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ABSTRACT

It is shown that in an imploding sphericel shell the surface

instabilities are of two different types. The first, which occurs at the

outer surface, 18 the Rayleigh-Taylor instability. The second instability

occurs at the inner surface. This latter instability is not as disruptive as

R-T modes, but 1t has three basic properties which differ considerably from
those of the R-T instability: (1) it is oscillatory at early times; (2) it
grows faster 1in the long wavelength modes; (3) it depends on the equation of

state. It is further shown that this new instability is driven by amplified
sound waves in the shell.

PACS numbers: 47.20.+m, 52.35.Dm, 68.10-m.
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BASIC EQUATIOUNS

We consider an imploding spherical shell that obeys the followirg ideal fluid

equations:

dv
p(z5) = -% , (1
%% + Ve(py} = 0, (2)
d Y) -
Eg(p/p )=0 (3)

A self-consistent description of the shell motion can be obtained by
intiroducing Sedov’s hypothesis8 of self-similar motion, which in the

Lagrangian representation 1s simply given as

R(r,,t) = r, £(t) . (4)

p(rg,t) = po(ry) £73, P(ry,t) = po(r,) £73Y . (5)
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THE UNPERTURBED MOTION

Using the time-depencent pressure in Eq. (1), we obtain the unperturbed

motion

f)e3772(e) = - L 2(p¥(n) = -

u -1, (6)
Pt

L
2
te

The time--dependent part of Eq. (6) ylelds on integration

172
)

fe G- (7)
where the 1initial wvalucs f(0) w 1 and %(0) * 0 have been used. Here
a=3(y-1). When vy = 5/3, Eq. (7) can be integrated once again to give

£2 - | - t2 . (8)
where 0< t «l.

Po(r) = po((r2 = £2)/(x2 - )}y = 1) | (9)

where r_ and r_ are the outer and inner raudii of the shell;



Po(r) = b ((r2 - r2)/(x2 - )Y/ (v = 1) (10)

where P, 18 a constant pressure at r = r,.
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STABILITY ANALYSIS
When a perturbation £ is introduced, the position vector of a fluid element in
Lagrangian variables becomes R + . A straightforward, though somewhat

tedious, calculation’ !l ghows that ¢ obeys the equation

fC3y-1) ¢ . (____.___.(Y; D2 t2)% & (v - 1)o £ + £x

E

+ (0§ , (11)

where o = 2-5 and w = VUx§ .

We now limit the discussion to the case of 1incompressible, 1irrotational
perturbations for which the surface instabilities occur. That is, we choose

the petturbations such that Vef = 0 and Vxf{ = 0. This 1implies that § = Vyx

with sz = 0. 1In spherical coordinates

X(r,8,) = I[ Qf(o)r? + ey + D]y, (o,0) . (12)

To obtain Qi(t), we expand the perturbations in spherical harmonics!!

5 -n;[ Efm(rnt)él + E%m(r)t);z + E%m(r)t);3] ] (13)

a1= er¥pm » ;2' T Nom » ;3' oxVYym - (14)



TIME-DEPENDENT EQUATION

The Classical Rayleigh-Taylor Ingtability:

g(t) = R(t) = r £(t) = - ¢ £737+2 | (16)
t. :n Eq. (15) can be written as

Si 3 1,718(t)1 A2 -
Q% (t) + [7¢(2+7)]—R(—t)—Q1 (t) =0, (17)

Notice that Qz_(t) modes localized at the inner surface are oscillatory in the
static limit, whereas Qz+(t) modes are unstable.

The growth rate of the unstable mode is given by

Y- g, (=) = 13olkg » (18)
(e]

This 1s the growth rate of the classical Rayleigh-Taylor instability for

static media.



SOLUTIONS FOR AN ARBITRARY TIME

Q%(t) - Cl;i(l)Y)t) - Cz 61(1)Y

t) . (19)
Here
Futtner = anlfe gt b - ) o)
and
6,(1,7,:) - (1 - f“")“2 2Fl[%+ H%:*, % .2;;;5, %; 1 - £79], (21)
where dy = [80{% F(L+ -;—)} - (a+ 2)2]“2.
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As in Ref. 10, we obtain the stability criteria by evaluating the

asymptotic limits:

2l ’
Limji( Y>t) =a£. gla=2+1dy)/2 4 o, <. (22)

t-+1 fzts

and
%t“"“) L . (a-2+1d,)/2
]E!;T —f—(t)_— = bi f * + Ce Co (23)
where
-1id -1d
1 t 3 t
M=) (——) r=)r(——)
al 2” " 2a bt a1 2. 2 . (24)
* 2-1d 24+1d, ~ * 2-1d, 2+1id,
F(l i)r._l_ - ') P(z + ‘)r(z - -
G " 7a G T ha 4 " bda VG T ha
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SUMMARY OF THE ANALYSIS

1) 2 = 0 mode.

For y € 5/3, the limits of \;;+/f and 6%5+/f are finite.

If y < 5/3, \;z_ /f and é%i/f diverge asymptotically, which signals

instability.

2) The Qf modes with 2 > 1.
»
In the asymptotic 1limit, both \§z+ /f and ﬁ7+ /f diverge as £ as £ + 0,

where x is real and negative.

3) The zsymptctic limits of both \jyl/f and ‘%i/f of Qf diverge for

£ »1 and v v 5/3.
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Fig. 1. The absolute values of ni(y) given in Eq. (20) are plotted against the

mode number £ = ] to 50.
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Fig. 2. The exponent of the divergence factor « is plotted against the mode

number.
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Fig. 3. The absolute values of lf(Y) for y « 4/3, 5/3, and 2 are plotted

against the mode number £ = ] to 50.
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Fig. 4. The sbsolute values of a(y,u;) for y ~ 4/3, 5/3, and 2 are plott.d

against the mode number L. Here y, is the smallest ef{genvalue for a

given ¢ withr, = 7.0 cm and r. = 5.0 cm.



