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ABSTRACT

/’ The response of steel containment vessels to the blast loading

)\ produced by the detG-ltion of high explosives is investigated by

experiments, computations, and analysis. The vessels are thin-

wall shell structures that are nearly spherical. All ezplosive

charges arc solid spheres, centrally initiated and centrally

positioned within the vessels. Most of the work concerns vessels

that contain, in addition to the explosive charge, air at ambient

or reduced pressures.

One-dimensional, Lagrangian, finite-difference calcul~tions

are used to study the blast phenomenon and the details of the

loading pulse applied to the vessel wall. The results are veri-

fied by cunparisons with pressure gauge records. In addition,
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vessel response to the pressure loading is calculated by both

finite-difference and finite-element computer codes. The two-

dimensional motion, which occurs after significant wave inter-

actions have taken place in the test vessels, can be simulated,

with reasonable accuracy, by finite-element calculations. This

result indicates that a predictive technique and, therefore, a

design tool appear to be available with these standard calcu-

lational methods.



INTRODUCTION

A number of investigations have been reported in the literature

on the response of spherical shells or containment vessels subjected

to internal blast loading.
1-7

Interest in such spherical contain-

ment vessels stems primarily from testing or dispo~al of explosive-

related devices as well as containment of accidental explosions.

As discussed in Reference 7, high-repetition applications, such

as repeated testing of explosive canponents, generally suggest

design on the basis of elastic-only behavior of the vessel or

1,2,5,7
shell, whereas low repetition vessel applications, such as

containment of accidental explosions, suggest elastic-plastic

3,4,6
designs for efficient material utilization.

The present stlldy represents a more detailed investigation

of the elastic containlllentproblem, including both a r~fined

accounting of the pressurt loading on the vessel wall as well

as the corresponding structural rc~ponsc of the vessel,

i“irst,,the one-dimensional synluctric mGtion of ~ ti,in sp}leri-

cal shell is i.inalyzetl,~nd the maximum striiin occurring in th~

sheil w~ll as a function cf the lodding-pulse durirtion is detcr-

wil]cd. I:or d given impulte, the nmximum strtiin d[+cro~$(’sr;]pidly

wl)cn the Ioadi])y dur~ticm cxLccds ~hout one-fourth of ~ n;itural

onc-dimensional vibt-~tion i)erlod. This fact emphasizes one

obvious mechiinism of hldst-wave mitigation: if a filler uiatcriill

Wmi)ordlly spcc~ds the blast w~ve, ~ d~cr(!ase in the m~ximurn

strdin kJ{ll rcrult,

Next, the det~il~ of the bl~:t lu~dir~g ~pplied to the vessel
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wall are aaalyzed with the aid of one-dimensional finite ..difference

code calculations. Each pressure pulse has a fairly complicated

structure caused by Shock-wdve reflections between the vessel wall

and the air-explosive interface. Comparisons between pressure-

gauge records and the calculations show good qualitative agreement.

By using the calculated pressure pulse irlconjunction with the

equation describing the one-dimensional motion of a thin spherical

shell, the strain history occurring in a vessel can be calculated.

The computed strain histories agree well with strain-gage measure-

ments during the first half-cycle of motion. The calculated peak

strain is about 20 percent high. The response of the test vessels

after about a half-cycle of spherical motion is predominantly two-

dimensional [axially symmetric). To analyze the two-dimensional

response, the ADINA finite-element code is used, Comparisons

between strain-gage records and finite-element calculations show

good agreement. The small-scale test vessels used in this program

are nearly axially symmetric with rel,~tively large flanges around

their equators. For these calculations, the strains occurring

at the strain-gage locations are quite sensitive to the boundary

conditions prescribed at the flanges. The flanges cause large

axially symmetric perturbations in the initially spherical vessel

mot ion. Calculations and test results show that this perturbation

can cause a drastic strain amplification, which is due mostly to

bending waves. Thus, a well-designed vessci should avoid this

type of perturbation.
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ONE-DIMENSIONAL MOTION OF A THIN SPHERICAL SHELL

Consider the spherical shell segment shown in Figure 1. The

shell thickne~s is denoted by h, its average radius by R, and its

density by p. The driving pressure on the interior wall is a

function of time denoted by P(t). For spherically symmetric motion,

the balanced biaxial stress is denoted by a and the radial dis-

placement by u. Within the thin-shell approximation, the equation

1
of motion in the radial direction is

d?up --— + ?Q . p(t) (1)
dt2 R h “

Hooke’s law for biaxial stress is

Eo’—
I-vc “ (2)

where E End v

tively, and c

denote Young’s modulus and Poisson’s rati~, resp~c-

denotes the biaxial str~in (c = u/R). A combinatim

of Equations (1) and (2) produces the equation go’~erning the oll?-

dimensional, linearly elastic motion of a thin spherical ~hell.

The equation is

(3)

where

2E
U2 = -._..-..-.—

pR2 (1-w) “

The general solution of Equation (3) is

Ii

s

t

u= U. Cos 1.’!+ -U~ sin wt +
h

P(T) sin w(t-~)dT , (4)

o

5



I

. ——.— —

Y“
u

Fig, 1. Segment of a spherical shell,



where UO is the

radial velocity.

Consider a

.
initial radial displacement and UO is the initi?l

spherical shell acted upon by the rectangular

pressure pulse illustrated in Figure 2. The magnitude of the in-

ternal pressure pulse is PO and its duration is AT. The solutions

for zero initial conditions (UO = UO = O), obtained fran Equation

(4), are

P.
u= —[l-cos ~t]for O~t~AT , (5)

phu2

and

P.
u= -— [COS ~(t -AT) - cos ~t] for t > AT . (6)

phoz

The solution for a purely impulsive load, that it a load applied

over a very short time period, may be obtained from Equation (6)

by assuming that AT, the duration of loading, ‘s much smaller than

T= “m/U, the vessel’s natural vibration peri’~d, For an impulsive

load, Equation (6) reduces to

where

J
AT

I = P(t) dt = PO AT
o

is the specific impulse of the loading, From Equation (7), the

maximun strain induced by an impulsive load may be written as

(7)

(8)
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Equation (8) is true for any shaped pressure pL’lse as long as the

loading duration is small, that is, the maximum strain is only a

function of the applied impulse. However, when a pressu~e pulse

is applied over a time period that is not small compared to T,

the maximum strain induced in the shell depends upon both the

pressure pulse shape and the total impulse. This fe~ture is

illustrated by again considering the motion of a spherical shell

excited by the application of a rectangular pressure pulse. Frun

Equations (5) and (6), the strain history may be written as

I
E(t) = .——— f(wt, UAl) ,

h~~~
-v

where

(9)

f(ut, tiT) = *[l- cos wt] for O < t < AT— —

and

f(@T) =&[cos w(t - bT) - cos ut] for t > T .

If fmx(tiT) represents the maximum value of f(~t, LWIT) as time

varies, the maximum strain can be expressed, from Equation (5), as

“max m ‘max’w”” .

Equation (10) gives the maximum strain occurring in the shell as

a function of the specific impulse, I, and the loading duration,

Equation (9)

plotted in F

AT. The form of the runction fmax(tiT) can be determined from

for a recta~gular pressure pulse. This function,

gure 3, indicates the sensitivity of the peak strain

9
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in a spherical ‘hell to the loading duration of a rectangular pulse.

The maximum strain occurring in the shell decreases rapidly for

loading durations greater t’lan T/4.

The above derivation, carried out for the triangular pressure

pulse shown in Figure 2, a?so leads to Equation (lG) with, of

course, a different expression for f~ax(u.AT). This expression

is also plotted in Figure 3. Comparing the two curves in Figuw 3

gives an idea of the sensitivity of shell response to pulse sh:pe.

Sumnarising the results, the maximum circumferential strain

is proportional to the applied impulse and inversely proportional

to the wall thickness, the square root of the density, and the

square root of twice the biaxial stress modulus, E/(l-v), as indi-

cated by Equation (10). The maximum circumferential strain is

also proportional to fmax(wAT) , which accounts for the finite

duration of the loading pulse. The function fmax(MT) is d

for pressure pulses of different shapes, and it is equal to

for impulsive loadings. For loadings of longer duration, fm

fferent

,ax(uf’i)

semay be considerably less than unity. Tnus, loadings of equal impu”

may produce completely different peak strains. For a particular

type of explosive charge, the loading duration depends upon both

the relative size of the charge and the properties of the filler

material that transmits the pressure pulse,

11
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PRESSURE LOADING ON VESSEL WALLS

Calculation of Pressure Loading

To qualitatively understand the pressure loading on the vessel

wall and to establish a predictive capability, computer hydro-

dyn~mic calculations of the motion of the explosive and filler

material within the containment vessel were perfomled. In the

calculations, sph~rical sytnnetry was assumed. The computer code

used to perform them is based on a fairly corrunonone-dimensional,

Lagrangian, finite-difference technique similar to the one de-

8
scribed by Fickett. Initially, the explosive is asslmd to be

burned completely, and the distribution of properties within

the explosive prGducts is determined from the I’aylorsimilarity

9
solution. In these calculations, the equation of state used

tG describe the expiosive products is the JWL equation. ‘0 The

filler material considered her? is either air or a perfect

vacum. For air, a Y-1aw equation of state was used with

Y= 1.4. ‘:he shell velocity is obtained by nunwrically inte-

grating Equation (3) along with the numerical solution of the

hydl-odynamic equations. The results of a calculation involving

a 25.4-mn-diam explosive charge of PBX-9404 in an air-filled,

352-rrnn-diiunvessel are illustrated in Figure 4a. This figure is

a plot of the position of several particles wiLhin the flew field

as a function of time; it gives an idea of the wave motion set up

within the vessel. Figure 4b, obtained from Figure 4a, indicates

some of this wave motior Shock wave positions are indicated by

dotted lines. The main shock, M, Is followed by a secondary shock,

12
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S, which propagates inward relative to the moving explo~ive

products. The secondary shock, formed because of the spherically

diverging flow discussed by Brode,
11

produces a high-density

region between the secondary shock and the air-explosive inter-

face. This condition is illustrated in Figure 5, where the

pressure and density distributions are shown at 40 Ps, shortly

before the main shock reaches the vessel wall.

The main shock front reflects from the vessel wall at 53 ps

and collides with the air-explosive interface at 63 us, as indi-

cated in Figure 4b. At that point, part of the wave is trans-

mitted into the explosive products, but, because of the high-

density region, another, substantial part is reflected into the

air. The reflected part impinges on the vessel wall at 70 US,

Therefore, we would expect to see a secdnd loading pulse applied

to the vessel wall at this time. Figure 6 shows the calculated

pressure pu’lse applied to the vessel wall for the first 200 lIS.

Here the initi~l pressure loading at 53 us and the second Pressure

loading at 70 us are apparent. The shock wave that causes the

second loading continues to rebound between the interface and the

vessel wall, but additional pressure pulses caused by its subse-

quent reflections are of negligible amplitude for this ~x~mple.

The pressure on the vessel wall continues to drop until the

main shock front is reflected from the center of symnwtry and

propagates out to the vessel wall. The reflected wave arrives

at the vessel wall at 240 us and produces the second major loading

pulse. Figure 7 shows the arrival of the second major loading

15
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Fig. 6. Calculated pressure pulse acting on the vessel wall
(0-200 PS, configuration indic~ted in Figure 4a).
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pulse as well as several subsequent major loading pulses. !

double-peaked structure caused by a wave reflection from tne air-

explosive interface is appare~,t within each major loading pulse.

A change in the relative size of the explosive charge changes

the shape of the pressure puise applied to the vessel wall. The

pressure pulse illustrated in Figure 6 was generated by an ex-

plosive charge whose radius was 7 percent of the vessel radius.

Figure 8 shows how the shape of the first m~”or loading pulse

ch~nges as the size of the explosive charge changes. With a

charge that is 14 percent of the vessel radius, the second pres-

sure pulse, caused by the reflected wave, is larger than the

initiai pressure pulse, caused by the arrival of the main s?~ck

front.

Comparisons of Measured and Computed Pressure Histories

Comparisons between measured and numerically calculated pres-

sure pulses are illustrateti in Figures 9, 10, and 11. For the two

tests conducted with the vessel containing air at normal density,

Figures 9 and 10, a good qualitative agreement is indicated be-

tween measurements and calcul~tions. However, the calculated

pressures appear to be quantitatively higher than the measurements,

For the calculation of an e’~acua~ed vessel, Figure 11, complete

air evacuation was assumed, For this experiment, however, an

initial ail pressure of about 100 Pa existed in the vessel. The

calculations indicate that a high-pressure spike arrives at the

vessel wall before the mcin pressure pulse, This pressure spike

19
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is quite high in magnitude but short in duration and may be an

artificial result of the numerical method. The experimental records

show some high-frequency, high-pressure pulses; these are attributed

to an air shock, since the vessel is not canpletely evac~~ted. Be-

cause the pressure-gauge response is not sufficient to resolve tnls

high-frequency behavior at the beginning of the pressure p’Jlse,

the initial high-frequency data have been ignored in the measured

pressure pulse of Figure 11. Aside frun the very early data, which

may not be significant with respect to the vessel response, a good

qualitative and quantitative agreement exists between measurements

and calculations.

24



RESPONSE OF VESSELS TO BLAST LOADING

One-Dimensional Vessel Response

The equation of motion of a thin spherical shell, Equation (3),

can be solved for any pressure loading by numerical integration.

Figure 12 shows tl,eresulting stlmain history obtained by integrating

Equation (3) for the pressure loading illustrated in Figures 6 and

7. The first major loading pulse lasts about 50 us and iritiates

the sinusoidal motion of the vessel wall. If no other pressure

pulses were applied to the wall, the vessel would continue to oscil-

late at constant amplitude in the one-dimensional case. However,

the second n,ajor pressure pulse arrives at the vessel wall at about.

?20 US, when the vessel wall has expanded but is moving inttiard.

The~efore, the second major pressure pulse opposes the motion of

the vessel wall and reduces the oscillation amplitude. For the

calculation illustrated in F;gure 12, the tie~r-easein the oscilla-

tion amplitude caused by the arrival of tne second pre~sure pulse

is approximately 40 percent. Subsequent pressure pulses increase

the oscillation amplitude again; the amplitude at 1 ms is about 75

percent of the initial value. Figure 12 indicates the relative

importance of the various pressure pulses that dynamically load

the vessel wall. From these calculations, we find that tilesecond

major loading pulse causes a reduction in the oscillation amplitude

for PBX-9404 charges whose radii dre between 7 percent and 14 per-

cent of the vessel radius. Other cases have not been exolored.

Figure 13 shows a small-scale test vessel used to measure

pressure and strain. Tests recently have been conducted with uwo

25
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slightly different vessels, the thin-wall vessel (6.35-nTn wall)

illustrated in Figure 13 and a thick-wall vessel (10.6-ITInwall).

The thick-wall vessel is similar in design to the thin-wall vessel,

but the flanges are considerably larger. Both vessels vibrate

primarily in a two-dimensiona~ mode. When the inside of the vessel

wall is loaded by a spherically syrunetric pressure pulse, the wall

motion in the strain-gage area

disturbance arrives fran the f“

will be mainly two-dimensional

the vessel’s natural vibration

flange area to the strain-gage

will lieone-dimensional until a

anges. Fran that time, the motion

It takes about one-half period of

for a wave to propagate fran the

area, so we would expect to observe

a true one-dimensional motion at the strain gages for about the

first half-cycle of vibration. For these test vessels, a valid

cmparison between calculated strains based on the assumption of

spherically symnetric motion and measured strains can be made only

for the first 60 us of motion.

Figures 14, 15, and 16 ccinpare the calculated and measured

strain histories, Figure 14 shows the response of the thin-wall

vessel to the detonation of a 25.4-nm-diam PBX-9404 chiirgc when the

VCSSC1 is filled with air at normal cw~~ditions. Comparing only the

first strain pulse because the following motion will be perturbed

by two-diniensional effects, we see that the calculated first peak

strain is about 20 percent higher than the average of the four

strain-gage measurerncnts. However, the calculated value agrees

quite well with strain-gage measurements 1 and 4. Figure 15 shows

the response of the thick-w~ll vessel to the detonation of a
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38.1-mn-diam PBX-9404/95CJl charge when the vessel is filled with air

at normal conditions. Again cunparing only the first strain pulse,

we see that the calculated peai is about 40 percent higher than the

average of the strain-gage records, although the calculated value

agrees quite well with gage records 3 and 4. Figure 16 shows the

calculated and measured strains resultl~lg from the detonation of a

25.4-mm-diam charge in a vessel that has been evacuated to about

100 Pa. The agreement between calculated and measured first peak

strains is about 5 percent for all gages. In this test, the first

peak strain was not indicated clearly by gag~ record numb?r 1.

Generally, these calculations give reasonable estimates of the

first peak strain amplitude. Even better estimates of the pressure

loading and, therefore, better quantitative agreement between meas-

ured and calculated peak strains might be obtained by using calcu-

lations based upon extensively calibrated equations of state for

both the explosive products and the air.

Two-Dimensional Vessel Response

As indicated abcve, the motion of these test vessels is pri-

marily two-dimensional (axially symrnetrlc) because of the relatively

large flanges, which induce significant: axially symmetric pertur-

bations to the spherical mction. Waves originating in the flange

arc~ convcrqe at the spherical shell’s poles, where th~ strain gages

are mounted, The convergenc~ incre~scs the strain amplitude at the

strain-gage location from two (thin-wall vessel) tu five (thick-

wall vessel) times the Initial strain amplitude, This amplitude

increase can be seen In the strain records of Figures 14 and 15,



To predict this fairly complicated motion, a two-dimensional

analysis is required. Given the proper loading conditions, finite-

element codes should be able to adequately simulate vesse; response.

By comparing these gage data with ccnnputational results we can

assess the applicabilityof finite-element codes to dynamic pre~sure

vessel design problems. The AD1NA12 finite-element code was chosen

for this analysis because of its availability. Figure 17 shows the

finite-element models, in the cylindrical coordinates R and Z, that

were used to represent both thin-wall and thick-wall vessels. In

the calculations, the shell structure of the vessel was represented

by only one element across its thickness, The type of element used

was the eight-node, axially symnetric element. A minimum number of

elements was used to represent this vessel in the twp-dimensional

analysis because interest eventually will lie in analyzing three-

dimensional vessels and extension to the three-dimensional problem

th~n will not lead to decreased resolution.

Figure 18 shows the results of two ADINA code calculations

for the motion of the thin-wall test vessel subjected to the in-

ternal pressure lo~ding illustrated in Figures 6 and 7 (a 25, ;-mm-

diam explosive charge in an air-filled vessel). The results are

the values of circumferential strain occurring at the center of

the outside surface of the element near the hemisphere pole, where

the strain gages are bonded to the vessel. In the fixed-flange

calculation, we assuliled

with the synunetry plane

calculation, wc assumed

that the flange bottom rcwained io contact

(z= O); see Figure 17, In the free-flange

that the flange was free to move off the

axis of synwletry. Because the flanges are held together by 24
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equally spaced bolts, the true boundary condition to which the

flange is subjected lies somewhere between these two extremes.

From the results shown in Figure 18, we can conclude that the

strain history at the vessel poles is a strong functicn of the

boundary conditions applied to the flanges.

Figure 19 shows a comparison between the free-flange calcu-

lation of Figure 18 and a str~in-gage measurement. The agreement

is fairly good, especially in view of the fact that a calculated

pressure loading was used as inpu’: and that a very coarse zoning

was used. Notice that the strain-gage measurement is saturated

at abcwt 550 ps, about the time when the calculated strain reaches

its absolute maximum. A linear elastic analysis was used in ADINA

because the strain amplitude was relatively low. A comparison

between the fixed-flange calculation, Figure 18, and the strain-

gage measurement, Figure 19, shows relatively poor agreement.

Because the flange on the thin-wall vessel is relatively thin,

it would be expected that the free-flange calculations would agree

with the experiment better than the fixed-flange calculations

agree.

Figure 20 illustrates the results of an ADINA calculation for

the thick-wall test vessel motion caused by the detonation of a

38.1-m.m-diam explosive charge in an air-filled vessel. Shown dre

the initial configuration and the displaced configuration at 60,

130, and 200 us after application of the lo~ding pulse. The dis-

placement has been multiplied by 200 to make the motion visible.

The initial corner position of each element is indicated by a dot.
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At 60 us, we see both the perfectly spherical motion of the vessel’s

upper portion and a wave propagating from the flange toward the

vessel pole. After 130 OS, the motion is far from spherical, and

there is significant bending motion in the vessel.

Figure 21 shows the agreement between medsured and calculated

strdin at the str?.in-$age locations. The calculation was performed

with the tixed-flange boundary condition. Because the thick-wall

test vessel has a massive flange, the fixed-flange condition should

represent the physical configuration somewhat better than the free-

fl~nge condition does. An elastic-plastic material model was used

because the strains attain a fairly high level. The yield

strength, which was used illthe von Mises yield criterion, was

taken as 207 MPa. A work hardening modulus of 20.7 GPa was used

in the isotropic hardening model of ADINA. This value is 10 per-

cent of Young’s modulus. Agreement between calculated and meas-

ured strain is good. However, a phase shift occurs at about

500 us; significant yielding occurs in the strain-gage area shortly

before the phase shift.
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CONCLUSIONS

The sensitivity of the peak strain to the shape of the blast-

wave pressure pulse has bee: invp~tlgdted in d spherical vessel

undergoing one-dimensional motion. As expected, the p2ak strain

decreases rapidly when the pressure p~’lse is spread over a time

longer than about ~ quarter period of tfle vessel’s natural vibra-

tion.

Oetails of the bl~st-wave pressure pulse delivered to the

vessel wall , analyzed with a one-dimensional , finite-difference

code, show a fairly complex pulse structure. Calculated pressure

loadings agree reasonably well with pressure gauge measurements.

Vessel strain histories have been calculated with both one- and

two-dim~nsional canputer codes, and agreen~nt between calculated

results and strain-gage measurements is good. This result demon-

strates the usefulness of these standard calculational techniques

as design tools.
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