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ABSTRACT

The response of steel containment vessels to the blast loading
produced by the detoc~ition of high explosives is investigated by
experiments, computations, and analysis. The vessels are thin-
wall shell structures that are nearly spherical. All explosive
charges are solid spheres, centrally initiated and centrally
positioned within the vessels. Most of the work concerns vessels
that contain, in addition to the explosive charge, air at ambient
or reduced pressures.

One-dimensional, Lagrangian, finite-difference calculations
are used to study the blast phenomenon and the details of the
loading pulse applied to the vessel wall. The results are veri-

fled by comparisons with pressure gauge records. In addition,
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vessel response to the prassure loading is calculated by both

finite-difference and finite-element computer codes. The two-
dimensional motson, which occurs after significant wave inter-
actions have taken place in the test vessels, can be simulated,
with reasonable accuracy, by finite-element calculations. This
result indicates that a predictive technique and, therefore, a

design tool appear to be available with these standard calcu-

lational methods.



INTRODUCTION

A number of investigations have been reported in the literature
on the response of spherical shells or containment vessels subjected

to internal blast loading.]'7

Interest in such spherical contain-
ment vessels stems primarily from testing or disposal of explosive-
related devices as well as containment of accidental explosions.

As discussed in Reference 7, high-repetition applications, such

as repeated testing of explosive components, generally suggest
design on the basis of elastic-only behavior of the vessel or
she]].l'z's'ahereas low repetition vessel applications, such as
containment of accidental explosions, suggest elastic-plastic
designs for efficient material utilization. 3.4.6

The present study represents a more detailed investigation
of the elastic containment problem, including both a refined
accounting of the pressure loading on the vessel wall as well
as the corresponding structural response of the vessel,

First, the onc-diaensional symuetric mction of a thin spheri-
cal shell is analyzed, and the maximum strain occurring in the
sheil wall as a function ¢f the loading-pulse duration is deter-
wined. For a given impulse, the maximum strsin decreases rapidly
when the loading duration exceeds about one-fourth of a natural
onc-dimensional vibration period. This fact cimphasizes one
obvious mechanism of blast-wave mitigation: if a filler material
temporally spreads the blast wuve, a decrease in the maximum

strain vwill result,

Next, the details of the bla:t loading avpiried to the vessel



wall are analyzed with the aid of one-dimensional finite--difference
code calculations. Each pressure pulse has a fairly complicated
structure caused by shock-wave raflections between the vessel wall
and the air-explosive interface. Comparisons between Dressure-
gauge records and the calculations show good qualitative agreement.
By using the calculated pressure pulse in conjunction with the
equation describing the one-dimensional motion of a thin spherical
shell, the strain history occurring in a vessel can be calculated.
The computed strain histories agree well with strain-gage measure-
ments during the first half-cycle of motion. The calculated peak
strain is about 20 percent high. The response of the test vessels
after about a half-cycle of spherical motion is predominantly two-
dimensional (axially symmetric). To analyze the two-dimensional
response, the ADINA finite-element code is used. Comparisons
between strain-gage records and finite-element calculations show
good agreement. The small-scale test vessels used in this program
are nearly axially symmetric with relatively large flanges around
their equators. For these calculations, the strains occurring

at the strain-gage locations are quite sensitive to the boundary
conditions prescribed at the flanges. The flanges cause large
axially symmetric perturbations in the initially spherical vessel
motion. Calculations and test results show that this perturbation
can cause a drastic strain amplification, which is due mostly to
bending waves. Thus, a well-designed vessci should avoid this

type of perturbation.



ONE-DIMENSIONAL MOTION OF A THIN SPHERICAL SHELL

Consider the spherical shell segment shown in Figure 1. The
shell thickness is denoted by h, its average radius by R, and its
density by p. The driving pressure on the interior wall is a
function of time denoted by P(t). For spherically symmetric motion,
the balanced biaxial stress is denoted by o and the radial dis-

placement by u. Within the thin-shell approximation, the equation

of motion in the radial direction is]
psif%+29=ﬂ£l, (1)
dt R h
Hooke's law for biaxial stress is
0=t | (2)

where E and v dencte Young's modulus and Poisson’s ratio, respec-

tively, and ¢ denotes the biaxial strcin (e = u/R). A combinatinn
of Equations (1) and (2) produces the equation governing the oune-

dimensional, linearly elastic motion of a thin spherical shell.

The equation is

2
.d_.:J. + wzu = P.(.tl R (3)
dt ph
where
ooe 2
pR® (1-v)
The general solution of Equation (3) is
u 1 t
= oy 2 i -
u=u, cos ot + m sin wt + mf P(1) sin w(t-t)dr , (4)
0



Fig. 1. DSegment of a spherical shei:l.



where U, is the initial radial displacement and ﬁo is the initial
radial velocity.

Consider a spherical shell acted upon by the rectangular
pressure pulse illustrated in Figure 2. The magnitude of the in-

ternal pressure pulse is P, and its duration is AT. The solutions

for zero initial conditions (uo = ﬁo = 0), obtained from Equation
(4), are
pO
u = = [1 - cos wt] for 0 <t < AT , (5)
phw
and
Po .
us — [cos w(t -AT)-cos wt] for t > AT . (6)
phw

The solution for a purely impulsive load, that is a load applied
over a very short time period, may be obtained frcm Equation (6)
by assuming that AT, the duration of loading, ‘s much smaller than
T = "n/w, the vessel's natural vibration period. For an impulsive

load, Equation (6) reduces to

U=EFI1TU-Sin wt » (7)
where
AT
1=f P(t) dt = P_ aT
0 0

is the specific impulse of the loading. From Equation (7), the

maximum strain induced by an impulsive load may be written as

a1 (8)

cmax o ?-E-
hv/p ﬁ
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Equation (8) is true for any cshaped pressure pulse as long as the
loading duration is small, that is, the maximum strain is only a
function of the applied impulse. However, when a pressu+re pulse
is applied over a time period that is not small compared to T,
the maximum strain induced in the shell depends upon both the
pressure pulse shape and the total impulse. This feature is
illustrated by again considering the motion of a spherical shell
excited by the application of a rectangular pressure pulse. From

Equations (5) and (6), the strain history may be written as

I

e(t) = ——— f(wt, wl) , (9)
h/p—\/fj__;
where
flut, waT) = == [1 - cos wt] for 0 < t < 4T
anc
f(wAT) = B%T [cos w(t - AT) - cos wt] for t > T

If fmax(wAT) represents the maximum value of f(wt, wAT) as time

varies, the maximum strain can be expressed, from Equation (9), as

- I
z — f ax(wAT) . (10)

h/F‘/Em

1-v

cmax

Equation (10) gives the maximum strain occurring in the shell as
a function of the specific impulse, I, and the loading duration,
AT. The form of the tunction fmax(wAT) can be determined from
Equation (9) for a rectangular pressure pulse. This function,

plotted in Figure 3, indicates the sensitivity of the peak strain
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in a spherical ~hell to the loading duration of a rectangular pulse.
The maximum strain occurring in the shell decreases rapidly for
loading durations greater tian T/4.

The above uerivation, carried out for the triangular pressure
pulse shown in Figure 2, also leads to Equation (10) with, of
course, a different expression for fmax(wAT). This expression
is also plotted in Figure 3. Comparing the two curves in Figure 3
gives an idea of the sensitivity of shell response to pulse sh:pe.

Summarising the results, the maximum circumferential strain
is proportional to the applied impulse and inversely proportional
to the wall thickness, the square root of the density, and the
square root of twice the biaxial stress modulus, E/(1-v), as indi-
cated by Equation (10). The maximum circumferential strain is
also proportional to fmax(wAT). which accounts for the finite
duration of the loading puise. The function fmax(mAT) is different
for pressure pulses of different shapes, and it is equal to un.ty
for impulsive loadings. For loadings of longer duration, fmax(wAT)
may be considerably less than unity. Thus, loadings of equal impulse
may produce completely different peak strains. For a particular
type of explosive cnarge, the loading duration depends upon both
the relative size of the charge and the properties of the filler

material that transmits the pressure pulse,
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PRESSURE LOADING ON VESSEL WALLS

Calculation of Pressure Loading

To qualitatively understand the pressure loading on the vessel
wall and to establish a predictive capability, computer hydro-
dynamic calculations of the motion of the explosive and filler
material within the containment vessel were performed. In the
calculations, spharical symmetry was assumed. The computer code
used to perform them is based on a fairly common one-dimensional,
Lagrangian, finite-difference technique similar to the one de-
scribed by Fickett.8 Initially, the explosive is assumed to be
burned completely, and the distribution of properties within
the explosive products is determined from the Taylor similarity

so]ution.9

In these calculations, the equation of state used

to describe the expiosive products is the JWL equat‘.ion.]0 The
fiiler material considered here is either air or a perfect
vacuum. For air, a Y-law equation of state was used with

Y = 1.4. Vhe shell velocity is obtained by numerically inte-
grating Equation (3) along with the numerical solution of the
hydrodynamic equations. The results of a calculation involving

a 25.4-nm-diamn explosive charge of PBX-9404 in an air-filled,
352-mm-diam vessel are illustrated in Figure 4a. This figure is
a plot of the position of several particles within the flew field
as a function of time; it gives an idea of the wave motion set up
within the vessel. Figure 4b, obtained from Figure 4a, indicates

some of this wave motior Shock wave positions are indicated by

dotted lines., The main shock, M, is followed by a secondary shock,

12
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S, which propagates inward relative to the moving explosive
products. The secondary shock, formed because of the spherically
diverging Tlow discussed by Brode.]] produces a high-density
region between the secondary shock and thc air-explosive inter-
face. This condition is illustrated in Figure 5, where the
pressure and density distributions are shown at 40 us, shortly
before the main shock reaches the vessel wall.

The main shock front reflects from the vessel wall at 53 ps
and collides with the air-explosive interface at 63 us, as indi-
cated in Figure 4b. At that point, part of the wave is trans-
mitted into the explosive products, but, because nf the high-
density region, another, substantial part is reflected into the
air. The reflected part impinges on the vessel wall at 70 us.
Therefore, we would expect to see a second loading pulse applied
to the vessel wall at this time. Figure 6 shows the calculated
pressure pulse applied to the vessel wall for the first 200 us.
Here the initial pressure loading at 53 us and the second pressure
loading at 70 us are apparent. The shock wave that causcs the
second loading continues to rebound between the interface and the
vessel wall, but additional pressure pulses caused by its subsc-
quent reflectiuns are of negligible amplitude for this example.

The pressure on the vessel wall continues to drop until the
main shock front is reflected from the center of symmetry and
propagates out to the vessel wall. The reflected wave arrives
at the vessel wall at 240 us and produces the second major loading

pulse. Figure 7 shows the arrival of the second major loading

15
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pulse as well as several subsequent major loading pulses. A
double-peaked structure caused by a wave reflection from the air-
explosive interface is apparent within each major loading pulse.
A change in the relative size of the explosive charge changes
the shape of the pressure puise applied to the vessel wall. The
pressure pulse illustrated in Figure 6 was gencrated by an ex-
plosive charge whose radius was 7 percent of the vessel radius.
Figure 8 shows how the shape of the first major loading pulse
changes as the size of the explosive charge changes. With a
charge that is 14 percent of the vessel radius, the second pres-
sure pulse, caused by the reflected wave, is larger than the
initiai pressure pulse, caused by the arrival of the main snck

front.

Comparisons of Measured and Computed Precsure Histories
Comparisons between measured and numerically calculated pres-
sure pulses are illustrateu in Figures 9, 10, and 11. For the two
tests conducted with the vess?l containing air at normal density,
Figures 9 and 10, a good qualitative agreement is indicated be-
tween measurements and calculations. However, the calculated
pressures appear to be quantitatively higher than the measurements.
For the calculation of an evacuated vessel, Figure 11, complete
air evacuation was assumed. For this experimnent, however, an
initial air pressure of about 100 Pa existed in the vessel. The
calculations indicate that a high-pressure spike arrives at the

vessel wall before the mcin pressure pulse. This pressure spike

19
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is quite high in magnitude but short in duration and may be an
artificial result of the numerical method. The experimental records
show some high-frequency, high-pressure pulses; these are attributed
*o an air shock, since the vessel is not completely evacuated. Be-
cause the pressure-gauge response is not sufficient to resolve tnhis
high-frequency behavior at the beginnina of the pressure pulse,

the initial high-frequency data have been ignored in the measured
pressure pulse of Figure 11. Aside from the very early data, which
may not be significant with respect to the vessel response, a good
qualitative and quantitative agreement exists between measuremerts

and calculations.
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RESPONSE OF VESSELS TO BLAST LOADING

One-Dimensional Vessel Response

The equation of motion of a thin spherical shell, Equation (3),
can be solved for any pressure loading by numerical integration.
Figure 12 shows the resulting strain history obtained by integrating
Equation (3) for the pressure loading illustrated in Figures 6 and
7. The first major loading pulse lasts about 50 jis and iritiates
the sinusoidal motion of the vessel wall. If no other pressure
pulses were applied to the wall, the vecsel would continue to oscil-
late at constant amplitude in the one-dimensional case. However,
the second major pressure pulse arrives at the vessel wall at about
220 us, when the vestel wall has expanded but is moving inward.
Therefore, the second mejor pressure pulse opposes the motion of
the vessel wall and reduces the oscillation amplitude. For the
cealcuiation illustrated in Figure 12, the decrease in the oscilla-
tion amplitude caused by the arrival of tne second pressure pulse
is approximately 40 percent. Subsequent pressure pulses increase
the oscillation amplitude again; the amplitude at 1 ms is about 75
percent of the initial value. Figure 12 indicates the relative
importance of tne various pressure pulses that dynamically load
the vessel wall. From these calculations, we find that tiie second
major loading pulse causes a reduction in the oscillation amplitude
for PBX-9404 charges whose radii are between 7 percent and 14 per-
cent of the vessel radius. Other cases have not been exnlored.

Figure 13 shows a small-scale test vessel used to measure

pressure and strain. Tests recently have been condicted with two

25
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slightly different vessels, the thin-wall vessel (6.35-mm wall)
illustrated in Figure 13 and a thick-wall vessel (10.6-mm wall).
The thick-wall vessel is similar in design to the thin-wall vessel,
but the flanges are considerably larger. Both vessels vibrate
primarily in a two-dimensional mode. When the inside of the vessel
wall is loaded by a spherically symmetric pressure pulse, the wal)
motion in the strain-gage area will te one-dimensional until a
disturbance arrives fram the flanges. Fram that time, the motion
will be mainly two-dimensional. It takes about one-half period of
the vessel’s natural vibration for a wave to propagate from the
flange area to the strain-gage area, so we would expect to observe
a true one-dimensional motion at the strain gages for about the
first half-cycle of vibration. Ffor these test vessels, a valid
comparison between calculated strains based on the assumption of
spherically symmetric motion and measured strains can be made only
for the first 60 us of motion.

Figures 14, 15, and 16 compare the calculated and measured
strain histories. Figure 14 shows the response of the thin-wall
vessel to the detonatior of a 25.4-um-diam PBX-9404 charge when the
vessel is filled with air at normal c.aditions. Comparing only the
first strain pulse because the following motion will be perturbed
by two-dimensional effects, we see that the calculated first peak
strain is about 20 percent higher than the average of the four
strain-gage measurements. However, the calculated value agrees
quite well with strain-gage measurements 1 and 4. Figure 15 shows

the response of the thick-wall vessel to the detonation of a

28
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38.1-mm-diam PBX-9404/9501 charge when the vessel is filled with air
at normal conditions. Again camparing only the first strain pulse,
we see that the calculated peax is about 40 percent higher than the
average of the strain-gage records, although the calculated value
agrees quite well with gage records 3 and 4. Figure 16 shows the
calculated and measured strains resulting from the detonation of a
25.4-mm-diam charge in a vessel that has been evacuated to about
100 Pa. The agreement between calculated and measured first peak
strains is about 5 percent for all gages. In this test, the first
peak strain was not indicated clearly by gage record numbar 1.
Generally, these calculations give reasonable estimates of the
first peak strain amplitude. Even better estimates of the pressure
loading and, therefore, better quantitative agreement between meas-
ured and calculated peak strains might be obtained by using calcu-
lations based upon extensively caliorated equations of state for

both the explosive products and the air.

Two-Dimensional Vessel Response

As indicated abcve, the mation of these test vessels is pri-
marily two-dimensional (axially synmetric) because of the relatively
large flanges, which induce significan: axially symmetric pertur-
bations to the spherical mction. Waves originating in the flange
area converge at the spherical shell’s poles, where the strain gages
are mounted. The convergence increases the strain anplitude at the
strain-gage location from two (thin-wall vessel) tu five (thick-

wall vessel) times the initial strain amplitude. This amplitude

increase can be seen in the sirain records of Figures 14 and 15.
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To predict this fairly complicated motion, a two-dimensional
analysis is required. Given the proper loading conditions, finite-
element codes should be ahle to adequately simulate vesse: response.
By comparing these gage data with computational results we can
assess the applicability of finite-element codes to dynamic pressure

vessel design problems. The ADINA]2

finite-element code was chosen
for this analysis because of its availaopility. Figure 17 shows the
finite-element models, in the cylindrical coordinates R and Z, that
were used to represent both thin-wall and thick-wall vessels. In
the calcuiations, the shell structure of the vessel was represented
by only one element across its thickness. The type of element used
was the eight-node, axially symmetric element. A minimum number of
elements was used to represent this vessel in the twe-dimensional
analysis because interest eventually will lie in analyzing three-
dimensional vessels and extension to the three-dimensicnal problem
then will not lead to decreased resolution.

Figure 18 shows the results of two ADINA code calculations
for the motion of the thin-wall test vessel subjected to the in-
ternal pressure loading illustrated in Figures 6 and 7 (a 25.-mm-
diam explosive charge in an air-filled vessel). The results are
the values of circumferential strain occurring at the center of
the outside surface of the element near the hamisphere pole, where

the strain gages are bonded to the vessel. In the fixed-flange
calculation, we assuwed that the flange bottom remained in contact
with the symmetry plane (z=0); see Figure 17. In the free-flange
calculation, we assuned that the flange was free to move off the

axis of symmetry. Because the flanges are held together by 24
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Fig. 17. Finite-element models used in the ADINA code to calculate
the response of (a) the thin-wall test vestel and
(b) the thick-wall test vessel.
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equally spaced bolts, the true boundary condition to which the
flange is subjected lies somewhere between these two extremes.
From the results shown in Figure 18, we can conclude that the
strain history at the vessel poles is a strong functicn of the
boundary conditions applied to the flanges.

Figure 19 shows a comparison between the free-flange calcu-
lation of Figure 18 and a strain-gage measurement. Tne agreement
is fairly good, especially in view of the fact that a calculated
pressure loading was used as inpu: and that a very coarse zoning
was used. Notice that the strain-gage measurement is saturated
at about 550 us, about the time when the calculated st-ain reaches
its absolute maximum. A linear elastic analysis was used in ADINA
because the strain amplitude was relatively low. A comparison
between the fixed-flange calculation, Figure 18, and the strain-
gage measurement, Figure 19, shows relatively poor agreement.
Because the flange on the thin-wall vessel is relatively thin,
it would be expected that the free-flange calculations would agree
with the experiment better than the fixed-flange calculatinns
agree.

Figure 20 illustrates the results of an ADINA calculation for
the thick-wall test vessel motion caused by the detonation of a
38.1-mm-diam explosive charge in an air-filled vessel. Shown are
the initial configuration and the displaced configuration at 60,
130, and 200 us after application of the loading pulse. The dis-
placement has been multiplied by 200 to make the motion visible.

The initial corner position of each element is indicated by a dot.
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Fig. 20. The displaced confiquration of a test vessel, at selected
times, as calculated by ADINA (0.35Z-m-diam vessel with
a 10.6-mm-thick wall, 38.1-mm-diam PBX-9404/950] charge).
The displacenent has been multiplied by 200.

T= =00,




At 60 us, we see both the perfectly spherical motion of the vessel's
upper portion and a wave propagating from the flange toward the
vessel pole. After 130 pus, the motion is far from spherical, and
there is significant bending motion in the vessel.

Figure 21 shows the agreement between measured and calculated
Strain at the strain-yage locations. The calculation was performed
with the tixed-flange boundary condition. Because the thick-wall
test vessel has a massive flange, the fixed-flange condition should
represent the physical configuration somewhat better than the free-
flenge condition does. An elastic-plastic material model was used
because the strains attain a fairly high level. The yield
strength, which was used in the von Mises yield criterion, was
taken as 207 MPa. A work hardening modulus of 20.7 GPa was used
in the isotropic hardening mode® of ADINA. This value is 10 per-
cent of Young's modulus. Agreement between calculated and meas-
ured strain is good. However, a phase shift occurs at about
500 us; significant yielding occurs in the stirain-gage area shortly

before the phase shift.
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CONCLUSIONS

The sensitivity of the peak strain to the shape of the blast-
wave pressure pulse has bee: investigated in a spherical vessel
undergoing one-dimensional motion. As expected, the peak strain
decreases rapidly when the pressure puvlse is shread over a time
longer than about a quarter period of tie vessel's natural vibra-
tion.

Details of the blast-wave pressure pulse delivered to the
vessel wall, analyzed with a one-dimensional, finite-difference
code, show a fairly complex pulse structure. Calculated pressure
loadings agree reasonably well with pressure gauge imeasurements.
Vessel strain historics have been calculated with both one- and
two-dimensional canputer codes, and agreement bctween calculated
results and strain-gage measurements is good. This result demon-

strates the usefulness of these standard calculational techniques

as design tools.
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