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NONLINEAR HYDRODYNAMICS

We now come to a very sophisticated method for calculating the
stability and pulsations »o2f stars which make contact with actual
observations of the stellar behavior. Hydrodynamic calculaticns are
very simple in principle. Conservation of mass can be accounted for
by having mass shelle that are fixed with their mass for all time.
Motions of these shells can be calculated by taking the difference
between the external ‘orce ouf gravity and that from the local pressure
gradient. The conservation of energy can be coupled to this momentum
conservatios equation to give the current temperatures, densities,
pressures, and cpacities at the shell centers, as well as the positions,
velocities, and accelerations of the mass shell interfaces. Energy flow
across these interfaces can be calculated from the current conditions,
and this energy is partitioned between internal energy and the work done
on or by the mass shell. We will discuss here only the purely radial
case for hydrodynamics becanse it is very useful for stellar pulsation
studies.

The one=-dimensional initial valne compnter programs for calenlating
stellar pnlsations are {few in nmmber.  Christy (1964) published the
first description of & stellar hydrodynamics code. Tt was based on
techniymes developed at los Alamos in carlier days, We also used the
same  gencral methods and pnblished a desceription in a paper by Cox,
Brownlee, and Kilers (1966). There have bheen several programs since,
ad their deseriptions are given by Stobie (1969), DBaker and von
Sengbusch  (196Y), Bemdt and Davig (1971), Stellingwerf (1974), Wood
(1974), Spmagengerg (1975), Karep (1975), Castor, Davis, aad Davison
(I977), aml Vennry and Stothers (1978).

All these program: were written tor stndiecs of Ceopheids aml RR
Lyrae variables except for the Woorll and Karp programs.  The Woorll program
has been nsed anly for calenlatioms of Mira variables, aml the Karp
program is actnally the nova cortle developed by Kntter and Sparks (1972).
Mira pnlsations have alse been stndied with the Christy code (Keeley
1970) amd onr Los Alamns DYNSTAR code,  The Christy coide way arther
nused by Trimble (1972) for helime star pmlsations, aml the Stelllngwerd
cule was nnedl some for & Sentt pnlsation calenlations, Hoth the

Stebbingwert amd the Lo Alimos cawldes hovee Leatnres that can seck



strictly periodic solutions by a relaxation technique, but this valuable
procedure for Cepheids will not be discussed here because it does not
work for the very slowly decaying pulsations of the upper main sequence
stars.

Appenzeller (1970), Ziebarth (1970), and Talbot (1971) have written
computer codes for the calculation of pulsations of very massive upper
main sequence stars, Later Papaloizou (1973), using essentially the
Christy tecliniques, has calculated the hydrodynamics of stars masses
between 70 and 210 solar masses. These calculations were not very
detailed and were not very definitive in their predictions of possible
pulsationally induced mass loss. Nowadays the facts seem to be that
stellar winds produce so much mass loss that even the lowest mass
considered by these authors, sixty solar masses, have very short lives.
It is still possible, however, that pulsation is responsible for the
very iigh mass loss rates seen in stars such as the Wolf-Rayet stars.

The Appenzeller, Kutter-Sparks, Gtellingwerf, Castor, and our
DYNSTAR codes are completely implicit. That means that the equations
are Lime centered at least halfway across the time step, and thereforce
the solntion necessarily involves iterations for quantities at c(he
advanced time. The Courant time step limit (see Richtmyer and Morton
1967) is not necessary for these cades, and it the accuracy allows a
larger time step, it can be used. The encrgy cquation is solved
implicitly, however, in all the above described mmmerical progrims.

The enrrent version of the DYNSTAR program will bhe desceribed here.
As one might expect, all these above=mentioned programs have evalverld or
died, and the published descriptions are generally not acenrate. The
cnrrent DYNSTAR program, made completely implicit in 1975 is actnally a
version  of  an mmpublished fortran colde written by Garl Hansen  at
Boutder, based on onr pnblished concepts, sl some of his, amd finally
shipped back to lLos Altamos!

The starting comfipgnration aof the lLagranpian mass shells is that
given by the envelupe model cwle deseribed in the fifth lectmre.  The
figure there gives the zone mmbeering, bnt that was ta aceord with the
Castine (IW71) syitem for the linear pnliation cigensolntiond. For
DYNSTAR wer velabel the zimne interfaces with o mmber ane Tess than given
theee,  Thix means that the onter mant shell center is mamed 1R and s

it the emter (snriace) interface. Thee ventral ball rading needsd nn



number because it remains fixed in space for all time and produces a
fixed luminosity.

Figure 1 gives the two basic equations for DYNSTAR. These are the
momentum and the energy equations., The equation for mass conservation
in our Lagrangian system is only an auxiliary one which gives the
specific volume of each mass zone at the beginning of each timestep and
during the implicit method iterations for the end of the timestep. The
hydrodynamic solution is really just a series of models spaced a
timestep apart, where this timestep is as large as possible to retain
accuracy of the solution.

Values of all the variables are known at time n. For the needed
values at the next time n+l, there is an 2xtrapolation of the quantities
and then a set of a few iterations to improve these values so that the
equations are accurately satisfied, Because we have what is called a
completely implicit method, there is no mathematical (Courant) stability
limitacion on the timestep as there is when the hydrodynamic behavior is

calculated explicitly,

1-1) LAGRANGIAN NIYDRODYNAMICS~TWO VARIABLES
MASS , MOMENTUM, AND ENERGY CONSERVATION

At = t"+] - tn; interface 1; mass zone 1; 1 <1 < IR
M = ;¥+5 + 2r)//6t - 28 r']”"/(m)2 =0
ko= Aot o A"t ot ptt o g

] I 1 1 N

Fignre 1. The baste egnations af mass, momentim, and epergy conservias
tion are inlegrated over timesteps for ali the Lhagrangiam
WISE ZONeS,
one so=caltled momentnm equation ix really an expression relating
the Intesface pnsitions, thetr velosities md aceerlerations,  The basic
quantity s the aceelerntion which is time ¢ 'sntered hy averaging the
1ressnre gradient aml the lorvee dne to the gravity of the internal mass
over the timestep,  The velocity at time ntl is that at time n pluy the

areelerntion at the mean time times the timestep.,  Likewine, the



difference in the interface radius between time n+l and time n, that is,
6r centered at time untdy, is the velocity centered at time ntk times
the timestep, This velocity at the midtime is taken as the mean of its
value at time n and n+l. Combining all these things results in what we
call the momentum equation, and it is iterated together with all the
provisional quantities such as temperature, specific volume, pressure,
etc at time n+l until the equation equals zero.

Our energy equation is the first law of thermodynamics. Energy
flowing into or out of the mass shell by radiation, conduction, or
convection plus the energy introduced into the mass shell by nuclear
burning is partitioned between internal energy and work according to
this equation. Time centering of all these terms means that the
variables must be guessed and iteratively imprcved for time n+l, just as
for the momentuvm equation. Convergence for both of the basic equations
is reached wnen the equations attain values small compared to their
large:t terms.,

The  mamentum  eqnation  that  describes the zone interface
aceelerition ig given in Figure 2. Fraley (1968) has ehown that to
conserve  encrgy  coxactly throngh the entire envelope moildel, it s
necessary to define the mean sipumre of the interface radins in the way
g'ven which involves both times noand n+l. Also it is necessary to nse
tae  accelervatiom e te gravity at g mean radiar  as  given again
involving vhe radins at bath ends of the timesvep. The fignre also snows
some  detail  abont the nanadiabatic term of  the  energy eqnation,
Lominosity Ly radiation and comlnetion is ecalentated with the normal
Rosseloml dhiffnsion cqmation where the K oinchudes both radiative and
condnetive contrilmtions.

These two eguationy of onr system invalve many variables, aml we
Chusie two of them (Fyr) for each mass #aell as onr mmknowns. Al other
variables,  snch  as  the density,  the poessore,  the opacity, the
smminosity, cte. can be calenlated with the shell mauss and these two
depemdent varialihers hnown, Iterations inveolve {(he correcetjons to I ol
rfor each shell so that convergence, that s, consistenry ol tie two
vasie egquat i, fs obtained over the tinestegr,

Note that there are ammy other possible procednres of petting Che
hydreelyiimic solntions soch as nsing more cognat ioms ol more variables,

he Stellinpwert method has three eqmationy (veboeit aceeleration, ol



ID I AGRANGIAN HYDRODYNAMICS-TWO VARIABLES
ACCELERATION AND NONADIABATIC TERMS

" n+k
nty __ -2 dP _ nt%
rp ==y ; u
=2 _ n_2 n n+t+1] n+l 2
r; = 1/3( r + ry I + rI)

- GM(r)
gI n nt+l

ry ry
aQ = Lin - Lout
ac V 4

cun 225V ar?

L= dnr 3K, (ar I

Figure 2. The acceleration and nonadiabatic terms arc given for the
numerical hydrodynamics calculation.

energy) and three unknowns (T, r, and the velocity u). The Kutter-
Sparks system uses five. Thrse are the conservation of mass, momentum,
energy, the total of the radiative, conductive, and convective luminos-
ities, and the definition of velocity. The unknowns here are the T, r,
V, the total luminosity anu ilie velovity. Appenzeller (1970) uses the
same cquiations but assigns the unknowns as T, r, pressure, the total
lnminosity and the velocity, The backward time differencing (not time-
step centered) that he used was very dissapative, however, even though
quite stable. The Castor variable zone mass (mixed Lagrangian and
Enlerian) DYN code uses an explicitly determ? .eil mass together with an
implicit solution for T, r, and n using the egquations of mass, momentum,
and energy.

I am not sure which system is the best. In these completely
implicit codes a matrix solntion is made for each iteration as we will
soon Hee, If there are more equations, there are more rows of the
matrix and more components of the corvection vector, This certainly
means more matrix operations. ln onr case, if the mmber of cquations
{s rethneed to only two for ench zone, then the matreix is more simple.
Nevertheless, the saving In matrix operntiong {s used np in the process
ol developing all the terms of the derlvatives as clements of onr mare

claboyate two eqnatlons,



For our two basic equations we need to assign boundars conditions
at the top and bottom of the envelope. The central ball has a fixed
radius and a fixed core luminosity which is the surface luminosity minus
any thermonuclear energy sources or neutrino losses in all the envelope

zones. At the surface the acceleratisn of the interface is taken as

-2
“ 4n IR

TR Tt WD (07 Prp) T oep (1)
IR
There the luminosity is calculated by an approximate radiation transport
solution for the effective temperature as a function of the temperature
at the center of the last zone and the optical depth at that point.
4

Tip = 3/4 T, (rIR . 2/3) (2)

With this effective temperature, the luminosity can be calculated from
the normal black body luminosity formula
L1

_ 2 4
R: 4an Rp a Te (3)

As we have indicated before, our implicit method requires
iterations to converge on values of the two dependent variables at the
advanced time. A Newton-Raphson procednre is followed as indicated in
Figure 3. The matrix we deal with consists of many derivatives of which
there are 2 with respect to T and 3 with respect to r in the momentum
cqnaticn, and there are 3 with respeect to T and 4 with respect to r in
the energy egynation. Thus the matrix is 7 diagonal.

The natation nsed in the actnal program is also given in Figure 3.
Fach of thewe derivatives is calenlated each iteration k From sometimes
rather complicated formilas. These derivatives are obtained analytically
except for the derivative of the convective Imminosity with respect to T
and r. These latter derivatives are done numerically by applying an

increment of typically 10-7

to T and r separately and then recalenlating
the convective hminosity.  ‘The difference in the hminogitics diviilded
by the difference in the variahle (F or r) gives a partial derivative
which is acenrate enongh to gnide the iterations to converg ace.

The Newtvn=Raphson method is applied by pntting Yhe negative of the

energy and momeatum equations, called respectively ZC aml o, as



ID LAGRANCIAN HYDRODYNANICS -~ TWO VARIABLES
NEWTON~RAPHSON ITERATIONS

I1+1 k I1+1 k
=yt (M S oM -
0’I - MI + .2 (aT). 6T1 +. 2 (Br). 6r1 =0
i=I i i=I~1 i
1+1 k I+1 k
" 9E 9E _
0y =Ep+ 2 (5p 6T+ 2 (57) 6r, =0
i=I~1 i i=1~2 i

Band malrix solution for known M, E and derivatives at any iteration k

gives the vector 6T1, 6r1, 6T2, 6r2, ... > 0.
B = ?—b-q—-——l AC = a—EI
1 arl_l I aTI_1
6, = zMI BCy = ;;l
141 I
oM OE
)| 1
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© 7 dr
1
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Fignre 3. Details of the Newton=Raphson method are given lor the
implicit solation,



components of a right-hand side vector. The linear equations are solved
for a correction vector consisting of increments for the T, r pairs.
This matrix is portrayed in Figure 4. Since the matrix elements are
changing each iteraticn, considerable calculation is involved, but
usually only 4-5 iterations are needed to get convergence. If the time
step can be ten or more times that given by the Courant limit, the use
of this implicit iteration procedure is warranted.

We need now to discuss the guesses that ace made for the T, r
values for the advanced time n+l1. In Figure 3, the momentum and energy
equations, that is, a and ZC for each zone, were time centered between
step n and n+l. A simple example of this is that in the energy equation
the dE is just the internal energy at time n+l minus its value at time
n. Consider now the momentum and energy equations at time n+%, in order
to make our extrapolation or guesses for time ntl. A Taylor expansion
of the two equations would result in almost exactly the two expressions
given at the tcp of Figure 3, and they both equal zero because these two
equations are here assumed to be zero at the mean time. The Taylor
expansion, however, involves only quantities at time n and none at Lime
n+l, These equnations at time n and their various derivatives are
somewhat different than they were in the implicit method itcrations
which involve time c=ntered ¢nantities. If the extrapolation is made to
the mean time, the derivative terms should be nmltiplied by %. Solution
for the correction vector, as described before, now allows them to be
applied to give a very good approximation to the configuration at time
ntl, and a good starting point for the iterations. We call this Taylor
expansion the explicit P step and the iterations as the F step of the
time step.

In DYNSTAR, all the time centered gnantities ar~ exactly half of
their time n value and half of the time n+l valne except for the
lImminosities. Following Stellingwerf (1975), we give the n+l

Juminvsities a weight of 2/3 and those at time n ouly 1/3, Presmmably

this makes the integrations more stable withont mnch loss in accuracy.
With onr centering at exa- ly at the time midpoint, the procedurce is
marginally stable, amdl sometimes we have convergence tronble for large

timestoeps,
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Figure 4. The structure of the 7 diagonal matrix
for the correction vector is displayed
defined in the previcus figure.
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A very important thing to do when using the Newton~Raphson method
is to be sure that the largest increment in the T, r correction vector
is not so large that the solution iterati..s are upset and nonconver-
gent. In the normal case, the maximum, wherever it is in the zones, can
be as large as 30%, but sometimes a much smaller correction needs to be

+applied so that the equations do not stray out of their radius of con-
vergence.

Time dependent convection is necessary to give realistic hydro-
dynamic solutions in most cases. Figure 5 presents the mixing length
equations with a modification for the convective velocity variation. As
used today, the increase of the convective velocity each time step is
0.1 or less times the velocity of an element (Av) after it has travelled
a mixing length. The decrease is given by the fomula for the lag, and
if the gradient becomes subadiabatic, the drag is multiplied by 1000.
These parameters do not matter much for upper main sequence stars,
because the surface convection zone is very weak and the core convection
timescale is perhaps 100 times the pulsation period.

All of the usual hydrodynamic codes, for pulsation or not, need an
artificial viscosity to smooth out strong disturbances such as shock
waves. The use of the viscosity is simple. The pressure which consists
of gas and radiation terms as well as perhaps the convective turbulent
pressure term, is further increased by the turbulent eddy and artificial
viscosity terms. This pressure, used both in the momentum and energy

equations, is given as

LCITRVE 0 L S evsI]2 (4)

if [ ]} term < 0

qa; = 0 otherwise (5)
_ FT dr
Wy Ey Ve A ar
(6)

V. and A. = allp from time depemdent mixing length theory



TIME DEPENDENT CONVEL.:iON

If v > vn vn+1 =v® 4+ Av
c—- ¢ c c
av = 22 ¢ 2\ At AF > 0
p ir1 ~ Ti-1
4p _ 4 AT
p T
ifv <vw n
c c
+
n+l _ vt o+ (v - vn) >0
c c c c
n n+l
2 A
L ~v
c c
LF = 1

IFv <0 ég <0 use Av < 0

with AF

1000

Figure 5. The equations for the time dependent convection are based
on a lag of the convective element velocity in mixing
length theory.

We somctimes use a linear artificial viscosity where the square
bracket term is not squared, the threshold ©® is set to 0, and a factor
of the sound velocity is added.

Material properties are nceded to carry ont calcnlations. We have
already discnssed the opacities, and the equation of state needed to
calculate them is also needed to calcnlate the pressure and energy fo.
the maxs shells in the hydrodynamics integrations. Both tabular and
analytic formulas are uscd, the latter when it seems very necessary to

uperate wilh smooth opacity and equation of state derivatives as for



convection or just for ease of the iteration convergence, The standard
thermonuclear reaction rates of Fowler, Caughlan, and Zimmerman (1975)
and screening factors discussed by Reeves (1965) are used for any energy
source present.

Opacities vary rapidly with temperature and they are known only at
the center of the mass shells in our hydrodynamic calculations, Yet, the
radiative Inminosity passing .Jrom shell tu shell is space centered at
the shell interfaces. Simple averaging of the opacities in adjacent
zones is not adaquate especially if the number of zones is limited to
typically 50~100. Christy (1967) and Stellingwerf{ (1975) have proposcd
averaging procedures, Witlhout giving che procedure here, we merely say
that wr use the Stellingwerf method.

Selection of the time step is crucial for the calculations. If the
step s too small, results will be slow in coming. If the time step is
too large, the iterations will not converge. We have adopted a time
step selection procednre that retains Lhe previous time step if the
number of itecations for the last time step was reasonable, say six to
ten. For a larger nmeber of iterations, the problem is having trouble
aml the time step is ent by 15%. 1 convergence is very casy (in less
than six iterations), mltiplication of the timestep by 1,15 is made for
the next one,

The typival way o pnlsation solntien is started is to nse the
actmal cipenvecto s frmm the Tinear nonadiabatic solution.  This cigen
vector is rescaled tram its usial narmalization with a saeface amplitde
af 100%.  We start Peam o hydrostatic amd thermal eqnilibrinm model ol
apply the rading e.vcoveetor as the ontwarl velocity structnre, Ta get
the P, v confignration that obtains at this wmidimlsation position we
Iook ot the imaginary pari of the T, r vector, which pertaing to g tine
a quarter of a evele carlier than the maximmm radins time,  ITnersmenting
the temperatnres, rvadii, ol velocities now pnts the amodel ont of
thermatl aml hydrvestatic baltanee mmdl the imegration (with o nat Loan
Large timestep) begins.

As o oexample of the nse ol the hvdrodynamic code, v here give
resn'ts of a ealewtation loer the 3 Cephei varvinblbe o Mivgines.  The
mavs of the model is 115 solar masis, the elfeetive temperatnre i
JOo,000 K, aml the lmminosity is 0.9 > l(f" erps/y. This is exactly the

wmalel disennsed in lectnre 1o for dts himear theoary pnlsation solntion,



This linear solution has been scaled here to a photospheric peul to peak
radial velocity of 24 km/s to allow for the limb darkening which affects
the 17 km/s observed amplitude.

Figure 6 shows the radial velocity variations for about 10 periods.
All eycles do not repeat exactiy in this calculation. Figure 7 is the
radius variation from the hydrodynamic integration, and a peak-to-peak
variation of about 1% is seen. Since all the interior variations are
even smaller, and the decay e-folding rate for this fundamental mode is
only about oue part in 10,000, it is reasonable to expect that this
model is behaving very closely to the result from linear adiabatic
theory.

Bolometric magnitude variations are displayed in Figure 8. Here the
amplitnde peak-to-peak is 0.19 magnitude which corresponds to a much
smaller amplitude in the visual tand. The surface effective temperature
variations of 650 K above anu below the mean of 26,000 K, given in
Figure 9, produce a varying lolometric correction of close to 0,11
magnitude (Code et al.1975) with the maximum correction occuring at the
hottest phase which is also the mast Inminions phase at minimum radins.
These carrections are =~2.63 ot 26,600 K and =-2.52 at 25,350 K.
Subtraction of this correction thfference then prodnces somewhat more
than the actnal few hnndredths of a magnitnde observerldt variation in the
V filter.

The kinetice energy of the motions viaries as shown in Fignre 10.
Twi.e each cyele, at maximmm infall and maximm expansion velocity, the
kinetic erergy reaches a maximum. For other stars that are not so
adiabatic, there are phase Jdifferences between the maximmm velocity at
different levels in the star, and the peaks amd valleys ef this kinetic
energy variation are nol so separated as in omr case where there is o a
range of three or more powers of ten,

We believe that  the supergiant pmlsatiems are all nonradiat,
beeanse we will show how very rapid the decay of a rvadial hyidbeodynamic

distnrbance is in omr final leetnre,
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