I.,N renresent the
anqular momentum and circulation expressed in fixed, Fulerian
coordinates. Finally S§* = P;SQP:1 is the maanetic stress tensor
referred to the fixed Fulerian frame.

The eaquations of mntion for .J,K, and I first of all exrress
conservation of fluid anaular momentum, 1. The circulation K is
also conserved provided the maanctic strosa tensor S;ﬁ can be
simultan~ously diaaonalized with the initial mass distributinn
1°. However when the commutator [F”,FTF} does no* vanish, the
circulation experiences a restorina toroue due to maanetic
ctresses which are developed am the lines of maanetic field wind
arenn:? themeeluver dyrina Flaid circalatine,  Vinally the 1aet
cauation for the Ailation matrix I' expresces the couplina botween
expansion of the flnid and its circulation and rotation. 1In the
eypransinn potential (P) the centrifuaal, thermodvynamical, and
mraanetic forces each are represented in conservative form, so

eneractic trade of f= amonna themr are clear,
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6. COMPARISON WITH TH_F_ GYROSCOPFE FQUATIONS
The reduced equations for J, K, and D express the fluid

motion in the co-movina lLaaranae frame. When transferred to the

fixed Eulerian frame the resultant eaquations for I. = Ry! JP, and

N = R,! KR, closely resemble the ayroscope eaduations expressed in
body coordinates.

In body coordinates within a ayroscope that spins with
anqular velccity « in a uniform aravitational field (a = (0,0,-1)

in fixe® coordinates) the eauations of mntion for anaular monentum

M = I. take the matrix form
] ‘( - -
Mo+ w, M = 1’3,(‘\_"-
(2%)
L} - _{ -
\4* \J))%_) - ~

where C corresponds to the center-of-mass vector in the bodv, and
the well~known correspondence, e.q., Ci+ = ©14kCk between
0(3) and R’ has been used.

In order to compare with the avroscope eauations (25) onc
expresses the factorized eauations for 1, in terme of thkeir

fixed-frame representatives L,N as

l_._ 4 (_L,u)l] —~ D

N + [N.,u)z_! = djl'v L"*,hlj (26)
i“ + [:,/“’2‘1 = O
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Thus when u; = 0 = I, for MHD fluid circulations with fixed shape
and Fuierian orientation, the equation for fluid circulation in
the fixed Fulerian frame N, has an analog with the gyroscope
equation for anagular momentum in the moving frame M, under the

following identifications

M = N

ta) L "‘(J\)z

: ¥ (27)

R = z1°2/41 D
The analog is not exact thouah, because §5*, P are svmmetric

matrices while a,P are skew-symmetric.

Thus, the equations for MHD motion with linear velocity
profiles separate into two gyroscope equations which are coupled
to each other bv magnetic stresses and bv delformations of shape.
wWhen the magnetic and material distributions can be simultaneously
Aiaaonalized, the ananlar motion becomes toraue-free motion on
0(3) x 0(3), which can be further combined into geolesic motion cn
0(4) hy standcrd methods, sec Holm (1981). In that case for

motions with fixed shape the equations are completely integrable.

Te VIENAM FIOK:  PENDULUM FXAVPLE
When constrained to rotate in a sinale plane the ayroscone
rcduces to a simple pendulum. Likewisc the MHD circulation
eauation for N in fixed coordinates reduces to the eauation for a
simple pendulum in the case of plarar MHD flow with a fixed

elliptical houndary.

Consider planar circulation of a MHD fluid within a fixed
ellipse whose principal axes (d4:,d,) are aliqned with the
coordinate axes of the (x.,x;) plane. Becauser of the problem

statement w; = N = h, and the dayvnamical equation that remains is
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N + [N,wz‘l = dj}b[g' ‘blj (28

D, S* are given by

where the quantities N, wj,

. a) |
N = LPw,+w, Y - el dzs cl;) ./__, O)

. -1 - o) l\
w1= 1\1?\1&{) - (‘P(t)(‘lo
d, o \ (29)
L = ( o di
( S, o L
ST s Ralesad | o oy) Ralgen)
with a the anqle of rotation wheraby S® ic diagonalized,
(tof,o' S'lnl()
Rl(r} = e reow
(30)
- - »° «\? Lo\
tanw = 28,25 /(B V- (69) ]
Upon substitution o! these definitions into the circulation
equation, the pendulum equation emerqges
T = Acalqpaw) ()
with natural frequency-squared A qiven hy
a 2
J'L_a:i :_D -23
= (1)

AT i3 d A,

Thus, the gyroscopic analoa for MHD provides an
interpretation of planar circuvlation in terms of pendulum motion.

The particle trajectories for fluid circulation are defined hv



=13~

.= |1 R_‘(q({\‘]

] (33)
L I; i
from which it follows that div v = div i = N. For this flow the
densityv of the fluid is constant, and the maanetic field varies
accordina to
k . - ¢
|\) \ (Azo\qumm/t.)
5 - 0 . LIS 14
k'd.' '!_‘(\-3 © cl'.'.’ -dmg e - !: (
Thus the coordinates of the fluid particles and the maanetic fielAd
conrdirates underan pendulum motion within *le ellinsge,
At the boundary of the eilipre
c '/ rTxy 4 = 0O (1c)

the nrmal

components of both velocity and mannetic field vaniceh,
. CL . o 9, .
proviaded the initial wraanetic field Ti it linearlv related to

lLaitranae coordiritens by

l‘E'l/;: ‘”‘I- o)!/l\ i)

where b i A conctant of

Proportionality,
impermeability at the wall

hoth the

Thus the condition nf

satiafied far this =solution,
velocity and maanetic field are

is and
diveraenceles::,
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