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GYFM)SCOPIC ANALOG FOR MAGNFXWIYl)RODYNAMICS

by

Darryl D. Helm

AFWRACT

The: nross feat.uros of plasma er!uilihr iurn a,”,d dvnamirq in tk,r”

ideal maanetohydrodynamics (MHD) model can be understood in tt?rms

of a dvnamical svstem which clcscly resembles t.ho onuat.ions for a

doformahle ayroscope.

INTR0121!CTIOP!.—.. -—

In the ideal maanetohyrlrodynamics (Yl!l~)model, elect.ricallv

nnutra] plasma convects ]iko an adiabatic fluid that carries an

ernhedderl maqnctic field. IMrino convection, induced electrical

rurrcnts flow instant~neousl~’ triODPOSO rhanoe of mannet ic flux

t}rounh oarh cornnvinn s~lrfac~. The resultant maanetic stresqns

.qItflrt!II (-f>flvf~r.t j vO mntinn Of t)o rl,lrr{lt.’ o~rmsirn h~ndjnf. Sf

mannctic fif’ld Jinos.
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Reduction to qyroscopic motion of fluid flow with linear

velocity profiles wa9 noted already in lf179 tw Creenhill . )r

circulation of a fluid of constant density within an ellipsoidal

cavity. l?efore Greenhill, fluid tlows with linear profiles had

also been studied Ly I)irichlet, Ddekind, and Riemann, in

connection with ellipsoidal fiqures of fluid equilibrium. The

history and development of the latter topic is qiven with compll:t~

references by Chandrasekhar (lq6q). Rotatinq ellipsoidal fluid

solutions are also treated in the classical texts on fluid

mechanics bv Basset (lftRfl)and I,amh (1932).

More recent.)v Parker (]~~7) ba~ stlldicft thn oxpansinn nf (I

mannetic qas cloud which underqoes !Iomoaereous dilation with

linear velocity profiles, but which does not rntat.+’or cirr(]l,~tr’.

Likewise, ~soIl (lq6fl) has studied isothermal ~xpansinn and

circulation of an ideal fl~]id whose v~locitv prnfile is linf-’dranfl

whose density profile is of Caussian shape. Reforp 13yson,

cornpressihle fluid flows with linear Drofilo’+ had also ho~n nntl’~!

by Ovsiannikov (1956). Suhsoquently Anisimnv and I,vriknv (1~7(’)

have found s~ecjal solutions to lWson’s erlllatiors, that inf~nlfrf,

eliiptic inteqrals for y = ‘)/3 ideal aas.
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velocity profiles separate into two gyroscope eJuations which in

qeneral are coupled io

deformations of shape.

boundary the equations

pendulum.

each other by hcth maqnetic stresses and

In the planar case with fixed elliptical

reduce tO the equation for a simple

2. THE MHP EQ[lATIONS___ .—— .--—-—— —.

In the I,aqrannc re~resenta~..ion the particle paths at~

fundamental ohiects, and partial derivatives of th~ particle paths

are basic dependent variables. The paths of fluid part.iclos

thrnu-rh fixr~ Fl]l~rian snar~ arr’ niv~n bl” vcct~~r functions

x(t,x”) with initial conditions x(O,xO)—— = x“, the T,aqranno..- —
f-nordinate . The partial d~rivativcs of tht= par!.iclo paths

x ft,xo) prl-wlilw’ tho klnern,qtjcal variab]os, Velr,city V and——
dicplarcrn~rit qradiorts [j witl cnml)nn~nts

(1)



-4-

for variations of the particle paths Axk that vanish on the

boundaries of the Laqranqe domain of ii~teqration. The added

notation in Hamilton’s principle (3) defines PO = 13(0,xo) as

the initial density distribution, and e(n,s) as the specific

internal enerqy of the fluid whinh is a function of density, (,,

and specific entrcpy, s.

The variations of particle paths munt be performed sut;iect. tn

the constraints of the followinq suhsidiarv condition:; fnr K’14D

J’”‘- $“”’/?O’) (,1)

(r)

(f)

(7)
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F;; = F;j k) (8)

Once facto rizecj, ideal MHll motion reduces to a dynamical system

for the nine components of F.~i(t). Hamilton’s principle then

acquires the matrix form

wit!l vziriatinns 0
‘Fii(t) and constants T , ‘!o, !?Odefined hv

int(,~lralr ovr~r t}:o initial distrihl]tionc of matt.rr and rr,annrt-ir

fields,

(In)

~1, l~l:’trflli(. ;Ifii,l!,ltII “ , II /, ‘
(1 ()’

(111
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4. MATHEMATICAL REMARKS—— ——.——

Before discussion of the motion of the fluifi in detail, let

us remark briefly on a mathematical aspect of the factorization

Ansatz. The particle trajectories x(t,x”) arise from a smooth—.

one-to-one mappinq qt that depends on time.

(]-))

A smooth, one-to-one mappi~q whose inverse it;also smooth is

callf:fia dii feormorP5ism, and such diffcomorphis~s fnrr a l,i~’

aroup under functional composition.

The fluid velocitv alonn @act-lparticle path is rcldtr’d t~j t.1:~.

cdrve of mappin(ls nt in thr? diffr~morphisrn qroup hv

(1?)

(1.1)

,:,
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where the time dependent matrix Fji(t) represents a qeneral

linear transformation of Cartesian coordinates, i.e., F(t) c

GL(3,R). Thus, the diffeomorphism qroup for fluids specializes to

the Lie qroup GL(3,R) when the tlacohian of the evblution map

depends only on time.

5. DYNAMICAL r)l?SCF?IPTTONIN THR!?F PIVFNSInNS.-.-.-—---—.-—— ———-—- .--...—--—- -—— ——
Aft~r the factorization Ansatz, the vclocitv alonq particle

paths is aivcn hv

‘1+- ~‘ril+,/)=&:’ +):./’; ,,
4’ #

//;1+, /-)= i,: (t) Pop
,- $

E; ,, = FJt’ E“; $“
&

(17)

f](i)



-Fl-

where R1 and F?L,are orth(>qonal and P is diaaonal . Fach matrix

depends upon time, and the decomposition F = RI DP,~ turns out to

separate the motion into Fulerian rotations (F! ), dilations (P),

and Laqranae rotations (R:)), the last of which represent

circulator motions of the fluid.

Upon substitution of the trinle product F(t) = R:Dn~ into t.hc

(?11

where the skew-symmetric rnatriccs .1,K rol ron(~nt fillif!i]rlrlllllir

momentum and circulation rcssl~~rtivrlv

(;1:),

The bracket in thr k of]uarinn is rt)c matrix commlltator, ,Irl,!t!,II

potential funct inn [’(n) in the etl(latic)nf(Jl-tl~(ldilntinrl w,ltfix I

is qivon hv

with dynamical quantities WI , f ., N, S* cwf ir-d hy1,1#,,
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(24)

ios of rotat inn anti



-i(3-

6. CCWPARISON WITH ‘J’HFGYROSCOPE F,(WATIONS——.._——--- __

The reduced equations for J, K, and D express the fluid

motion in the co-movina Laaranae fran,e. ~lhen tran~ferre~~ to the

fixed Eulerian frame the resultant eauations for 1,= R~l (JP: and

N = Rjl KR,) closely resemble the avroscope eauations expressed in

body coordinates.

In body coordinates within a qyroscope that spins with

anqular velccity :.Iin a llilifC)~gravitational field (q = (o,cj,-n)

in fixe~ coor!+inat~s) the enuatinns of motion for anou]ar rnnr?cntl]m

M 1,= take the matrix form

where C corresponds to the center-of-mass vector in the hodv, and

the well-known correspondence, e.q., Cii = ilk~k bF’t.weCn

0(3) and R“’ has been used.

In order to compare with the avrnscopc eaudtions (25) on~)

expresses t~,t?factorized eollatinns for ,l,K in tormq of t~oir

fixerl-fram~! representatives L,N as
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Thus when ml = fl= b, for MHD fluid circulations with fixed shape

and Euier ian orientation, the equation for fluid circulation in

the fixed I?ulerian frame N, has an analoq with the qyroscope

equation fo~ an17ular nlomenturn in the movinq frame M, under the

followinq identifications

/’-q<--Al

(27)

The analr)q is not exact thouqh, becau~e S*, P:’are symmetric

matrices while alP are skew-symmetric.

Thus, the equations for VHP motion with linear velocity

profiles sep.,rate into two qyroscope actuations which are coupled

to each other by maqnetic stresses and by deformations of shape.

Wh~n the maqnetic and material (iistriblitions can be simultaneously

rliannnalizerl, the annlllar motion hecomcs t.oraue-free motion on

0(?) x fI(3), wtich can be further combined into qeolesic motion rn

()(4) by standc’rd methods, sef” Helm (l~f!l). Tn that czse for

motions with fixed shap~ the equations are completely inteqrahlc.

7. I}l,rl!:rl,l.’I’],ov::PFNl~[ll,llPl?XA~P[,F— -- -.-—— — -. .-—— --—--.— .—— --
h’ben constrained to rot.at~ in a sinnle

r(’duc(?s to a simple pcndulurn, Lik~wisc

oql]ati~n for N in fixed coordinat~.~ rodl

simplo pendulum in the cane of pla~ar Ml

~~lliptical houndarva

plane the nyroscope

the MHD circulation

ces to the eauation for i-i

IT f’nw with a fixed

Consider planar circulation of a MITD fluid within a fixed

ell]pse whose principal ax~s (d:,d{) are aliqncd with the

coordinate axes of thf’ (x:,x{) piano. Rccausn of the problem

stat.cment f,~l=Q=b, and tho civnamical equation that remains is
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where the quantities N, U2 , D, S* are qiven by

with a the angle of rotation whereby

/0}

I

2 f+td

So is diaqona lized,

(2P)

Upon substitution of these definitions into the circulation

equation, the pendulum equation emerqes

with natural frequency-squared A qiven by

(71)

Thus, the qyroscopic analoq for PH~ prr)vi(les an

interpretation of planar circulation in t~rms of pendulum motinn.

The particle trajectories for fluid circulation are defined hv
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(33)

~rom which it follows that div v = div ~ = fl. For this flow the

densitv of the fluid is constant, and the maanetic fi~ld varies

accordinn t~
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