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NEH DEVELOPMENTS IN DIFFERENCING THE SPHERICAL
GEOMETRY NEUTRON TRANSPORT EQUATION

Warren F, Miller, Jr.

Deputy Associate Director for Nuclear Programa
Loa Alamos Scientific Laboratory, Los Alamos, New Mexico USA

ABSTRACT

Early differencing methods due to Carlson, Lathrop, a.d others have
continued to be used to approximate the spherical geometry neutron trans-
por: cquationa. Nonphyslcal depressions in tho scalar flux profiles cou-
tinue to causc problems when these early techniques are used. Hecent
de'relopments, hawever, proviae “~rter underatanding of the hehavior of

these methods and have led to a simple Approach to improve numerical
wolutions.
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1. INTRODUCTICN

It has been observed for aevaral years that nonphysical depressions
in the scalar flux apatial profile can appear near a apherical system ori-
gin when production, diamond-difference, discrete-ordinatea, neutron
transport computer codes are used.11? Such depresaions have also been
observed in solutions from the nawer spatial finite element, discrete-
ordinates code ONETRAN,3 Even when such depresaions do not appear, the
origin flux car be disconcertingly inaccurate, exhibiting a first-order
error in the spatial variable.

Reed and Lathrop“ associated origin acalar flux depressions with the
spatial truncation error. They studied this errcr as well ar the angular
truncation error with the purpoaea of improving accuracy and eliminating
these depressions. The results of their work were weighrec:diamond-
difference schemes for use in both the angular and the spatial variables.
Using their approach. they reported elimination of the origin scalar flux
depresaion for a sample problem. Their angular weighted-iiamond scheme,
however, has not been extensively used since it does not allow the trans-
port computer code user the freedom ot picking his own quadrature data.
Their spatial weighted-diamond acheme is not used due to substantial
inaccuracies for cosrac grids.

In the preaent work, the discrete-ordinates equationa are first
developed and an expression for the angular truncation error ii deter-
mincd. 1t is shown that one cluss of scalar flux depressions at the svs-
tem origin is due to this angular truncation error, aad thur, cannot be
eliminated by any convergent apatial dlfference acheme. The spatially
differenced eruatiorns arce then derived using diamond differencing and we
demonstrate thar the spatial truncm lon error is spatially nonuniform and
becomes firat-order at the origin. The second ciaww of acalar flux
depressions is duc to this spatial truncation errar. \e d velop a new
imjirovement to the dlamoend-difference equations due ta Alcouffe and Illler
yiclding mRcecond-order errors at the system origin, Thewse thearetical
develapments are provided In Sectionr 11, Sceetlon 111 provides namerlval
results and conclusions,

. THLORY
Ao The Divcrcere-Ordinates Approximat lun

The spherical geometre transhort eqaat gy, [or a glven enerpy grang,
may be written aws
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NEUTRON TRANSPORT EQUATION 3

In Eqs. (1) and (2), the inhomogeneous term, Q(r), includea external
fission, and scattering sources to the energy group. For the purposes of
this study, there i8 no loss in generality in assuning that this aource
i3 iaotropic., This group source, Q(r), is a function of the flux itself,
and the equation ia solved iteratively. It 1s assumed that an interation
cycle (called an outer iteration) on the fission and Rroup scattering
source has just been completed and Q(r) is known. In Eq. (1), the scalar
flux, ¢(r), iR defined as

1
1(r) -%f di'u(rou), &)
=1

The scattering process within the energy group ia alao assumed to be iso-
tropic. For a given outer iteration cycle, an inner iteration procedure
is used to solve Eq, (1) or Eq. (2) since S(r) is a function of y(r,w)
through {(r). Thus, it is further assumed :hat ar inner iteration cycle
has just been completed and S(r) is known.

An angular mesh is imposed on the domain -1 < u 2 1 and the meah
edges are denoted by Ups1/2 and Up-1/2 ¢ uq < ¥pa1/2. We initially insist
that yy be thc midpoint of the interval. We denote

rm(r) - u(r.nm) (4)

and define the normalized mesh intervals by

1
o = 5('1»1/2 ) “m-1/2)' ¢

m=1, 2,... M.

The discrete~ordinatews approxlmation to Kq. (2) 18 then

" ard ) Cm1/2%me1/2 7 Mne1/2m-172)

.._E.. - — + " . L) g r
4 =; (r)i () = §(n) ()
r m

m=1, 2,...,. M.
where
M

S0 = (OT) + QD =0 (DY W, () + 06, N

m'=1

Al
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8+1/2 T %m-172 2“mum ' (8)

m=1,2,..., M.

In Eqs. (B) @, is taken to be zero Jdue to teutron conservation argu-
ments" and, 1f éﬁe mesh points and intervals are aymmetric (up ™ ~Uyeml
and Wy = Uy_py1), a8 13 usually the case,um_i‘g = 0. Note in Eq. (7) that
the scalar flux integral [Eq. (3)] is approxlhited using s quadrature rule

M
() = T =W (), 9

m'=1

Thus, W , ;. are simultaneously uaed as quadrature weights and points as
well as angular mesh intervals and mesh points.

Each of Eqs. (6) is onc equation in two unknowns, Vg / (r) aund

Ym(r) assuming the cell edge {1ux yp-1/2(r) is known. Thus an addi:ional
cquat fvn {5 required. We invoke the angular diamond equnlion.'

(II

(11

-.m(r) - ,_(r) + (r);, (10;

m+l/ m-1,2

o=1, 2----. H'

Ax the othier needed relationship,  The set of Equ. (6) and (10) are wolved
in the order of wmall valucs of m, corresponding tov the most negative
valuen of by to large valucs of m corresponding ro 1the @oat poaitle
values uf g,

For m= 1, a relutionship with wvhich toe determine u},z(r), askaciated
with the direction = -1, Ju needed. This cquat fan, fur the so-cnlled
sitm Ing direetlon flux, {s ebtained by wetting v = -1 In Eq. (1) resubi-
Ing in the slnh geometry trarsport cquat lon

=
— ) = S
Ot u(r) ulle|) S(rY, WUl

We hnve aswnmed that the y derivative of ¢ I8 hwanded at 3 = =1, Thin is
the care for a nonsingulur Rource--the mituaton cansidered In rauspert
cadenw,

Asnar bacod with By, (1) Is the bamdary eond 1tlon m the omer
[RTT RTTL S SR S

v(Ry) = ¥(u) <0 (o)

where v(u) s known, The analuogea. condlitiane for Egqm. (6) are
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W-(R) - 'n (12b)
m=1, 2, ..., M/2.

Although no boundary condition is required at r = 0, for the development
to follow, we must conaider the ferm of Eq. (1) st the origin. WUe multi-
ply by r and let r » O to yield

Sy

|0 = O (13a)

so that the angular flux is isot.opic at the origin. Analogously,
multiplying Eqs. (6) by r, letring r - O and using Fqu. (8) and (9) yielda

um(r)l " i

| r=0

- "r(#i/z (13

r=0 r«g

m=1, 2, ..., M.

To determine angular truncation errsrs in iqa. (6) we follow the
argument preaented in Heference 4. Namelv, for a particular m, we Beek
te determine the error in the cquations satisfied by wm(r). wn*é 201) and
‘m-1/2(0). That 1w, to wiat order truncation crror does Eq. ( ‘ apprax!-
mate Eq, (1)? Althouph this is not a truncation error in the sense of
upecifically determing the error In the ooluti. s of the equations,' 1t I8
one approach toe viewing trucstlon errors and, as shown in numerical
results,” apperently provides an accursice meawure of the order of the
truncation error af the solution,

U expand the angalar cell edpe flux in u Taylor werlew abom - he
rehic ugs Then

. ve2
” - W ;.'-!' .!l_ "_1' . 4
.é{]/: n'(r) + A I + 5 a": ||-T (t4)

lukeriing Eq. (14) lwta Eq. (6) and uslng Fq (8B) ylelds

W N
o n .. m8G)=0.M
Yo T * 1 (Jm+1/2 + "u-l/!) 'H]h‘nm * m S() " r as

Bt from By, (B)

L] L Y41/
mersy Z (_?"m'um') -Z 2 f" din(-1) + uH.‘ '

ml-l n'-| " m"
m'-1/2

LvE 2 1 2 ?
—[ SR Tt ¢ U I L (am



6 MILLER
Alao from Eq. (7)

Iy
S(r) = 0, ()Y Yy () + QD)

M'=1
1
= -'s(r)'/ duny (ryu') + Q(r) + Oumz = S(r) + OUn‘ ’ (17)
2 -1

Combining thesc equations ylelds

g a -Lmz) y 2 "mz
Vo 77t r Yy -t A0 (ry = S(r) + oW - + 0= (18)

2 2
The Oy + 0 Wy /v error frem thie analysis as3sumes that g 18 the
midpoint of thr ungular interval. It is straightforward to show, howevcr,
that if the &, are scelected so that

"me1/2 ¥ tu-1/2 2
w7t Oy a9

the i1runcation error is still OHmz + 0 Hmzlr. The popular Causs Quadrature
pet, common'y peed with discerete ordinate codes satiiiew Eq. (19).

At this polnt, one might ask If the error in the flux is unbounded
as r approaches zero. The exact flux satisfied Eq. (13a) at the origin.
Expanding imal/2 of Eq. (13h) in a TAaylor scries about ., however, yiuvlds
Eq. (13a) with no truncation error., The origin flux is, then, bounded and
fsotropic, The exact f)ux is rnot obtained, however, since when Eq. (11) is
tclved for all r (including r = 0), 8 second order angular truncation error
i made In approximating the source using a quadrsture rule. For a pure
abrsorher, (-, = 0) we would expect the exact origin flux. Thiw is verlfied
fur A wample probilen in Section 11,

Thr nenunlformity of the angulir error av a fanctian af the spatial
variable can, however, cause unexpected behavior in the spatial scalar flux
prrefile. Namely, a nanphveical scalar flux depresrion can occar in the
vielnhiv of the avuatem origin, This anamely (s duee to the diacrete-
erdinates approximm lan ltwelf and ne spatiai difference acheme that con-
verges to Ky, (b) can eliminme It. Note that wince fuor oy = 0, the
discrete-ordinates cquatlans pive the exact malut fon at the mvatem origin,
this hehavinr should actually be viewed an a nonphvalca) rire in the wncalar
flax as one proceeds away from the origin. A demunatration of thim
anamalceus hehavior, for a mample vacaum problem, im provided in the Appen-
dix. Numperical resnlts In Secetlan {11 Indlcate thar this class of depres-
wione cAan alae cccar when o - 0,

B, Spatial Differencing

1. Dismnd Diiference Fquatlune

We next (mpose a apatial mesh on the domain 0 <« r < R and let the
penli edgen he denoted hy vyyy/p Ador gy €1« Ti4172 For simplicity,
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we let ry be the midpoint of the interval and all mesh intervals, Ar, be
equal. We denote

= w(r, L) (20)

m=1, 2,..., M
i=1, 2,..., 1,

The particle balance equation is derived by operating on Iqs. (6) with

4m l-1-0-1/2 2
V; drr”,

T1-1/2

with V; the apherical shell volume, and making suitable approximatiuns.
Making the uaual assumption that spatially dependent cross sections are
approximated by suitablc averages, this equation is

b
m
v, Pre/2imissz T Mer/2tme-172)
(A - A )
1+1/2 i-1/2 . .
* v (‘m+1/2em+1/21 “%-1/2'm 1/21) *Omy e 2D
m=1, 2,..., N
1=1, 2,..., 1
with A ., the spherlcal shell areas At ry,y/9. For up > 0, for example.
wm|_1/§'ié“knoun from the scluitlon {n the PTOT{UUH sjrat 1al cell while

“m-l/’& Is known for the previous angular cell. Thur, coupled with Fqs (21)
and” (1 )y we require ancther neo ol relationships, the spatisl-diamond
cqual lons

-l

‘ol 2 ( (22)

‘mi41/2 ¥ tmi-172)

m=1, 2,..., M
- . 1

The wpatlal difference approximation 1o Eq. (11) is obtrined by uet-
ting wpoy/p = 0, and Vpa1/24 = gy in Eq. (21) and uwing Faws. (8)
(21) yieldlug

(A

“'_1._2.111'1/2) 21)

) ('1/2.1+|/2 N “1/2.1-1/2) MR VARG

In Eq. (23), wve have wer vg = -1, Equations (21) and (22), the latter fn
mew 1/2, are the Atarting direct fon diamond-difference equatlions.

iv In lmportant to note how the origin point is handled in the process
of molviug wqm. (10), (21), (22), and (23). (me first solven the starting
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direction diamond-difference equations proceeding from the outer boundaryv
to the origin. One then aolves Eq., (21), for m = 1 corresponding to the
most negative value for pp. Again the solution process proceeds frcm the
ourer boundary to the origin. At the urigin a, so called, reflection con-
dition is normzlly used. That 1is, the direction corresponding to spectral
reflection (in this case the direction of mos( positive ;) is solved next
and the origin value o° the angular flux for this direction is set equal
to that just ralculated for the m = 1 direction. The calculation then
proceeds outward for this direction, &= Ly, One then aoives in the next
most negative direction end proceeds in an analogous way. Note that using
this procedure, the origin angular flux at ¥y pay, =1, 2,..., N/2 18
always set equal to the corresponding origin flux at ig, m =1, 2, ...,M/2,
All origin angular flux values, however, are not equal to one another, in
violation of Eq. (13b).

To analyze the truncatior. errors in Eq. (21), we us¢ the expansion

Lr 3y 2 52
. - Lr d% .. AT
‘ml:l/l *ni : 2 or|im + 8 2 toe (24)
ar |im
wWe Inscert Eg. (24) into Eq. (21) vielding
.n_..r ".m
Wy Wparrz Y A1) = rer,
(A - A ) R
a1z T Apare 2, T . )
+ " -y et ol = Spy e (25)
1 m
Since
(A " A . .,)u r L2
ey 2\11 vt . 25 (20
v

2 2
We have a gpatlal truncatlon error of O fr‘/rz added 10 a 0.7 errer
rewulting from Eq. (221).

Fquatifon (21), then has a nonurlferm spatial 1runcatfon error.  We
agalin seek the trumation error at (he origin. Equatlon (21) for the
origin ceil, (rl4l/2 = 'r), 1Is

Vorm 1 YA Ceels2 12,0 T tee1/2e-1/2,1
+ 'l“ml"" = sm"r [PA]
m=1, 2, ..., M.
But, using k.&. (8), (22), and
- o 2
Ya 372 " tm * O (28)
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we obtain

"m+1/2,1" "m-1/2,1 F 087 (29

Thus, we expect a first order error in the origin flux. A similar analysis
vields a first order error in the starting direction origin flux as well.
This first order arror is demonstrarted in the numerical results,

This first order error can cause a flux depression at the origin
quite independent from that due to the discrete-ordinates approximation.
This latter class of depressions is much more common but eventually dis-
appears as the spatial mesh if refined.

2. Alcouffe-Miller Correction

R. E. Alcouffe and W. F. Miller, Jr.7 have recently developed a
correction that yields second-order spatial truncation errors for all
values of r, including r « J. The correction entails first changing the
starting direction differenz? equations. Ut note from kEq. (11 that the
starting direct!on equation is preciselv the slab transport equation. 1In
lieu of the rraditional diiferancing, given by Eq. (23), we use slsb
geometry differencing.! Operating on Eq. (11) with

‘lf +1/2
..r r
1-1/2

and approximating the cell average flux with the cell center flux vields

"Gy y20a1/2 T M 17012172
Lr

+ Ji*l/’ =S (30)
ln addition to Eq. (30) we use the diamond equation

= 126Gy jp04172 * S1721-1/2) an

Y1/21
By Taylor expansion, it is r.raighrrorward to show that the truncation
error is Oir«. This is . decided improvement usver the truncation error of
Eq. (23), otr?/r2 + oar?,

In the Alcouffe-Miller correction, £qs. (30) and (31) are used to
aweep the mesh ‘rom r = R tor » (0, Then at the origin, the flux is set
equal to *1/2 1/2 for all m.

W 1/2

‘m,1/2 " ‘172,172 m=1, 2,..., M
This assures sn isotropic origin flux and a second-order spatial trunca-

tion error everywhere, Then for i = 1 and m= 1, 2,..., M/2, the spatial
diamond equation , Eq. (22), 1A not needed and is not invoked.
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I1I. NUMERICAL RESULTS AND CONCLUS1ONS

To demonstrate our results, we solve a simple homogeneous medium
problem with o = 1.0, og = 0.0, Q = 1,0 everywhere, H = 4, vacuum boundary
conditions, R = 4,0, and for various values of Ar, In Table 1 we see the
second order origin flux with the Alcouffe-Miller correc-ion as opposed
to the first-order error given by the craditional approach. The errors
are calculated using the exact origin flux .98168. Ve demonstrate elimi-
nation of the flux dip witk this latter method by also tabulating the
edge flux adjacent to the nrigin (r = Ar). For the fine mesh case, chang-
ing M to 8 or 16 does not alter the origin flux indicating
that for a pure absorber, thc angular truncation error at the origin goes
to zero,

Vhen 0 is changed to .0l, the depression in the flux persists, as the
mesh is refined even with the Alcouffe-Miller correction indicating that
the depression is due to the discrete-ordinates approximation itself.

In conclusion, we have shown that a class of flux depressions may
appear due to the discrete ordinates approximation and cannot be eliminated
with a convergent spatial difference scheme. The more common class of
depressions, due tc spatial differencing, may be eliminated in most cases
by invoking the simple Alcouffe-Miller correction. This correction also
vields second-order fluxes for any fixed r. The first class of deprescions
appears to be important only when o is quite small.

TABLE 1

SAMPLE PROBLEM DFHMONSTRATING DI1ANOND DIFFERENCING

origin Scalar scalar rlux oerter In |
No. of ¥qual Flux at r = /r origin flux_
| Mesh Int. | 4 AM pn Al n AM
2 .86165 1.0M000 1.1861 1.1450 12,21 1.87
A . 95899 .98765 1.0112 1.0056 2.31 .hl
8 .9800: . 98320 . 98106 .98113 .17 .15
16 . 98053 .98207 . 981139 .98151 12 .04
32 .98103 . 98178 . 98154 ,98163 .07 .l
64 . 98134 . 98171 . 98162 L4Bin7 .04 -

DD - Diamond Difference
All - Diamond Diffcrence with Alccuffe-Miller correciion
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APPENDIX

Ve conslder thr problem of a spherical vacuum with a constant, Iso-
tropic source cxtending tor = R and two angulur directions (M = 2),
The solution «o Eq. (11), for the starting direction flux, is

¥y (P = QR - ). (A-1)

Using the Causslan Quadrature, we find the flui for thu direction

# = -1//3 by solving the equation (obtalned from Fq. (6)),

d(rzw ) 2a u
i 1’
/ﬁrl dr rv

(A=-2)

In derlving Eq. (A-2) we have used Eq. (10). Simplifying and using Eq. (8),
we obtain

d__l_i - - 50-2

dr r PR r 0'1/2 !
Using an integrating factar of r_2 we can wrlte Eq. (A-3) us an integral
equat loa:

(A=)

K
(r) r .2 r2
SO f dr'(y’] Qemd T+ 2 r"', 200" ) . (A=)

r
Inscrting L. (A-1) Inte Bq. (A-4) ylelds

2
3 - (3 - L -
;J(r) . Q{ R-(2-v3I)r (3 1) N } (A-5)

Uslug the angular diumond-differvenece cquution, Eq. (10),

) N om Y o Y - - (3 - 1y - N M- 2 \ -
.1’2(|) 2\!(|) \1/2(|) Q{ R (3 22 i (1 In } (A-t)

We next canalder the directlon np = 4 1/+3 and repeat the abwve pro-
cedure.  Analegous ta Eq. (A-4) Ik

roof iy . ot
U-z(r) -f ur \_-1 Q wh + "l/2(r ?)
0 ! !

2

0B Y -mr - (1 - 1) :( ’ . (A-7)
Now [ -om By, (9)

)

r

Lo ye -G -1 u’ + (A-8)

o(r) = .}.}.(u.)(,.\ + q.z(r))- « {R + 2
v
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1t is clear from Eqgs. {(A-S) - (A-G)} that the flux is 1sotropic at
the origin. [llowever, note that

9—3—}')--0mr-.211325n.

Also slince

d ngr). < 0
dr

t1s ls o maximum. Hence A scalar flux depression exists In the vieinity
ol the arlgin for this problem,

1t is nat difficult to show that the exact wolution tu this problem
(the solutlon te Eq. (1)) 1is

2, 2
'.'(r'") S (ra- + \/R - (] - ) .

Then

] , 2 2
(r) = ‘}!f di (ry) = :{R + -B-z-:-!-- /n (ﬁ-t—:)} .
I

Note thin mrw

nid

?

Wod
.
1

1
5-r"'l'-()

« G,

for it (iere 18 no depresslon o the exner senlur flax o the ovlgln,
Nute nlke thnt il dlaerete—erdinmes solutfon s exnet o che velgla,
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