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A REVIEW OF CHARACTERTISTIC METHODS tISkD To SOLVE
THE LINEAR TRANSPORT FQUAT ION*

Raymond E. Alcouffe and Eldward W. Larsen
Theoretical Division
University of California
Les Alamos National Laboratory
[os Alamos, New Mexico 87545 USA

We review a rfelection of characteristic methods nsed to solve the linear
transport equation. Characteristic methods are based npon the solntion
of the transport equation written in the form

~Unls = s, s “O(s - L)
Y(s) = u;(so) o ’ +f Q') e dt!
s

0

wheve s is are teagth along the characteristic,

The methods of solntion disntingnish themselves in how the characteristics
nsed for compntation are setected amd how the zonrce temn is appreximeted,
We conelnde by recommending criteria npon which a production methoa shonlid
bee hased.

“This work was performed under the auspices of the WS, Department of
Energy.



A REVIEW OF CHARACTERISTIC METHODS USED TO SOLVE
THE LINEAR TRANSPORT EQUATION

1. INTRODUCTION

Dnring the past two decades several wmethods have heen proposed (an. many
fewer implemented in production codes) to solve the multidimensional
nentral particle linear transport equnation. In this review we discuss
two c¢lasses of such methods and concentriate on one class, called
“characteristic” methods. In the following we shall describe these two
rlasses and set up a framework from which we define and compare the
varions characteristic methods found in the literature,

To begin, we assume that the trunsport equnation has been cast in a multi=-
group, discrete-ordinates approximation which is to bhe solved by sonrce
iteration. This vrocedure is the most practical one for munltidimensional
problems, and is widely used in production compnter codes. Thus, with no
loxs ol generality we may consider the one-gronp transport cquation in a
region R with a non=reentrant honadary dR:

QB 4 on(r) G = Qe ()

Q(r,Q) = /6([,Q'9') Wi, 2 A’ + S(ry)
whore

reR

{2 is the direction ot particle travel,

OT is the total cross section,

a(r, Q') is the scattering cross scection assnming an isotvopic
medinm,

S(r,2) is an arbitrary (nommegative) searee.

The banndary condition is

Plr,) = h(r,Q) , redR, Qo< 0,

where nois the onter novmal at r.

We note two features of Eqg. (1) which greatty impact tace acenrvacy ot the
m'thods  discusged below, First, the seattering Integral conples  all
angles at the locat space point r.  The local-ness of this coapting con-
trasts with the second teature,  The "streaming” term o can He written
o the form

WV og(r,) = (Illll

ds



where s is arc length along the straizht line throngh r ia the direction
Q2. Thus, the equation

dy _
ds = ¢

implics

w(r,Q) = y(r + sQ,Q) ,

which states that the value of the flux at point r in the Jdirection Q
‘fepends npon the value of the flux at any other point on the line through

in the direction (. We view this as a "non-local® contribntion to the
tinx. These properties of local and non-local contribmtions to the
flux a4t point r distinguish our two classes of methods of solution
to the transport equation.

The first class of methods is actnally based apoa the local property of
the scattering integsal; the non-'ocal nature ol the transport term is
accommtad  for in  an  approximate way. In this class a  (generally
orthogonial) spatial coordinate system appropriate for the system at hand
is used to express the operator @'V, a grid of points defining mesh cells
in the phase space (r,Q) is selected, and a balance equation “obtained by
integrating Eq. (1) over a cell) is nsed to samlate the ailterential
cquation. (This assvres particle conservation and  leawds to straight-
forward iteration acceleration method: which arve essential in scattering-

dominated  or  cigenvalne  problems.) In  sneh methods the  szcattering
integral is  readily cvaluated by a quadratice rale; this  invariably
serves  as oan exeellent approximation. However, the streiming term in

Fy. (1) generates a sarface integral in the balanee equation, and this
is approximated by a finite difference or finite clement method.  The
accuracy of this approximation is severely bimited by the size of the
mesh  in mnltidimensional problems'.  As a rnle this elass of  methods
(which inclndes the diamond difference and tinear discontinnonz methods)
perform:. well for problems in which the scattering terms ave important
(this includes most reactor systems). It performs the wornt in streaming
problems (v ith regions of vacuum or very low cross section) and in deep
penctration  (shielding) problems  wherve  computing  resonrvces normlly
require the size of the mesh to be targe in mean free paths.

The second ¢lass of methods we catl "characteristic” methods.  Sinee theuse
methods are the mein thrust of " his article, we shatl describe them in
more ddetail.  To dlisplay the geweral phileaophy behind these methods, we
invert the "streaming plus colliston” operator on the teft side of Kgo (1)
il pet

-0, 8
h(r,) = tll(ro,n) ¢

(R

b3

-(Ll.l
*I o ()(r - ) dt
0



where

and where, for simplicity, we have assumed Op = constant .,

Thns, along each characteristic we have handled the non-local transpe-t
term exactly; the problem now is to evaluate the integral term in Fq. (7).
An associated problem is that we frequently want the solntion to the
problem at every mesh point in the medium. This can be formally done by
passing characteristics through co¢very point in the system for every
dircetion €, but the practicality of mmerical solntions regnires that
¢s few a number of characteristics be taken as possible for an “adejuate"
solution. This can place consiraints on how the mesh points are chosen.
Thus, moutl of the effort in devising an accnrate characteristic method lies
in choosing the mesh points and in representing Q.

Generally, this second clazs of methods is mosxt ascfal awl acenrate whien
the zeattering integral isx not as important as the streaming tern, Ghis
ocenrs i streaming and deep penctration problems, vhere meshes arve lLarge
and  scottering is small. Also, we note that if Q(s) - 0 in Ey. (2),
then w(r,@) » 0. ‘Thns methods based on Ea. (2) will be positive provided
the bomudary and internal sonrces are positive,

In the ext section we derive characteristic methods, asaing Eq. (2) as a
starting point, aml we show how varions anthors have tackled the problem
of the setection of mesh points and evalnation of the scattering integrat.
lueluded are two methods which sceceh to combine featmes of both classes
of methods discongsed above. tn See. TH we ot fer some recompeadat ions
tor further rvescarveh in this arca.

TE, CHMRACTERLESTEHC METHODS FOR MULTIDIMENSTONAL 'RaPtEMNS

To give a aniform presentation of the varions charvacteristic methods femd
in the litervatare, we shatl take some liberties in onterpieting  cach
anther's develtopeent of his methed.  Speeciticatly, we conzider one prinp
ol a mmlbtigronp problem, we assume  that  the solntioe is obtained by
itevation on the scatiering somcee, and »#* restreict onrselves to (x,v)-
peomctry.  (The characteristicn in (x.v)=coordinates are straipght hines,
which faertitates display ot the metho's.)  The characteristi. methmls
mihe nsc of g spatial coortinate svstem and a grid of points ap v oand
t, tast as in the first class of methods.  However, cach characteristic
method differs ir the selectem of the geid and in how this geid fats intae
the operational aspects of the method,

1L.A The Method of Takencdhi

Thiz method has  been  developed  in (r,2)  gesmetry by Ko Takenchi=™4
and is atse  ontblned by Campbelt®, (Tokenchr has wsed the  method
exclusively  fer  shiebding  prebloms.) We  refer Lo Fignee | In
which one mesh cotl in (2,y) peamctry  is ddisplayed, In  Takenchi's
method the fluxes at the mesh vertex pointa are the principle nnknowns.
The davect,ons § of the characteristics are chosen independently ol the



spatial mesh and can in fact he any of the gnadrature sets presently incor-
porated in § codesS. Figure | displays a representative characteristic
ray which passes through the vertexn point D ia the direction Q and
intersects the boundary at point E. In the direction shown, tne flux is
known at points A,B, and C, the source is known at points A, B, C, and D,
and we wish to determine the flux at point D. FEq. (2) implies

-o,].l -oTt
w(D,Q) = W(E,Me + | e QL) du (1)

where 2 is the length of the line segemnt DE. The valne of the flux at E
is obtained by linear interpolation, i.e,

‘P“':n‘_]) = py(A,Q1) + (1 - p) W(B,Q)

wvhere

- ky
P =

and where poand 0 oarve the divection cosines of @ in the x and y directions
andd b oand k are the cell dim wsions in the x and y divections. (The
location of the point E in Fig. | implhies 0 « p - 1.) To evalnate the
integral term in By, (3), the source Q() is assumed Linear in s oloeg the
characteristios, i.oe.

Q(s) = ; QD) + (1 - ’;) QUE)

Again, the somce at K is interpolated from those at A and B to obtain
QUE) = pA) + (1 - p) QW)

This method thue consists of a vertex-to-vertex covaluation.  Since the
angles ot the characteriotics arve arbitrary, the method is very tlexible
and is rearchly extendable to any geometry and mesh arvangement .  Algo,
since  the approadmations In the method are due only to  tincar
interpolations, the method i inherently positive.

Some basic questiony concerning Lthis metho:dl are posed bhelow.
(1) llow ghould the spatial mesh be selected?

(Li?  How many characteristies are sufltictent?  (In other wonls, how
nhould the augntar quadratnre set be chasen?)



(iii) Is linear interpolation sufficient?

(iv) Is a linear representation of the source along a characteristic
a good onef?

We give the following comments to these questions in reverse order:

(iv) Our experience in one-dimensional slabs? has shown that a linear
(versus a constant) representation of the sonrce is essential for
accuracy in characteristic methods. We note that Sasamoto and
Takeuchi have considered exponential (rather than linear) varia-
tions in the source and have reported excellent resultsd,

(iii) Since the values of the fluxes and sources are known at the
vertices, a higher-order interpolation sunch as splines or other
polynomials incorporating points from adjoining cells conld be
used to check the adequacy of linear interpolation. llowever, the
solution of the discrete-ordinates cqunations has .« discontinnons
first deiviative across "“singular characteristics' which emanate
from cvery corner of covery material region in crery diserete:
ordinate direction in malti=dimensionat geometries, and highoer-
order imterpolation schemes  requiring  greater  smoothness  than
actnally  exists  in the tronsport  equation  solntion may  be
inappropriate.

(ii) The question of  an adegnate  mmber  of  charvacteristies  (i.e.,
divections in the quadratnree set) can probably only be anuwered by
experiment .

(i) It is cusemtial to pick targe wmeshes o oregions where the scat=
tering source in zero or very small so that thee lincar bommbary
interpolations do not overly degrade the soluntion.  The reraining
meshes shonld be on the vider of a wmean free path,

In generval, pre .se answers to the above gquestions can be obtained only
by a carefnl and experimental test program.  Takencho did andertake snch a
program in Ret. 4, bnt mosi of his results are stated for one=ddimensional
slabs, In onr opinion these resnltgs are not necessarily imbicative !
those in mmltidimensions because of ihe special smothness of the solntiens
i stab geometry,

It ix wow appropriate to make another comment.  Takenchi'n method does
rot  seem to gatisty a balanee equation, and hence nentro, conservat ion
is not strictly entoreel independently of mesh size. For example, the
aple=integrated balanee equation for a mezh in (x,¢)=-geometry (referrving
again in Fig. 1) is wiitten

Bb _AG e Al

Iy X v y R LI Gl



where

% =ﬂ W(x,y,Q) dx dy 0@
cell

% -ff Q(x,,Q) dx dy d) (5)
cell

D

J‘:D = ff wp(h,y.Q) dy d ete.

B

In analogy to Eq. (4), one could imagine a relationship from the solution
of Takcuchi's method such as

| B D 1 . .A c | C b P B
, (ot J‘) ol (Jx + Jx) t s (Jy + Jy) -y (.Jy + Jy)

)] G

e q")

+ 2 OW(QA + o8 v ot 4 Y = A W+ o' 4 g .

where the ¢uantities here are analogong to those defined in Eq. (5), bt
evalnated at the vertex points,  lowever, there is no pnavantece that this
tor a related) ccuation s ever satistioed,

By contrast, it has historically been considered cencial tor pmposes
of iteraticn acceleration methods and acenracy  that mmmervical methods
in the tirst class disenssed in Sec, | (snch oaz diamona ditference aml
Linear chscontimuont) satisty o cell balace oquation, la faet, we have
peinted ot an See. b that the eell balance  equatian is the  basic
mpredient ik these methods. o Takenchi's methoa, however, thin equation
1. compietely abgent,

It.B  Fhe Method of Wagner = Sorgis = GCohen

Thes method is deseribed in Ret. 8 and extended somewnat an Ref. 9 gt
was oleveloped to solve general (x,y,8)=geometry problems: having o miform
spatial grid. We desceribe this method in (x,y)=-geometry by means of Vig,
Apdin in order to resolve the sonvee amd catentate o local flax, this
method resorts to o grad of points.  The spatial geid aw reguincd to tora
a4 mijorm mesh of rvectangles snch that the height kK ound width b oare the
wame for cach mesh cell.  As we show an Fig. 2, only certain directions
throngh the mesh are chosen as charactervistic vays; these e the ones
that pass through the vertices ol the arcectangles along the diagonals and
throagh the center of the edges in the horizontal and vertical directions.,
This restrictim on the charactervigtica along with the nse of a uniform
mesh allows the computation of the tlux withont interpolations .nd with a
munimmm of compntational effort since the zame exponential factors ace nned
i every  cell dn each matertal  region for  attemmativm atong  the
characteristics, In Ref. 9 a scheme 1s meationed which aelaxes  the
requiremeat of a unitorm mesh by a spatial inteipotation, bt details wre
qot givea so we shall not diyenss this modtticat bhm here,



The essential feature of this method which distinguishes it from Takeuchi's
is that the source is taken to be constant throughout each mesh cell; the
source integral is then readily evaluated for each characteristic. 1n the
sonrce iteration procedure, a method to compute the source is described
which uses a balance equation similar to Fq. 4. This bhalance equation
defines the cell-average scalar tlux from which the constant source is
computed.

In summary, this method is positive, simple, anil presumably computationally
tast. It appears to be most useful for deep penetration problems that can
be described by a uniform rectangular mesh where the source contribution is
small. The accuracy is limited because of the assumption of a constant
source in each mesh and the restrictions on the characteristic directions
used. The constant source assumption implies that very small mesh cells
are reunired when scattering is an important contribntion to the source
amt the restriction on the characteristic directions implies that general
strcaming in the void regions cannot be accnrately calculated, llowever,
this method's value lies in rapidity of calculation and the method shonll
sive ask a4 benchmark for assessing the impact of relaxing the restrictions
Hpea the ¢lass ol problems it was designed to solve,

At first glance it appears  that another restrictioan on methods which
proceed from vertex to vertex is that the chavacteristics be straight
lines in the problem coordinate system. llowever, Askew has  developed
a method which tor cylinders and spheres works on the same principles
dinenssed above,

1. The !lethod ot Askew

This method, originally Tormbated by Askew!", has been expanded  to
handle  general problem:  lor a  variety of one= and  two=dimensional
peonetrical  sitnation: ' Askew's method, althongh developed  inde-
pendent ly,  takes  ingredients  from  the methoeds  deservibed  above. In
Fig. } we display some of the aspects of the method for a vectamgalar mesh
cell.  We show three egnally spaced characteristic rayy pansing throngh
the <01 in an arbitrary direction €. The characteristies veod not be
cqnally spaced, but ftor practical reasons'? thix restriction has been
imposed  on the method.  The initial valnes of the finzg an direction
Pare given at the points at which the characteristic vays enter the celly
the flux at the points at which the rays exit tue cell ig evalunatedld
trom the characteristic solntion (Fq. =Y. The sowrce is assamed constant
in the mesh cell as in the previons methed.  In orvder to compnte the fnx
Pplr.a) trom which the sonree is evalpated, the ftolloving procodnre s nsed,
Fach ray passes throngh the "center" of a volome as ot sweeps Uhrongh
the el and in the example this volume is

'
m " im

where 6A  is the spacing for angle m and ¢, is the {enpth ot the (i-th)
1y anxﬁng through the c¢ell.  n gvnrruﬁT the total vebmwe swept hy
rayn Jassing through the cell is not equal te the phyviical volime of the
cell, and so cach track tength throuph the ool is moditicd ax



2‘ - vcell
im im W Z: 6A 9,

m mjm
m J€ cell

where w_ is the angular weight.

Thus these modified "track lengths" will yield the correct cell volume
when weighted and summed over all the characteri:tics passing through the
cell. The motivation for doing this is Lo cnsure ncutron bhalance for
the cell (and consequently the system). This balance is ensured by using
the balance equation (Eq. 4) to compute che cell-average scalar flux which
is then used to compute the source. This procedure is much the same as
described for Wagner's method. A similar procedure is implemented for
preseiving balance in curvilinear geometries and is described in detail in
the references.19713 Algo detailed there are criteria for choosing the
characteristics (i.e., their spacing and the angles), the impact of
reflectingy and periodic boundary conditions, considerations of non-constant
0 in the cells (i.e., cells which contain non-rectangular subregions), and
iteration acceleration procedures to converge the scattering source and
to solve eigenvalue problems.

This method of characteristics has been implemented in  impressive
generality!’?2, and yet there are some attendant diffienltics with it
Because the source is assumed constant it is necessary to take umail
mesh cells, on the ovder of a scattering mean free path, when the
scattering contribution is large. In cenrvilinear geometries the manner
of choosing the characteristics leads to many evalnations of the flu' in
the outer regions of the system, which is quite inefficient. This is
clearly explained by Cumpbell®, who presents a remedy for this.
(Campbell's "long characteristic" method is similar to Askew's method).
Another method which is similar is displaycd next.

11.D ‘The Streaming Ray Method of Filipone

Filipponc's general-purpose (x,y)-geometry streaming ray methold!4,15 jg
an atlempt to develop a hybrid method: onc which ‘akes attribntes of
the class of characteristic methods and attributes of the local mesh methods
and combines them into a single method. To describe this method we again
refer to Fig. 3. As in Askew's method, eqnally spaced characteristics in
a given direction R are drawn which intersect the rcectangnlar region.
llowever, the problem is split into two parts; onc part solves along Lhe
characteristics with the source assumed to be zero, and the other part
solves Lhe source problem in the rectangnlar region via a diamond
differenced  approximation with zero incoming bomdary conditions,
Mathemnticallv we describe this as follows: Assmnc

w(r,@) = v0(r,Q) + ¢S(r,0)

whoere

Qo'+ atuyc = S(r,0) (6)

wc = 0 on the incident faces .



Now solve Equation (6) via diamond differencing on the rectangnlar mesh to
obtain

where i denotes a characteristic and ¢in i ¢nul i
] )

evaluated at the intersection of the ray with the rectangular mesh at the
incoming and outgoing boundary, respectively.

are the fluxes

The average characteristic flux for the cell, wgv' is obtained by

volume-averaging of the average fluxes along eiach streaming ray. Thus the
total solution is

_ ,C 0

wav - q’av t q’nv
_ .0 c
wout,i - lI"out,i g

where ¢§ is the appropriate outward boundary (Inx from the diamond
solntion.

As implemented, this method assumes a nniform spatial aesk and epecial
nadratnre sets to minimize the number of exponential calentatioms. It
also assumes a constant source, whose drawbark we have alrveady commented
on, Imt this sonrce is used in a diamond sense and may not be asn severe
a restriction as in the other methods.  OF a potentially moce serious
nature, the method does not explicltly satisfy a balance condition. On !he
other hand, the method is atrictly positive becanse of the zero boundary
conditions for the diamond solution. Also, the angnlar discretization for
the diamond solution can usually be chosen to be wmeh tess thar that for
the characteristic solution. The reason for thlx isx that in a source
region the flux will gepnerally be nearly isotrvopic amd the angutar
corrections due to the boundary condition will presumably be picked up
by the characteristic soli.tion on the finer angnlar discretization. ‘Tthis
consideration is  important because streaming in void regions can be
handled quite nicely and efficiently In an acenrate way (note tlot the
diamond solution will be zero in voids). Further detalts on thi. method
aml its calculational results are presented in the third paper of thixn
session.



I11.E The Linear Characteristic Method of Larsen

The general-purpose, (x,y)-geometry linear characteristic method!®'i/
agaih is an attempt to morc consistently utilize the advantageous
nroperties of the two classes of methods. We use Figure 1 to illustrate
the essential points. First, the characteristic equation (2) is solved
explicitly for all points in the cell for the angle Q, assuming linecarly
varying boundary conditions along the bottom and left edges of the cell
and a source linear everywhere in the cell. The outgoing cell boundary
fluxes requirnd for the boundary conditions of the adjoining cells
are eva.uatled from the analytic solution. The c¢cll-averaged fluxes,
required for constructing the solurce for the next iterate,
are evaluated from neutron balance considerations. The details on this
meLthod are given in Ref. 18,

Thus the source term is handled much the same as u mesh-oriented code
wonld and the transport from cell to cell is approximated by boundary
averaged terms rather than point values. From the perspective of methods
denoted € and D above, this method "fills" the cell with characteristics
at  angle Q but smears out the cell to cell commmication by nsing
boundary averages.

'The advantages o! *he methnd lies in its simplicity, which is reflected in
computational efficiency!®. Also, it is mathematically cleas in wiat sense
the method is approximating the original differential equnation, -nd
neutron balance is rigorously assured. The algebraic simplicity or the
method takes advantage of the fact that the characteristics are straight
lines in (x,y)-geometry. In curvilinear geowmetrv Lhe amalytice solution
it the curvilinear coopdinates is not  simply cxpressed, amd  henee
compntational efficicacy wonld require the storage of a large amommt of
data for solntion.

IHE.  RECOMMENDATLONS

It is apparent  that many rescarchers  have  found  the  method  of
characteristics wsefnl for solving certain classes of transport problems,
In our view these are the problems in which the streaming teem dominat en
the sonrce contribution, such as In voids or deep penetration problemn.
The CACTUS code'? does have the capability of solving a vhde varicty of
problems, including cigenvalue problems, and its geametric Plexibillty in
closer to that of Monle Carlo codes than any other code that has come to
onr attention,  However, we o !w CACTUS ax a special=pnrpose code beeange
it appears to be much less effliclent in terms ol computer resonrcees than
other peneral purpuse transport codes which solve cigenvalue and shiclding
problomg®' 1Y, We de belleve  that an efficient  characterintic
method can be developed for n genernl=purpose transport rvode, To do this
will, however, involve additional rvesearch which we have divided into the
foltlowing three arveas.

LHE.A Balancee Kquation

Oir - pxperience  in developing methods  to solve and  accelerate  the
solution ot  ithe transport cquation Indlentes  that  having o  balance
camatton appropriate to the method leads to gin increane In ncenvacy and
in the effectivencss of iteratlon aveelervatton schemen.  The  methods
of Wagner and of Askew and the tinenr charncterintic method do datisfy
a bnlance cquatton.  Such an equntlon tor more general methods should be
tormulated and tncorporated.



I1I.B Representation of the Source

All of the methods discussed in Scction il make use of a mesli in the
problem coordinate system to form the source. [t is our experience that
at leagt a linear representation for the source is necessary for an
accurate characteristic method, especially for large meshes'?'!8,
Thie at-least-linear representation alsc seems Lo be neceded Lo satisfy the
diffusion limit f{or scattering-dominated prohlemsa. Whether this repre-
sentation is best done in the problem coordinates or strictly along Lhe
characteristics (as in Takeuchi's method) is an open question.

111.C Geometric Flexibility

A final distinguishing aspect of the methods displayed in Section il is
the flexibility allowed in  the placement of the calenlational
characteristic rays to solve the transport prohlem. In Wagner's method
there is a minimum of flexibility since the spatial mesh determines the
allowed directions for the characteristics. Askew and Falippone relax
this restriction somewhat, althongh they prefer o regnlor placement of
the chararteristics (e.g. equal spacing, a1 fixed mmmber per cell, ete))
Tokeuchi's method places no restrictions; any direction con be chosen
and the necessary cell boundary data ace sapplicd by interpotation. ‘The
merit in the method: which depend on a muniform mesh 1w that a minimom
amount  of data needs to be computed and stared to allow the method teo be
vectorized.  The implication here ia that a vectorizable ealentational
method will nitimately be aact efficient.  In a vectorized mode one mist
haver no cetl=hy-cell decisions made during calentation; this rmlen ont
methods based upon interpolation. oOn 'he other hamd, interpolation can
tead to a more accurate method with o given mmmber of mesh points,  Thas
some  conpromike or melding of the two approaches conld be opt hmm -
perhaps along the lines implicit in Filippone': method,

In conclusion, the r1athod of charncteristics has the promise of teading
to (but has not yet prodinced) a gencral=pourpose methol which altoeviates
wany of the difficultios encountered by methods incorporated in existing
penerat=purp se prodoction codes,
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Fig. 1 X-Y cell used to Describe Takeuchi's Method
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Fig. 3 X-Y cell used to Describe Askew's and
Filippone's Method
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