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RAYLEIGH-TAYLOR STABILITY FOR A SHOCK WAVE-DENSITY

DISCONTINUITY INTERACTION®

Gary Fraleyv

Los Alamos National Lahoratory

ABSTRACT

Shells in inertial fusion targets are tvpically accelerated and decclor ie!
by two or three rhocks followed by continuous acecleration.s  The analoet
solution for perturbation pgrowth of a shock wave strikine a densic~
discontinuity in an inviscid fluid is investigated. The Laplace transfoars ¢
the solution results in a functional equation, which has a simplc snluri-~n ¢ =
weak shock waves. The solution for strong shock waves =iv be given be g ponr
series. It is assumed that the =quation of state is given bhv a gam=a law. Tl
four independent paramcters of the solution are the gamma values on enc'. side of
the material interface, the densitv ratio at the {nterf.ne, ant! tie o
strength. The asvmptotic behavior (for large distances and times) of th
perturbation velocity is given. For strong shocks tlh decav of the perturba: iom
awav from the interfarce {s much weaker than the exponeatiat decas of  an
incompressible fluid. The asvmptotic value {s given by a constant tern an! o
number of slowly decaving discrect frequencies. The numher of frequencies i«
roughly propo~tional to the logarithm of the density discontinuity divided be

that of the shock strength. The asvmptotic velocity at the iInterface (s

tabulated for representative values of the {ndependent paramcters,  For wedd

-——
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shocks the sol 1ion 1s compared with results for an incompressible fluid. The

range of density ratios with possible zero asymptotic velocities is given.



1. INTRODUCTION

A well known example of a fluid instability is the Rayleigh=Taylor tvpu.,
caused by the acceleration of a heavy fluid by a lighter one. The growth rate
of an inte:x.ace perturbation is given in Chandrasekhnrl for incompreasible
fluids. It is probably the effect which will limit the performance of inertial
fusion pellets. A typical pellet design consists of one or two dense shells
surrounded on each side by lower density mnterinl.2'3 As each shell is first
accelerated and then decelerated, one surface will be unstable. The initial
acceleration is usually by shock waves. For example, vhen the outer shell
accelerstes the inner one, a shock wave is reflected back and forth betwec:
them. At each reflection a shock is transmitted into the dense mzterial. 1t
will eventually overtake an earlier trarsmitted ahock. A rarefaction w. ..
returned, and this terminates the series of isolated 1i-pulsive ' --°
accelerat:.ons with a cortinuous form of acceleration. A rarefaction mav alsn he
returned vhen a transmitted shock hits the outer edge of a shell. There ar.
typically two or three shock accelerations of an interface before the serles is
ended. When the i-ner shell is decelerated, the situation is similar wit' i,
shock wave being reflected between the inner surface and the center of sv=ncorv,

The purpose of this paper is to investigate the analvtic propertice o
perturbation growti when a shock wave strikes a density jump. The iInitia?
conditions consist of two uniform materials with plane symmetrv. A shock wave,
wvhose direction is normal to the interface, is incident from one mide. '
interface is assumed to have a perturbation. The amplitude im smatll comparcd t.
the perturbation wavelength, so a linear analysis is sdequate. There appear- t .
be a simple analytical solution only for weak shocks (Section 1V). The soluti .
for strong shocks §z given by a power series. The perturbation equationr were

solved numerically for three casen by Richtnyer (1960).4
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The interface perturbation velocity fo- an incompressible fluid in the

limit of iwpulsive acceleration is given by

x -1
=31 ° (1)

e k'o“'d

vhere k is the vave number of the , erturbation, z,, the initial amplitude, w,,
the velocity change of the interface, and x the denrity ratio. This gives the
genar:l scaling of the perturbation growth, and it is useful to compare the
shock verturbation results with it. Avay from the interface the perturbation
decavs as exp(-kizl). It is a localized phenomenon, falling off to 1/07" onc
wvavelength from the interface. The shock perturbation differs in that it fa'le
off much more slowly, as 2'3’2 (Section IV). The shock interfac.
perturbation velo:ity begins at zero and reaches an asvmptotic value ahou: thc
time a sound wsve travels one wavelength of the perturbation. The asvmpratic
velocity is important as it determines the rate at which the materials mix wi:!,
each other. For example, injection of high Z material into the deutcriu-.-
tritium fuel may quench the thermonuclear burn. A comprchensive survev nf ti.c
asymptotic velociily was undertaken. A computer code was written wildich su=-.
the pover serier solution and plotted the results. Thisx was done for suvera!
thousand cases. About 200 of these are given in Figa. 2 and 3. An interer:!ins
quention wae for what parametern the velocity changed gripn. This wa'! r- 0,
there would be paramcters vwhere the velccity wvar zero or very small. The
results show that this doer not occur for denulty ratlosn preater than abaut 1.5
(Section V).

Heat flow and viscosity are neglected. In that case the perturhation
srales with the vave number. Heat flow tends to damp out the perturbation Jor

vavelengths lesn than somc maximum value. This may be roughly calculated hv
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comparing a characteristic damping time to a characteristic hvdrodvna=ic ti-,

the wavelength divided by the speed of sound. The use of viscosity and electron

thermal conductivity of a plllﬂls give the maximum wavelengths for significant
b

damping for viscosity and electron condition, respectively:

A = 107312,"1277/2

A = 107312p-1271

The wavelength is in cm, densitv, g um-a, and temperature in kel (=],16 » 1“7
k). The heat capacity of an ideal gas is assumed. During the implosion t!¢
temperature is less than a kilovolt, and wvaveleagths of interest greater tla~
10-3 cn, 8o damping is probably not significant. Damping bv radiation is = r.
conmplicated because of the wide variation of opacities. If we assunc an onti=m-
opacity, danping can occur at anv wavelength. This is becausc the mass of Lot
and cold material scales with the wavelength, the same &caling as t'«
hvdrodvnamic time. The optimun radiation mean free path is somewhat less than a
wvavelength. Each hot and cold region (one-half wavelenpth thick) receives

1

roughly @ blackx bodv flux = oT"' - lOzl'Tl' erg=5ecC —cm"z. with a temperaturc

characteristic of the other region. The result is damping 1if

T > 0.4 pt .

11. ZERO ORDER SOLUTIONS
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We assume 2 Y lav equacion ol state on each side of the density
discontinuity. There is a simple scaling with the absolute pressure and density
for these equations of state, and four inhependent parameters are left. These
are the values of Y on each side of the density jump interface, the density
ratio, x, and the shock strength. The initial pressure is p,. The incident
shock is from side b, with the pressure behind being py. The final pressure is
Pc+ The initial density on side b is py5. The densities on each side at the
moment the shock strikes the density Jump at the origin are py,; and pgy. The
densities behind the reflected s8hock and the transmitted shock ar.,

respectively, pyq and p,n. We have the initial density ratio,

- Pal
Op2

The shock strength is characzerized by ¢,

Pn'l"h“'c) ]

0 <Cec &1 ,

The four independent parameters are then v,., vy, x, and €.
The conditions behind each shock wave nre determined by the thres ecout§ o
conrerving mass, momentum, and envrpv. The first twe are
Py

Hd-W(l-ﬁ) ’



and (3)

Pp = Pf = WaPe¥W

vhere the material velocity behind the shock, wy, and the shock velocity, W, are
with respect to the material velocity shead of the shock. The subscripts b and
f stand for behind the shock and in front of the shock. For a Y law gas the
conservation of energy gives

Pp Pn* wrg

(1)
]
Pt Pe + I\IZP‘,

with

2

-]
+{ 1
bt Pt

The equations for the reflected and transmitted shocks are golved simunltancousls
for the gRix unknowns: 1the two shock velocities, the te. densities behind the
shocks, the velncity of the interface, and, p., the pressure at the interfavce.

Thesc may be reduced to one equation for p.:

N .
p(- p“ ph pn'H_-_’_—A'l

where ("



Pa + "bzpb 1/2

1

An

Pe "nzpb

Ppall = ug2)(py + uppy) 1/2
2

B=|

Pa1(l - up?) (b, + ua2p,)

The incident shock mav produce either a reflected shock or a rarefaction. It is

clear that the condition for a reflected shock is B(pc - pb) ¢ 1. For a weak

shock (c small) this reduces to

PpaYp
PalYa

<1 .

For a strong shock (¢ = 1),

phZ(Yh + 1) <1
o,llva + 1) '

Equation (5) may be solved by iteration.

Pe ™ Pl + 8yc + n:cz) .

(F

For a weak shock



T = (w:)”z

vhere 1 < a; < 2.

II1. THE PERTURBATION EQUATIONS

The perturbation equations are simple. The complexity of the problem conrs
from the bound: v conditions alnng moving boundaries. We assunc an {=i<11?
perturbation of the interface, z, exp(ikx). The initial velocity parallel tn
the shock direction and initial pressurs are zero in the first order of the

&

perturbation. As the solutions will show, the source of the first ord.r

perturbation is the initial periurbations of the shock fronts. Zero or!l.r

variables behind each shock include

vy = material velocity ,

=
1

shock velocity ,

P, ™ dennity ,

(B)

¢ = aound speed



The last tvo are important for the perturbation solutiors. The sghoctr ju--

conditions may bc used to give

B-
1-|-|,|2

’ (9,

vhere € is the strength of each individual shock. It is deterained by but nn:
in general equal to the € value for the incident shock, Eq. (2). Subscrirzs
which indicate the particular shock are not used when the same analvsis pr-li::
to both shocks. The velocities, wy and W, are with respect to The rmaterial
ahead of the shock. An inverted coordinate system is used for the reflecte:?

shock so that the velocities are positive. Because the initial perturbation of

4

the shock strength is zero, the shock front perturbations (t = ™+ depend o-lv

on shock velocities. They are

z =z Wo = ¥a
sa o : ’
%o
()
Wo = Vgo * W,
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where the zero subscripts refer to the incident shock. The minus sien (=) for
zgp comes from uae of the inverted coordinate systenm.
Perturbation variablea are ©p;, preasure, w, z-velocity, and u,,
x-velocity. The shock direction coordinate is z,, and time is t;. Perturbaticn

equations are

3u1 1kp1
oty - Po

3w1 5!1
—_——-— (1
°ot) Po

1
3E; " P (1ku; + Ry ) .

These are in a system co-moving with material behind the shock front. The
pressure equation is for flow isentropic along a mass point. Entrupy maz wvare
for different mass points. It is determined by boundaryv conditions at thce steack
front. Entropy variation would enter into the pressure equation in the
convective derivative (e.g., w; 3p;/3z;), but this is a second order «ffect. Tt
is unnecessarv to include the density equation hccause it does not conple ta the
others.

It {18 convenient to go to scaled wvariables: z = kay, t = ke,
P = py/kpc, u = fu;/k, and v = w;/k. Results are independent of wave numher {n
the scaled variables. This shows that perturbation prowth mcales as the wave

number. The scaled perturbation equations arc



=" - (12

P ow

— ey =

t oz

The shock front position is z_ = w.t, where w, = al/2,

c

The shock wave Jjump conditions may be differentiated tn pive velos{:w

perturbations at the "ront in terms of the pressure perturbatien.

w] - AP] ’
('
w; = By ,
wheru
A= 1 s H™

Zln'.«f(l - u:)

pp(l = 2u™) + 5
Bl N

ZogWil = u*)

The requirement that acceleration st the shood front he perpendicular tn the

fium gives



|.|1 = "1kHdlls »

(1)
iul
-Fl - "1k'd“1 L]
where z;. 1s the shock front perturbation. 1In the scaled variables
vewlp d
¢ 1P » an
du
T - Alp ’
with 2
, ]
Bl L4 nkpf = l Y ————

Al-A&o\'d--i—u- .

The final form of Ay and B, comc fron identities foon the jump conditine:, a

LY
reduce the boundi.rv conditions to the twn paramcters, u* and t.

IV. WMETHOD OF SOLI'T1ON
Solution: arv found hy taking Laplace translorm. in times This reosics: |-

two mirdes of solution (pressure mndes) with
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p(s,z) = a(s) exp(L;2) + b(s) exp(2;2)

w(s,z) = =L7a(s) exp(2jyz)/s = £)b(s) exp(2,2)/s

u(s,z) = a(s) exp(2,2)/s + b(s) exp(f;2)/s

vhere

with the convention that &, = =5, s large and positivue.

compressional mode (zero pressure contribution) that

Y

(14)

Thery {1+ a third n -

indcependent of ti-..

This means it is 1mpartant for asvamptotic velocities (laree t). The equati -

u+ 2: -0 .,
0z

AR

The Laplace transform in tim: alonp the shock front (rH = wet) with trgmetore

variable r gives

|l'|(l’\ - ‘h‘rll'|(l‘).'l’ .

The initial value of wq i{sx put to zero. It mav be ghown that the solut{a-

independent of thir initial valuce.

-
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A Laplace transform of sll the modes muac he talan alnang the shock frorn: ta
satisfyv the boundary conditions. The moving boundary results in each mode being

defined for a different value of the trsnsform variahle. For example °the
a
pressure solution of the first mode is

p(z,t) = [ ds u(s) exp(st + w_2.r) (19)

because z = w.t alung the shock front. With r = 8 + w.2,(s)

p(z,t) = | dr %; exp(rt)a(s) ‘2

and the transfora of p is clearly a(s.) ds,’dr, where r = 62 + w.ha(s~ts Tr.

liritx of integration of r must be the samc as for s. This Is satisfied bera:

ve 1., Similarly the transfornx for the second m.de s h(sl) dsy d:

r =3+ “cll('l)' We alsn have

r+w r“+ p

and [




(2
A *
w L Aj(a +b ) +2
.'_+P_+u3(r)- 1 L.
Iz .1 T
wvhere
ds
* 2
a .('Z)Tr_ ’
ds
* |
= b —
b ) 5
ani z, = “d'sl(t = 0). Variables a and b mav be solved in terms of u..
solutinn is simpler ir terms of v,:
2 2
ua(r)(ré = o) = [w Aquu(r) + 2, /rlr"
where (2

A3 - 2(Al -1+ Bl)

- B2(1 - ud)

a(l = u°p)

For variables f = L,a and g = L)b

f(ry) = ha(rdug(r) = wer /2r o



(24)
g(s)) = hy(rduy(r) = wez,/2r
with

hy(r) = (1 = B2 -2p-p

2 1 ;] 82r

(23)

hy(r) = (1 = By)r? - 1 B - Bs,r .

1 1 ) 1
Boundary conditinng at the origin are continuity of v¢lacitr perye=?l- 7 -r

to the interface and pressure for the solutions., Becaner the fluide ,r.
inviscid, they may slip with respect to one another parallcl tn the interfa-.
1t if necessary to use a common transform variahble g = 5254 " BpChe Renme=huric:

the inverted coordinate svster for side b, wr have

fn + Ba - fh + &h
[ R

and T

fa~ Ry fh = Ry

vhere



h
2.,
h2,1 12 .
f(.z) - .('1) -‘q + -! Vel T (27)

for each side. Thure sre two equations with two unknowns, @.8., 8, and gy The
difficulty is that each unknown is defined at two points. Because of the
complicated way the points are related to each other, and the preseice of
variable coefficients, no direct analytic solution was found. However, there is

one obvious method of solution. If g, is known at s);(sp; = 8/cg), with
s = [+ 0dey + 20 /a2 + 11870, (2R)

i =a, b, then f;(s;) may be determined, and through them, g, and gy. It may be

usaful to use as an independent variable
y=ay+ /241, (201

vhere y(s;) = y(-l)c-l, cC=(1+ wc)uo-l, and a, = 1 = w.. W pulve for g, and
8, in a neighborhood of infinity in a nower series in 1/s. Repeated
application. of Eq. (26) and (27) enlarge the area of solution closer to the
origin. Near the origin the solution aweens across the imaginary axis. It mar
br analytically continued across the ~xis. A (primary) singnlarity at s, will
produce a (secondary) singularity at sa. Any original singnlarity generates an
infinite nert of mecondary singnlarities. 1t is mimpler then to continue the
solution onlv up to the imaginarvy axin. The molution in the left half plane mnv
be continued up to the imaginary axis in the name wav as i{n the right half
plane. Thin producens a dincontinuity in the mnlution on the {mapinary axis near

the origin. Primary singularities are either branch points (mquare routs) at
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84 = 1 or roles where h- has a zero. It turns out h; has no zeroes when the
solution is continued only to the imaginary axis. Let s8ides J and k he
determined by d ~ cj/ck > 1. The secondary point of side j for 814 = i1 is off
the Riemann plane and produces no secondary branch point. The secondarv nnint
for side k may lie on the imaginary axis, e < Isl < €y and a series of

secondary branch points is generated. From Eq. (29) it is clear their nncitinns

are at

Yoo = 104 + /a2 - 1) ¢,

n-l| 2| se s ’ (".

1 -1
fkn " 3 1¥%n = Ykn ) -

It is terninated by requiring that
|_an| > 1 .

The domain |y| < 1 represents the continuation of the solution across the axis,
All secondary points of 6, = i are off the original planc. The branch points
give the asvmntotic behavior of the solution for large t and =z fj has a braa.’
point only at th-a\i':e f, has a branch point at Sy " i and at the sccontars
points; g, and p,Vbranch points at the sccondary paints amd at s, = 1, 1 = i}k,

Exceprt at the points where l(si) = 0, each branch point plves an asvemnt o

solution (laree t) proportional to

exp(iwt 2 l.(u)z)t':’/2



s* lw ,

‘(')-‘1""2 .

The asymptotic solution is qualitatively different for each side. On ride 1,
the coefficient of z is negative real. On side k it is imaginary. On the =i4.
with greater sound speed (j) the oolution decays exponentialiv, while it i«
oscillatory on side k. The asymptotic behavior due to the branch point at

8 "= { is similar to that of
I=¢dsexp (st +7/1+422) .

This is inteerated by changing the variable of integration to y and expa-®l-.
the exponential. The intepral is reduced to the residue at v = 0, piving

T-z!’-_zz.ll(hz-z:)

s/ 2 z cos(t:-zz-an).

—%
T o(e? - 223

Equation (28) shows that 8; tends to infinity for weak shock waves. With

R(El) b gosi-l

vherc g, = 0(z,) = 0(B), g 18 scecond order in B. As will M
shown, h2 is of order 82 and hl of order onc. Corrvet to a fount order err

in g,

f(ry) = zg(hale)/hy(r) = 1) 71,



and correct to a third order error
£(ny) = —2,r™) ) where 23= dw Z,. (31)

The value of g(lz) may be found from f, and f,, and this gives the wezk shock

solution. The velocity for the third mode is

v .u -.T
wa(r) = - cr.'i " — i - (WeAqu, + ztr"l)

-aA w,. 2
- ( 3 : [rp(s)) + z,] - <t
r® = a)h(r)

(3:

fz"ﬂ

With
a -
8y = (r+w, 7t +8)8 -

vy has a branch point at r = i 172 0n side k there may bhe additiona’ bras!

prints if g has singularitier for Is| D 8'1/2. Corruert te fourth order in r

- = . (oo

ahA3y?y w.Z,
(r2 - II)I.II(T) r‘ - a

H](T) - -

The contributdi-n of the pales at r = 2w, will be digcussed laters With Ay fes

Fq. (21) and hy(r) = -IIZ(r +/r? + 8)2 for amall A, the discontinuity glves



'3('1) n Zzt(l - uz) ‘ r /r2 + 8 exp (rt“) dr

= 22,0 =2 832 2 (0 7D (32)

with

xm 812, -l Yy
For large =z
Wy & exp (1Bllzu='lz} 32

The name asymptotic bchavior occurs for stronpg shocks, except that on el
there wmav he additional frequenciex. The golutiun difiers significantly (r.a-
the incomprernible care where the perturbation is localized at the interfacr.

The recursion rclation for the powvr serier may be obtaincd by expansion {n

a pover seriesn (n Ry:

) ¢ -(20+]

VB ™ =Th = Py " Vash ! ’

b= 8,caPan () = &y) l?_l(“n) “ BpChPhg (fh = &) .2-|(“h) ("
) Pl“h-(2.+l)

We have



-1.-1 _ v
Zfb - Plzpbo 8 \ ’

2y = =Plypp,"ls7! - v,

and a similar relation for side a. Eq. (27) relates f(s,) and g(s))e

2hyf - 2hpg + 2z1(h) = hp)r~l =0

The 1ritial expansion is in y = §; + Jslz + 1.

P(ql)

\'(El)

hl(f)

|'|:(I’)

"
v o= ] -21-1
—— Aty ’
ve+l

L
82 (1 - 2u%a /601 - u28)
T T

ad (2301 4 w) - 117801 - u7B)
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P(s3) and V(sy) are the same with y + yC-l. This appears to give a simpler
recursion relation than others (and less of a truncation error probler fcr
numerical calculations) because s ig rational iny, 5y = 1/2(y - y'l)- For side

b Eq. (27a) gives

£1(By = Ag) + £5C72(Bg_) = Ap)) = £3C72(By_p = Ap))
+ 7Bl 5508y + Ay) - £2(Bp) + Anp)
r37)

- c%t) (Bpp + A

—2,(6p,C + 6,7 =0,

vhere
28+]
- . 2 (m + £)!
Ap = (22 4+ 1) L pg (2t + NDi(m - 1) '
B -pc ‘: 22!+l(m + !)!

wm " Pt L VL TR - O

z; = p,czpQ3, .
For side a results a:e the same with the exception that the coefficient of 7~ i-

(§roC )Y + §yc2a,™)



and

Py * Pgdlzl-zm .

vl »> -Vld 12"‘2“

-1
dl = CpC, .

The singularities of the solution lie on ijl = 1, and so the power series usinp
Anj and ij converges everyvhere in the complex plane except right along the
discontinuity. Application of Eq. (26), typically once, but sometimes sever:!®
times gives the solution on the discontinuity in terms of 1t off the

discontinuity where the power series may be used.

V. RESULTS

Probably the most important parameter of the solution is the asvmitotic
velocity at the interface. Thic controls the rate at which the twn materials
mix with one another. The interface velocity is zero at t = 0, then mav behave
in a damped oscillatory fashion before settling down to its asymptotic value.

The latter is determined by the pole at s = 0, Eq. (26), and we have
Wag ™ “fa(s = 0) =g (s =0) . (W)
In terms of the solution at s;(sy = 0) = ZHCB'I.

Vas ™ 2(poqRg " PopRp)/(Pog + Pop)



vhere

1 1
R= (It -3 A3s(l1))/(2 +-2- Ay) .

To a fourth order error

Rm It/(z +-;-A3)

Avay from the interface part of the solution behaves like exp(z) and part like
exp(=z). The poles of the third mode (r = 2w.) cancel the positive exponentia’

and add the same to the negative exponential. The net resgult is
Waglz = 0) exp (-2) .

This is identical to the incompress’ble solution. The snignificant par: ot the
asymptotic veloclty avay from the interface {m then given by the third mule,
discugssed in Section IV,

It is convenient ta ure a normalied velocity,

Vas ° "ls/"dd’n

v compare with the incompressible solution, Eq. (1) In the weak she Vo=t

we have an explicit soluttor. lising Eas. (1), (7), and (i0) plves

I-l - i | [}
Yan T 14 ¢« F(x,v)y, (v

vhere



YbPb2

y = |

Plx,y) = [(y = D2 + &(x2 + gy~ + 1)71 = 2x = 2y)/(x + D)y + 1) .

The condition for a shock is y > 1. F is plotted in Fig. 1. It is positive a:
y * 1, has a negative minimum, and then increases. Eq. (39) often pives a prnd
approximation even for strong shocks. A rule of thumh (see Fig. 2 and 1 {c

thst the second derivative of Ugg Vith respect is c¢ is nepative, s i
«‘ther clese t Eq. (39) or somewha: smaller. An interestinp quesiti :
v other u,, has negative vslues for a given densitv ratis. T.iv =-.- !

w, roximately determined by comparing the absolute value of the mi=iv:- ..f
Fir,y) with (x = 1)(x + l)'l. The concliaion 1is that negative wvalae- arn
renfined to A € 1,5, Figures 2 and 3 plot U,s 88 a function of shack stre-.t!
€. Density jatior were x = 1,25, 1.5, 2.0, 10,0, 100.0. The densitv ratin fnr
each curve may be picked off hy its value at ¢ = 0., In Fip. 2, TS R
values of v, (1.5, 2.0, 5.0) range from 3 soft equation of state to a very has!
one. In Fig. 3, Tp = 2:0. Ruesults are similar to Fip. 2, except that '
velocity for a strong shock (1 « 1) is uaually larger. This s consigtrat w::*

the linear approximation, Fq. (39). One curve is missing in Fipg. 3 becanae the

parameters give a rarefactini inktead of a reflected shack wave.
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