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THE LINEAR CHARACTERISTIC METHCD FOR SPATIALLY
DISCRETIZING THE DISCRETE ORDINATES EQUATIONS
IN (X,Y)-GEOMETRY*

E. W. Larsen and R. E. Alcouffe
Theoretical Division
University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 87545 USA

In this article a new linear characteristic (LC) spatial differencing
scheme for the discrete ordinates equations in (x,y)-geometry is described
and numerical comparisons are given with the diamond difference (DD)
method. The LC method is more stable with mesh size and is generally much
more accurate than the DD method ou both fine and coarse meshes, for
eigenvalue and deep penetration problems. The LC method is based on
computations involving the exact colution of a cell problem which has
spatially linear bourdary conditions and interior source. The LC method
is coupled to the diffusion synthetic acceleration (DSA) algorithm in
that the linear variations of the source are determined in part by the

results of the DSA calculation from the previous inner iteration. An
inexpensive negative-flux f:ixup is used which has very little effect
on the accuracy of the solution. The storage requirements _or LC are

essentially the same as that for DD, while the computational times for
LC are generally less than twice the DD computational times for the
same mesh. This increase in computational cost is offset if one computes
LC solutions on somewhat coacser meshes than DD; the resulting LC solutions
are stiil generally much more accurate than the DD solutions.

*This work was perfcrmed under the auspices of the U. S, Department of
Energy.



THE LINEAR CHARACTERIST1C METHOD FOR SPATIALLY
DISCRETIZING THE DISCRETE ORDINATES EQUATIONS
IN (X,Y)-GEOMETRY

I. INTRODUCTION

The discrete-ordinates equations have been used for many years to approxi-
mate the neutron transport equation in larg2-scale numerical calculations.
The traditional method of spatially discretizing these equations is the
Diamond Difference (DD) method, although newer methods have been proposed
{1-11], and one of these, the Linear Discontinuous (LD) method, has re-
cently been implemented in several production codes (3,4].

A detailed study of spatial differencing schemes for the discrete-ordinates
equations in various geometries has been undertaken at Los Alamos, and the
results for slab geometry have been published [7]. These results indicate
that for slab geometry, a new Linear Characteristic (LC) scheme outperforms
the DD, LD, and other methods. In this article we describe our geaeraliza-
tion of this rethod to (x,y)-geometry and present the results of some
numerical comparisons with the DD method.

Roughly speaking, the philosophy of the LC method is to (i) represent the
transport boundary conditions and source for a spatial cell by linear
functions; (ii; solve the cell transport problem analytically by inte-
grating along its ¢ aracteristic Jlines; and (iii) generate, directly
or indirectly fcom this analytic solution, linear representations to be
tsed as boundary conditions for adjoining cells and to censtruct a scat-
teriag source for the next iteration. Step (iii) in this procedure is the
most important one, since the manner ir which it is implemented determines
the speed and accuracy of the method, as well as its interaction with
acceleration methods and the overall storage requirements of the code.

In slab geometry, ' haracteristic" methods following the above basic proce-
dure have been developed by several authors (6,7,9]. Similar methods have
also been developed by other authors for other geometries, although
generally they are based on computing cell-vertex fluxes rather than
cell-average and edge-average fluxes, as is done here. Lathrop's
(x,y)-geometry Step Characteristic (SC) method [12] does utilize cell-
average and edgc-average fluxes, although his method employs constant
(rather than linear) representations for the source and boundary conditions
for each cell. Our (x,y)-geometry metind can thus be regarded as a higher-
order versioa of the SC method.

The ILC method has evolved from its original conception over the course of
numerical testing. In Sec. II we describe the development of this method,
and in Sec. I[II we present the results of some numerical studies comparing
the LC and DD methods. we conciude with a brief discugsion in Sec. IV.



II. THEORY

To describe the LC method in (x,y)-geometry, let us consider a typical
within-group transport problem for one spatial celi:

Y 3y = _h -k
H 3x ML ay v oy = Sav v (x 2) Sx v (y 2) Sy !

0<x<h, 0<Ky<k, p>0, n>0, (2.1)
WO =Yty -De  , 0<y<k (2.2)
$(x,0) =gy + (x - 28, , 0<x<h . (2.3)

In an inner iteration, the source for each cell (right side of Eq. (2.1))
is prescribed and one sweeps from cell to cell through the system to
obtain improved values of ; these are then used to update the source
for the next iteration. Thus we shall discuss separately the problem of
sweeping through the system with 2 prescribed source, and the problem of
updating the source with the new values of Y.

First we consiasr the sweeping part of the problem. In order to
generate linear boundary data for adjoining cells, one must obtain linear
representations of the angular flux exiting each cell. Thus, in the con-
text of the cell problem (2.1) - (2.3), we require linear representaticns
of the form

w(th) x 'JJR + (Y = %) eR ] 0 < Yy <k ] (210)

B, K) 3 g+ (x - D) O , 0<x<h . (2.5)

In the orignal LC method, these representations were detsrmiusd vy the
following two-step procedure: (i) construct the analytic solution Y(x,y)
of the cell problem (2.1) - (2.3); (ii) choose the representations (2.4)
and (2.5) to exactly preserve the zero'th and first moments of ¢ on the
right and top edges of the cell. (Thic procedure owes a debt not only to
Lathrop [12]), but also to Vaidyanathan (6], who has emphasized the impor-
tance of preserving spatial moments of the analytic solution of cell
problems.)

Step (1) is carried out by integrating the transport equation along its
characteristic lines. The result can be writtun

Y(x,y) = ¥(x,y) + b+ (x - g) P+ (y- %) Py (2.6)



where

o+ (v - % - Dogl ™y,

Y(x,y) = 2.7)
h -
[°B+(x°i -%y) BB]eoy/n » My <rx
and
Sx g
= =< =Y
Px o va —0 [} (2-8)
HP nP
S Cav 2Pk _z)
Pav = o o ( R Tk ’ (2.9)
o =¢ -P  +3 p B. =8, =P (2.10)
L L av 2 °x ' FL L v ! '
a, =y, - P +|_(P By, = 6, - P (2.11)
B B av 2y ! B B X ) '

Step (ii) can now be carried out using this analytic form of ¢. All of
the integrations can be performed explicitly, since the integrands involve
at most the product of a second-order polynomial and an axponential.

The most efficient coding of the method for 0 # 0 inv.lves first computing
the constanis in Eqs. (2.8) - (2.11) and then manipulating and evdluating
Eq. (2.7). However, this procedure is invalid for 0 = 0 since all of the
constants in Eqs. (2.8) - (2.11) become infinite as o + 0. (Mathematic-
ally, this occurs because of a removable singularity at o = 0. The
angular flux Y actually depends continuously on O as 0 + J.) We handle
this problem by wutilizing a separate block of coding which treats
specifically cell problems for which ¢ = 0. Also, we treat cells for
which 0 € 0 << 1 in a third separate block of coding, since rouudoff errors
would otherwise become infinite as ¢ + 0. Here we expand ¥ in powers of
g, keeping terms only up to @%; this block of cuding is used whenever

0 < min(%—r , ‘]7%]-)< .01

The above metho4 1is not inherently positive, for the following reason.
If the source and boundary conditions for the cell problem (2.1) - (2.3)
are nonnegative, then § is nonnegative, and so Y, and Y. will be nonnecga-
tive. However, the values of O, and O, can be such that one or both of
the representations (2.4), (2.5? become negative at certain poinots. We



have observed that these negativities can lead to negative cell-average
angular and scalar fluxes. To prevent this, we alter the values of

or O, by the miiimum amount so that the new representations are nonnega-
tive "along the appropriate cell edges. For example, if k [O8y5] > 2 ,
then we replace 6, by EOR, where § = 2 /kIORI. These adjustments
guarantee that the %jnear representations (2.%) - (2.5) will be not:ega-
tive as the system 1is swept cell by cell, provided of course that the
sources and system boundary conditions are nonnegative.

The above nmethod was tested on a variety of problems and was found
to give good results compared to [D. (Cell-average fluxes for the above
LC method were computed in each cell calculation using the balance
equation, and these were <compared to the DD cell-average fluxes.
Integral quantities such as total absorptions and leakages were also
computed.) However, the new method was found to be considerably more
expensive per cell calculation than the DD metnod.

In an effort to reduce the calculational cost of the new method, we
examined a number of schemes in which the first spatial moments of ¢
are approximated in Eqs. (2.4) - (2.5) rather than computea exactly.
This led to the following modification ¢f the LC method.

Concider again the cell problem (2.1) - (2.3) znd suppose for definite-
ness that

p= bk oy (2.12)

Then the characteristic Jine which emanates from the lower left corner of
the spatial cell intersects tne top edge of the cell at the point x = ph,
y = k. We define wR and OR as

k
Yp = :;f ¢Ch,y") dy' , (2.13)
C
! .
% & (b(h,k) = ¢(h,0)] . (2.14)

Tn define 6., we note that the boundary conditions on the left =dge of
the cell in?luence $(x,k) for 0 < x < ph, while the boundary conditions
on the bottom edge of the cell influence Y(x,k) for ph < x < h. There-
fore, we compute separate linear representations of Y(x,k), analogous
to the one above for Y(h,y), but for the two intervals 0 < x < ph and
ph < x <h; then we choose the primary linear representation of y(x,k),
given by Eq. (2.5), to exactly preserve the =zero-th and first spatial
moments of this piecewise linear representation. The result is:

h
‘bT = prL + (l - p) ll’-lR = %J W(K'.k) dx' ’ (215)
0



.1 3
8 = 55 (VPR - 0,K) - b(0,K)] p

. 3
s WG - eeh ¢ 0,101 (1 - p)
+ h}2 (Ypg = gl 30 (0 - p) (2.16)

where

ph
1 ] ]
bTL = b‘ﬁf dJ(K vk) dx ’
0

h

; - 1 ' y
W-[-R = (1 - p)h J P(x',k) dx
oh

Then br and wT - given by Eqs. (2.13) and (2.15) - are the exact zero'th
moments of Y ‘on the right and top edges of the cell, while 6, and 8
given by Eqs. (2.14) and (2.16) - are suitable approximations %o the first
moments of 4. (These approximations result in atout a 20% savings in
computational effort with very little loss of accuracy.) The linear re-
presentctions (2.4) - (2.5), together with the formulas (2.13) - (2.16),
the treatments for 0 = 0 and 0 ¢ 0 << 1, and the fixup describec above,
describe the sweeping part of an inner iteration in the LC method.

The second part of an inner iteration consists of updating the source.
This was originally done in the LC method by constructing, for each cell
and discrete-ordinate direction, the linear representation (given below
in the context of the rell of Eq. (2.1))

h\ k
VEy) X bt e by - ) by 0 <x<h, 0<y<h,
(2.17)
where ¢av' Y , and Y are determined ({rom the zero'th and first-order
balance "e uaeions, ustn Y., 6., otc., as the zero'th and first-order
q 8

moments of Y oa the cell edges. (In additien, § and ¢ are multiplied
by a suitable factor 0 <§ < 1 if the represe’i’xtationy (2.17} becomes
negative, so that the resuliing representation is nonnegative in the cell.)
These representations are folded into arrays which, upon the completion
of the inner iteration, give tne zero'th and first (or, approximations of
the first) spatial mcments within eachi cell of those angular moments of
¢ which are neeled for the scattering law. This procedure is straight-
forward and completely analogous to the way the boundary fluxes are
treated, anl it gives gooC reyults for problems with scattering. More-



over, it interacts well with rebalance [13]. However, it requires the
stcrage of three times the number of source arrays as in the DD method,
and for reasons which we do not fully understand, it interacts poorly with
diffusion-synthetic acceleration (DSA).

To contend with these two serious difficulties, we completely altered the
above strategy of updating the source for the next inner iteration and
after some experimentation, settled on the following procedure, which is

intimately connected with DSA. In a cell calculation, we now compute
at the autgoing vertex and, using the balance equation, ¢ __, out we do
not compute Y  or Y . The verte« fluxes are folded into an array which,

at the eund of the E&ansport sweep, gives the scalar vertex fluxes, while
the cell-average fluxes are treated just as in the DD methed: they are
folded into arrays which, at the end of the tramnsport sweep, give those
cell-average angular flux moments which are needed for the scattering law.

Thus, at the end of the transport sweep, cell-averaged angular flux
moments and vertex scalar fluxes are avaiiable. (This is precisely the
information which is rcquired of the DD method by DSA.) Now a diffusion
problem is solved in which the above information from the transport sweep
appears as inhomogeneous terms [14]. The result of this diffusion calcu-
lation are vertex scalar fluxes, which we denote for the cell in Eq. (2.1)
as GBL' @B , GTL' and §n,. (The transport vertex scalar fluxes are denoted
without ha%s.) Also, f§¥ S denote the cell-average source for this cell
as computeqd using the valued'of ¢_ which were obtained from the transport
sweep. (S is a function of angle if scattering is anisotropic.) Then
the linear source which we use for the next inner iteration 1is

S(x,y) - S, la+ (x-3) B+ (y-5)yl (2.18)
where
Lt %Rt 0t %
Ot * “Br T 1L * %L
g = 2 ®r * %R " %L " %L
h Opp * Ogg * O * Oyt
=20 % " O ” %ar
k Org * Opg * 07, * 9y

In addition, we multiply B and y by a suitable factor 0 < § < 1 it the
bracketed term in Eq. (2.18) becomes negative, so that the resulting
term is nonnegative in the cell. Then the source S tor the next inner
iteration will be positive unless th: scatteving cross-sections are
negative due to to an improper spinerical ha-rmonics truncation.



The above LC method generally interacts with DSA at least as well as the
DD method, and moreover, the storage requirements rocr the source reduce
to these for DD plus one array for the vertex scalar fluxes. (Essentially,
the number of required source arrays has been reduced by one-third.) In
addition, there is about a 15% savings in computional effort since ¢ and
ws no longer have to be computed.

On the negative side, there is a minor loss of accuracy, but this is sub-
stantially outweighed by the advantages listed above.

1II. NUMERICAL RESULTS

Here we present some numerical results from two three-group, isotropic
scattering problems, the first a k-eigenvalue problem and the second
a shielding problem. Due to their size and the characteristics of their
cross sections, both problems are somewhat difficult for the DD method.

IIT.A. Eigenvalue Test Problem
The syster, is shown in Figure 1. Dimensions are given in centimeters.
Regions I, II, anc IIl are a fiss.on, absorbing, and a scattering- shxeldxng

region respectxvely, and the cross sections are given (with dimension cm™!)
in Table 1.

A series of :ive calcula*tions were performed using the DD and the LC

methods. In each calculution the angular quadrature approximation
was used and the number of (unxformf spatial cells in each region was
varied as shown in Tabl: 2. (The fine mesh is indicated in parentheses
in Fig. 1.)

In Table 3 we present the eL%envalues for each case as computed with a
convergence criterion of 107 We also give the total number N of
inter:tions and computation time T (in seconds) taken to converge the
solution to a (greater) 10~ error. (We do this because 107 is a more
typical convergence criterion for eigenvalue problems.)

The {ine mesh (Case 1) was chosen so that in the fission region a
spatial cell is less than 0.1 mfp across; for this mesh one can hope that
the solutions are nearly spatially converged. This is seen to be true
for the LC eigenvalue, but not for the DD eigenvalue. Also. the inter-
action of the LC method with DSA is seen to be at least as good as that
with DD. In interpreting the calculation times, we caution that neither
the LC nor DD methods are fully optimized as to computational efficiency.
For example, the DD code is TWOTRAN-DA, which has the algorithm for either
an (x,y) or an (r,z) solution; this is less efficient than a straight
(x,y) algorithm.

III.B Shielding Test Problem

The system is shown in Figure 2 and the cross sections for regions I
and Il are given in Table 4. A spatially flat source in the inner shaded
region, with the normalize! sp. "trum 0.739, 0.261, and 0.0 for groups 1, 2,
and 3 respectively, drives the system.



This problem was solved numerically on a coarse aand a fine spatial mesh
(the number of cells for each mesh is indicated in parentheses in Figure
2), with an Sg quadrature set, and with both the DD and LC methods. The
convergence criterion was 107, and in certain cases the solutions did
not fully converge. The net groupwise leakages through the top and right
edges of the system (LTL and L,) €‘or each method and spatial mesh are
shown in Table 5. The LC results are observed to be quite stable with
coarsening of the mesh, whereas the DD results are less so, particularly
in the horizontal direction where the spatial cells are large as
measured in mean free paths.

The number of iterations, the error if not fully converged (in parentheses)
and the computation times are given in Table 6.

It is puzzling that the DD solution is fully converged on the coarse mesh
but not on the fine mesh. However, this erratic behavior of the DD
solution for large meshes is well-known and is one of the motivations for
seeking a more stable and accurate differencing scheme.

L= add that the above coarse mesh 1s abczt as coarse as it can be for bota
methods to converge. For instance, if the number of intervals in the
outer region is reduced from 15 to 13, the DD method fails to converge and
if it is recuced from 15 to 10, iLhen both methods fail to converge.

Finally, we compared the cell-average scalar fluxes for the twec methods in
the cells along the right edge ot the system. (See Figures 3 and 4.) The
LC fluxes decrease monotonically from cell to cell in the upward direction
while the DD fluxes display an overall decrease, but coupled with an
oscillatory behavior. This, together with similar observations from
other problems, indicates that the LC pointwise fluxes are more stable
and accurate than the DD pointwise fluxes.

IV. DISCUSSION

In this article we have descrited the development of tii= LC method in
(x,y)-geometry and have also piven some numericai comparisons with the
DD method. The LC method (coupled with the DSA algorithm as described
in Sec. I1) shows cou:iderable promise of giving accurate and stable
results on spatial meshes which are coarser than those appropriate fcr
DD, especially for problems which are difficuit for DD. The LC storage
requirements are virtually the same as DD, and the LC computation times
are often about equal to and rarely greater than twic> the DD computation
times, for the same mesh, and for problems in which both methods converge.

Nevertheless, the results given in this article should be viewed as work-
in-progress rather than ay definitive. The final form of the LC method is
not settled for the followirg two reasons.

First, the interaction between LC and DSA is not properly understood and
not fully ironed out. We expected DSA to interact better with LC than
with DD, but we have fourd problems in which the interaction with LC

is erratic (and, in fact, worse than with DD). Also, there are more
difficult problems (characterized by very large cell sizes) in which
neither LC nor DD (with DSA) converges. (However, as the cell sizes

increase, UD is normally the first of the two methods to fail to converge.)
To contend with these difficulties, it may be necessary to introduce
modifications in both the LC and DSA algorithms.



Second, the LC method has not been tested on anisotropic scattering
problems, and it may be necessary to introduce further changes in the
method to achieve high accuracy. This possibility arises because the
linea: variation of the source in a cell is presently determined solely
by the vertex scalar fluxes.

It is likely that the LC method, as strictly envisioned in this article,
cannct be practically applied in curvilinear geometries. This is because
the analytic solutions of cell problems consist of functions which are
more complicated than a polynomial times an exponential, and which cannot
be explicitly itegrated. Thus, unlike the situation in (x,y)-geometry,
analyti: expressions for the cell-edge and cell-average fluxes are nct
available. High-accuracy numerical integrals of course are available, but
the extra computational cost would probably render the method uncompeta-
tive. The LC method of this article can however be easily extended to
triangular nesh (x,y)-geometry problex-. It can also be extended to
(x,y,z)-geome rv, although here algebraic difficulties occur which make
the method appear somewhat less attractive.

In summary, the LC method in (x,y)-geometry requires more work to attain
an optimal form. The ma2in difficulty appears (o lie in the interaction
hetween the LC and the DSA algorithms. The goal, which we hope can be
achieved, is a method which gives accurate and stable results fnr general
types ot problems and for relatively coarse spatial meshes.
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Table 1. Cross Sections for the Eigenvalue Test Problem

Pegion  Group (g) x _ V9 °r Og+g 0g-l*g og-Z*g

! 1 0.7 0.0524 0.1440 0.0871 0 0
I 2 0.2 0.01 0.2591 0.2486  0.0453 0
I 3 0.1 0.006 0.4062 0.3883 0.0387 0.0001
Il 1 0 0 0.1 0 0 0
It 2 0 0 0.3 0 0 0
I1 3 0 0 5.0 0 0 0
II! 1 0 0 0.2163 0.1760 0 0
IT1 2 0 0 0.3255 0.3236 0.0399 0
ITI 3 0 0 1.1228 0.9328 0 0

Table 2. Spatial Meshe: for the Eigenvalue Test Problem

Case Region I Reginon _2 Region III

v -
o

— = N S~ o
o



Table 3. Results for the Eigenvalue Test Problem

LC DD —_—
k Kk
Case eff N T eff N T
] 0.603615 18 50.20 0.603496 19 30.03
2 0.603606 26 9.26 0.603129 129 16.70
3 0.603526 24 2.93 N.601650 25 2.33
4 0.603102 30 1.34 0.595217 37 1.60
5 0.583862 44 1.24 0.550890 33 1.56

Table 4. Cross Sections for the Shielding Test Problem

Region Group (g) Or __fg:g_ _Sg:l:g_ og-Z*g
I 1 0.2656 0.16 0 0
[ 2 1.1745 1.101 0.1052 0
1 3 3.2749 3.2565 0.073 0
Il 1 0.2163 0.176 0 0
II 2 0.3255 0.3236 0.0399 0

IT 3 1.1228 0.9328 0.9828 0



Table 5. Leakages for the Shielding Test Problem

by Cy

Coarse Fine ) Coarse Fine

Group LC DD LC nb LC DD LC DD

1 8.74E-8 5.73E-8 8.88E-8 8.30E-8 9.86E-5 9.22E-5 9.89E-5 9.76E-5
2 4.69E-8 3.66E-8 4.85E-8 4.78E-8 6.19E-5 5.70E-5 6.22E-5 6.10E-5
3 9.90E-8 1.16E-7 1.00E-7 9.66E-8 1.42E-4 1.31E-4 1.43E-4 1.40E-4

Total 2.33E-7 2.10E-7 2.38E-/7 2.27E-7 3.02F-4 2.81E-4 3.C.E-4 2.99E-4

Table 6. Number of [terations, Errors, and Conputation
Times for the Shielding Test Problem

Coarse Fine
Group LC_ DD LC DD
1 Y 30 20 37
9 33 69 14 74 (3E-3)
3 74 (IE-4) 55 13 74 (2E-3))
Total 116 154 67 185

Time (sec) 124.7 67.7 325.0 341.6



Figure 1.

System for the Eigenvalue Test Problem
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Figure 2. System for the Shielding Test Pcoblem
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Figure 3. LC ( —— ) and DD ( x x x ) Cell-Average Fluxes on Right
Edge of Shielding Problem (Coarse Mesh).
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Figure 4., LC ( — ) and DD ( x x x ) Cell-Average Fluxes on Right
Edge of Shielding l'roblem (Fine Mesh).
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