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I. Introduction

Effective Hamiltonian theory is actually quite an old subjact, dating back to a
1929 paper of Van Vleck,1 and a subsequent refinement by Kemble.2 Their approach,
the so-called canonical transformation or unitary transformation method, is widely
known throughout all branches of quantum physics, from high-energy theory to quantum
chemistry. The alternative is to use degenerate perturbation theory. This is avail-

3 Bloch,“ and des Cloizeaux.5

able in several different forms, most notably those of Kato,
The past 15 years have seen an intensive development of :he subject by nuclear physi-
cisLs,6h8 based on one of these forns uf degenerate perturbation theory.

At first sight, the various degenerate perturbation formalisms all seem more com-
plicated than the unitary approach. their interreldations seem rather obscure, and
moreover they seem totally unrelated to the unitary method. It is now recognized,
however, that most of the perturnative formalisms which lead to Hermitean effectr: .
Hamiltonians are, in fact, completely equivalent, and are connected by simple ident:

ties.g-ll

We will focus here on a point which is far less obvious: the fact that,
subject to an important caveat, thecse Hermitean perturbation formalisms are actually
identicul, term=by-term, to the unitary transformation approach, when the latter's ef-
fective llamiltonian is expanded as a perturbation series. The study of this conncc-
tion also has the important benefljt of revealing the relative merits of these ap-
prnaches for practical applivations. The conclusion is that the approach familiar to
nuclear physicists is by far tYe most powerful and e{ficient ope, especially for many-
hody applications.

Another important recent development concerns Lhe coupled-cluster formalism for
many=-body system:., This form of many-body theory was originally developed by Coestoer

12 for closed-ghell systems. Over the years, both CoeutvrlJ and Kimmel and

and Kiimme]
cuworkernM have worked on extensions to epen-shell mystems, and Zabolitzky and Hylﬁ
hav? done wome highly sophiaticated nuclear calculations using this approach. Quite
recently, Lowever, Lindgrvnl6 las developed a beantifully clean formulation ol the
conpled-vluster method for open-shell aystems.  Although not essentially different
tfrom the previons work, it hurx the important podagogical advantages of being clear,
concine, and quite general. We shall ontline the mauin featunies of idndgren's ftormmla-

*Work supported by US Department of Energy



tion. This alternative to perturbation theory may well be advantageous for certain
systems, &5 it suggests different classes of approximations;17 it certainly deserves
much further development.

Although the many-body linked-cluster form of degenerate perturbation theory
wag first developed for nuclear physics |npplication|l,6-8 it is clear that this is, in
fact, a very general technigue for deriving effective Hamiltonians for the lov-energy
excitations of any many-fermion system. (This formalism has also been extended to
handle the elementary excitations of the boson system of liquid AHe.la) I shall
briefly describe three recent applications where this formalism has contributed sig-
nificantly to the understanding of other many-body systems. These applications are
(a) the derivation of effective spin Hamiltonians in magnetic insulator systems; (b)
derivation and ab initiv calculation of effective m-electron Hamiltonians fur planar
conjugated hydrocarbon molecules, and (c) understanding the so-called valence fluctu-
ation phenomenon exhibited by certa.in rare-earth compounds.

The present formal matters are reviewed in considerably more detail in Ref. 11,
together with application (b). Application (a) is covered in depth in Ref, 19, where-

as application (c) is quite new, and is yet only partially published.20

II. Degenerate Perturbation Theory

We shall rirst outline what we regard as the most simple and efficient formula-
tion of degenerate perturbatinn theory. We present only the key equations, and refer
the readur to Ref. 11 fur further details.

The simplest version of degencrate perturbation theory is the Brillouin-Wigner

form, where the effective interaction matrix s PVP, and yis determined {ro

3/= vp+2y =v2‘(2V)"P TV . (2.1)
n=0

Here P and Q are the nsual projection operators onto the "model"” and "virtual” sub-
spaces (P+ Q=1), H = Ho +V, and e = E-Ho. The effective Hamiltonian of this for-
mulat.ion is P(H0 +JV)P. Its eigenvalues E are ldentical to certain eigenvalues of
Lhe complete Hamjltonian I, and its cigenvectors represent the "model projeclions”™ PY
of the corresponding complet~ eigenvectors Y. For later use we have also introduced
the wave operator Q, which has the property that ¥ = Q(PY).

From a practical standpoint, this formulation has three serious drawbacks. Most
obvious is that ydepvndu on the (initially unknown) eigenvalue E, and furthermorc
this operator must be re-determinea for each of the desired cigenstates with diflerent
cigenvalues E. Sccond, for many-body systems the Brillonin-Wigner expansion (2.1)
lacks the dmportant linked=cluster property.  (Even for relatively few-body systims
this property remains vital; see Ref, 11.) Finully, the above effective Hamiltonian
has a non-Hormitean aspect, mince its eigenvectors are not mutually orthogonal. (They

are mevely the projections PY of the rumplete nigenvectors ¥.) This is undesireahle



because the various phenomenological effective Hamiltoniars which one would like to
explain are invariably Hermitian.
The first two of these deficiencies can be removed by expanding the energy depen-

dence cf:>’in a Taylor series. This eventually leads to the implicit equation

w=2_;yr[-m' y=.('lipd_2| P . (2.2)
r= r r E

dE*

This}’replaces Py P as the effective interaction matrix. The Rayleigh-Schroedinger
(RS) expansion for}*ﬂ i.e. the ordinary power series in V, can now be obtained by
first solving (2.2) recursively, in terms of matrix products of the various yt's,

then replacing the latter hy their perturbation series, thus:

2 4
¥W=y+Y :Y1+¥ -YP2+Y-Yu-y1+ G Q@
AV AR A A A S AR Y 4
=vev+ v vp 4 By 3-v L ovp s pid-Lover) v+ OV (2.3)
[¢] (o] [¢] OeO
Here e = Eo - H, and Eo comes from PHOP, assuming H° exactly degenerate within P.
(This restriction is only for simplicity; it can easily be removed.) Finally,lf/may

be replaced by a "Hermitized" effective interaciion matrix,

X =%+ e)"}}/(l +0) Y+ h.c.] = l.[)}h}//*] +(F) ,  (2.4)

Q ? has a well-defined RS expansion which follows from the precceeding

where 6 = QT

equations. This ){ operator has the same eigenvalues asaf/, but its eigenvectors are
now precisely orthogonal.
The RS expansion for this )( operator can Le generated by several alternative

mcthods,a’s’ll

but the present procedure has signiricant practical advantages. The
expausion (2.1) is okviously a geometric series, and (2.2) also has a geometric-like
character [since onv is expanding the denominators (Eo + AE-HO)-II. One finds, there-
fore, that (2.1)-(2.3) present many opportunities for infinite partial summation ol
the series, a techniquce of great iwportance for practical applications. (See for rxam-
ple Ref. B.) Tue last step (2.4), on the other hand, is by far the most complicated
one, from the swandpoint of itr effecl on the structure ¢f the perturbation series.
But in all applications to date that we are i1ware of, the lack of Hermitivity inW
has turned mut to be quantitatively quite mivor. [t should vsually, therefore, be
quite adequate to use just the "zecoth order” npproutmnllon,x;‘: 5(»’+ ”IT). This is
a major simplification. The alternative methodn for gencrating the RS expansion for
)C have this complicated "Hermitization aspect’ inextricably mixed with the other as-
pects, which therefore severcly restricts the possibilities tor effirient partial sum-

mation.

HT.  The Uinitary Tranaformation Methad

Van Vleckl introduced the idea of a unitary trannformation of H,



B o=vlw (3.1)

where U is to be chosen such that

Q¥ P=0 . (3.2)
The desired effective Hamiltonian is then PWP. Unfortunately, (3.2) does not suf-
fice to determine U orI#}P uniquely, since arbitrary unitary transformations within
the P suhspace are still allowed. It seems most reasonable to add a requirement that
U should have as little effect as possible within the P subspace (an% likewise for the
Q subspace). Kemble2 suggested that U should be expressed in a matrix-exponential form,

u=e®, ¢'=-c (3.3)
whereby this somewhat vague "minimal effect" requirement can be incorporated via the
simple subsidiary conditions

PGP = 0, GGQ = 0. (3.4)
One may then express G as a formal expansion in powers of V, and collect the resulting
terms in)+ for each order in V. The condition (3.2) can then be imposed separately
for the terms of each order in V [subject also to GT = =G and (3.4)] tc determine the
successive terms in the G expansion.

The net result of this procedure is to generate a Payleigh-Schroedinger expan-
sion for the effective Hamiltoriar P}*P. In common with the preceeding P(H0 +}C)P
this should genera.e some subset of the exact eigenvalues E, but it is not at all ob-
vious whether these two effective Hamiltonians should have the same sets of mod.:l
eignnvectors. These effective Hamiltonians might well differ by a unitary transforma-

tion within P, in which case their perturbative expansions wonld also be different.
IV. Formal Equivalence of the Perturbative and Unitary Approaches

1t turns out that the effective Hamiltonians of Sectjons Il and 111 are not mevely
unitarily equivaient; they are actually identical. That js, their respective Rayleigh-
Schroedinger expansions are identical. 7This welcome result was first recognized by
Klein,q and was later proven in a quite different manneir by Jﬁrgrnsvn.nl (Klein's
proof unfortunately contains some errors; a corrected proof cousists of two parts,
given in appendices in Refs. Il and 19.) In retrospect, one van sce that both pronts
are based on the idea (Section 1I1) that the transformation trom 1l to the etlertive
Hamiltonian should have "min‘mal effect within P." The broofs also shave a common
strategy: a precise definition is given for this "minimal effect," this reguirement
is shown to have a vnigue solution, and then cach of the effecltive Hamiltonians is
shown to satisfy this requirement,

Jérgeusen's prunIZI’ll iv hased on the requirement that PUP should be Mermitean.
(To motivate this choice, conaider the one-dimensional case where U - 0‘0. were Her=
miticity requires that U = 2 I, The =l posuibility ix thew chiminated by reguiring

continuity as V + 0.) It turns out that the subsidiary conditious (3.4) are suntli-



cient (although not necvessary) to make PUP Hermitean.11 It is less obvious how to
apply this requirement to P(H° +)<9P, since no Ul is visible here. There are, however,
some simple identities”  which show that

P P = (') @ny @'y, (4.1)

whereby UP = Q(QTQ)-H, and thus PUP = (QTQ)-a, which is now obviously Hermitean.
Klein's proof is based on the following variational problem: Let {a} be the set
of d eigenstates which are described by the d-dimensional model Hamiltonian (d = di-
mension of P), and let {Wu} be the corresponding set of complete eigenvectors (eigen-
vectors of H). Let {Bu} be a set of d vectors which lie entirely within P. These
Ba's are required to be orthonormal, but are otherwise arbitrary; the infinity of
possible choices for {Ba} are therefore related by unitary transformations within P.
The Wa's are also required, here, to have unit norms, but of course they do 1ot lie
entirely within P. The problem is to find the basis set {Bu} such that the quantity
Za<Ba - WU Bu - Wa> attains its absolute (i.e. global) minimum. The solution of this

22,19 and the sets of model eigén-

vector variatinnal proolem is known to be unique,
vecrtors of the perturbative and unitary effective Hamiltonians hoth satisfy this con-
dition (as proven, respectively, in the apprundices of Refs. 19 and 11). Finally,

sitice the eigenvalues and eigenveclors of these model Hamiltonians are identical, the
operators themselves much be identical.

Jgrgensen’s proof leads to important insights ahout the relative merits of the
perturbative and unitary approaches. As described in S:ction 111, the unitary approach
has a simplicity and elegance which has appealed to gencrations of physicists. In
reality, however, thii simplicity is only an illusion. Beyon! the lowest orders the
recursive procedure for determining G and P}f P becomes exceedingly tedious, and
ofiers no general insights of the type neersd for infinite partial snmmations. Two
reasnus for this complexity can now be seen. One is that the unitary approach uaust
necessarily include the complicated "Hermitisation aspect” of (2.4). The other is

1.

that the pertirbation series for U = Q(Q ”)'5’ as determined by the methods of see-
tion 1I, does not have an cxponential=like character, thus it is "unnatural" (i.c.
tnefficient) to {ocus on the (natrix) logarithm of U, as is done in the Van Vieck-
Remble approach.

We must not leave this subject withonl mentioning an imvortant caveat. The origi=
nal works did not fully specify how the unitary approach is to be img lemented in
higher order:. We have presumed a single unitary transformation, whose G contains all
orders in V. There have been a number ot applications, howeveir, which employ a suc-
cession of unitary transformat ions,

. Ul G, (s,

)
| = -—-- = . .- - - - - ...!
U Ul U2 U3 « [ c . (4.2)

where each transformation enforces (3.7) tor one higner order in V. The subsidiary

conditions (3.4) are ccomonly imposed 101 each of the G" 8. (/ well=-known example of



this procedure is the work of Foldy and Wouthuysen,23 whose object was to eliminate
the small components of the Dirac equation.) Explicit calculation shows that this
gives different results from the methods of Sections II and 1II; specifically, PU'P -
PUP ~ O'(V ) and P)’P - # a\f ). Such differsuces have sometimes led to con-
fusion, as pointed out by Friar. 24

V. (oupled-Cluster Formalism for Open-Shell Systems

Elementary manipulation of the Schroedinger equation leads to the operator
identity

(@, H 1 = va - ava . (5.1)
(It 1s to be understood that Q = QF, i.e., that ! acts only on the P subspace.) This
is one of the two basic ingredients of Lindgren's formulation.17 His other ingredient
refers explivitly to the many-body nature of an open-shell many-fermion system, as
‘ol lows.

For closed-shell systems, it is well known6 that the wave oprrator Q can be
expressed as

0=e¥ | (5.2)

Z:=l Qn, N being the tctal number of particles. Fach Wn corresponds to the

where W =
sum of all linked but open perturbation diagrams which lead to the creation of i
particle-hole pairs (starting from the closed-shel!l ronfiguration ¢°). The caret sym=-
bol is a reminder that W is a second-quantized operator, with a particle creation or
annihilation operator attached to the end of each outgoing particle or hole line asso-
ciated with an individual Wn compcnent amplitude. Lindgren noted that this represeun-

tation is inadequate for open-shell systems, and that it should be replared by
0 > .
{e}=2 i—?{wr}, (5.3)
r=0

where { ] indicates normal-ordering oi the various creation and annihilation opera-
tors. Failure to do this woulid lcad to many spurious terms.ll (This puint was also
recognized by Kimmel and cownrkrrs,la but wias not cleariy stated.)

It is enxsy to see that systematic use of (5.1) as a recursion formula will gener-
ate the Rayleigh-Schroedinger perturbation expansion tor ). Tollowing this procedure,
Lindgren was able to prove by inoduction that the perturbation-theoretic ! does indeed
have the form (5.3), where each term in W is fully counected, and is also "open" in
the sense of always leading Lo states ir the Q subspace. (It then follows lhut}f’=
PVQ is fully linked.) In a similar manner, Lindgren then obtained a forma) equation
for W itself. Thir translates into an inhomogeneoux Bet of equations for the various
cluster amplitudes within W. If one adopts some suitable (physically motivated) trun-
cation of these equations. it becomes possible to obtain the "most relevant” amplitudes
directly, without using perturbation theory. This is the open-shell analog of .he

coupled-cluster technique.



VI. Recent Non-Nuclear Applicatious

A. Effective Snin Hamiltonians for Magnetic Insulator Materials

Magnetic insulator materials include nearly all halides, most oxides, and a num-
ber of sulphides of the 3d (transition) and 4f (rare earth) metals, as well as some
of the 5f (actinide) metals, plus many other ionic compounds of these metals; thous-
ands of examples are known. Their magnetic behaviors can generally be described by
effective Hamiltonians of the form

H = -iﬁ Jijgi'gj + small corrections, (v.1)

where the couplin;s Jij are typically found to be antiferromagnetic and of fairly
short range. This is the so-called Heisenberg spin Hamiltonian, and efforts to under-
stand its microscopic origin date back to the late 1920's. The so=called superex-
change theory of Anderson25 is the standard in this field, and gives a good qualitative
and semi-quantitative account of the physics. But thix theory is restricted to an

isolated pair of magnetic ions in a non-magnetic host crystal [two Ni's in Mg0, two

Cr's in A1203 (= "ruby"), etc.]. All previous attempt: to extend this (or any other)
theory to a crystal with a macroscopic number N of magnetic ions had met with difti-
culties of the unlinked=-cluster type: terms involving high powers of N. This is known
historically as the nonorthogonality catastrophe, first observed by Slalor26 in 1930,
and it is quite possibly the first unlinked=cluster problem to be recognized since the
development of wave mechanics. It was, therefore, quite gratifying to find that the
folded-diagram expansion resolves this problem in a clean, gencral, and complete man-
ner.lq A curious feature of this application is that the appropriate Ho now contazins
tiwo-hndy as well as one=body terms. Apart from some minor refinements, however, this
was simply a matter ol embedding Anderson'’s two=site perturbation theory into the fnll

many-body tormalism.
B. n=Electron ltamiltonijans

In planar hydrocarbon molecules with doutbie honlds, molecules sitch as ethyvlene,
benzine, anthracene, ¢te., the two bonds of a double boned are not cqual. Gne s a
strong boud composed of so=-called o0 orbitals (hybrids of carbon 2x, pr anud 2py orbi=
tals) which lie in the molecular plane, while che other is a weak bond involving car-
bon 2pz orbitals oriented perpendicuiar to the plane, the so=calied 1 orbitals.
Pariser, Parr, and Puple7 showed 11 1953 that the lowest foew electronic excitel
states ot these molecules can be described faivly accuvately by attributing all ot the
action to just the m e¢lectrony alone, with their interactions described by a small
number ot phenovmenologlical parameters. Morcover, Lhese pavameters are girite trins-
farable == those determined from the opltical absorpti-us of benzine provide good pre-
dictions for the correcponding sperctra of napthaline, anthiacine, and the other "chick=

enwice” compounds. This scheme has since been extended to mich wider classes of mol. -



cules, and it is now a siandard textbook subject for organic chemists. Nevertheless,
many theoretical chemists have rejected this as "dirty phenomenology, with nn theoret-
ical justification,” and they will have nothing to do with this scheme.

There is, of course, another school of theoretical chemists who have been at-
tacking this problem with various formal techniques, and in recent years their efforts
have been evolving towarcs the folded-diagram expansion of Ref. 6. I am convinced that
the latter (or its coupled-cluster counterpart) really is the optimwn formalism for
the n-electron problem, and 1 have therefore written some pedagogical reviewszs'11
directed towards these chemists. At the least this provides a sound formal justilica-
tion for the phenomenology, and efforts are also underway by several investigators to

calculate the parameters from “first principles."”

C. Valence Fluctuations in Rare Earth Compounds

"Valence fluctuations" is the name of a many-body phenomenun first recognized
about ten years ago.29 It is seen in a number of rare earth compounds, some “classic”
examples being SmS, Sme, and TmSe. AL low temperatures essentially all elcectronic
properties become quite anomalous, indica-ing a novel type of many-budy ground stat..
The subject is complex and still poorly understood. Suffice it to say that this is
closely related to the Kondo efiect, and the most popular model tor theorctival study
is a dense lattice of Kondo=like ions (actually Anderson-Hamiltonian ions) cmbreddes]l in
a simple metal. It is also somewhat analogous to the BCS pioblem, to the extent that
a "zeroth order" description iisvolves an enormous degencracy, whereby strong conperas
tive effrcts can result {from a weak residual interaction.

Pursuing this BGS analogy, we constructed simple variational wavefunctions for
the ground states of various model systems.zo The central problem was to evalumate Lhe
necessary many-body expectation values, so that parameters could be optimized and the
physics extracted. The graphology for the above spin-Hamiltonian problem turned out
to be well=suited for this task, and the various expectation vilues were found to lave
simple analytit forms. The resnlting physical output s consistent with much of the
observed phenomenclogy.

These ecxamples suggest that the otfective Hamiltonian formalism has much poten-

tial for other fruitful applications.
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