C'CU/ 736561--7

TITLE: STATUS REPORT ON NUCLEAR REACTORS FOR SPACE ELECTRIC POWER

AUTHOR(S): David Buden

SUBMITTED TO: Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 20-25, 1978

By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.

los alamos scientific laboratory

of the University of California

LOS ALAMOS, NEW MEXICO 87545

An Affirmative Action/Equal Opportunity Employer

Photocomplete was prepared as an account of work sponsored by the United States (awarmen). Neither the United States towermen) Neither the United States now the United States (Pepariment) of freegy, not any of their exployees, not any of their contractions, subcontractions, on the employees, makes any wessenty, especia to implied, to amounts ony legal liability on exponsibility for the accusey, completeness of any information, apparatus, product on principal disclosed, or feptraents that its use would now infrange privately stemed rights.

MASTER

Form No. 836 R2 5t. No. 2629 1/78

DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

STATUS REPORT ON NUCLEAR REACTORS FOR SPACE ELECTRIC POWER

David Buden

Los Alamos Scientific Laboratory Los Alamos, New Mexico

ABSTRACT

The Los Alamos Scientific Laboratory is studying reactor power plants for space applications in the late 1980s and 1990s. The study is concentrating on high-temperature, compact, fast reactors that can be coupled with various radiation shielding systems and thermoelectric, dynamic, or thermionic electric power conversion systems, depending on the mission.

Increased questions have been raised about safety since the COSMOS 954 incident. High orbits (above 400-500 nautical miles) have sufficient lifetimes to allow radioactive elements to decay to safe levels. The major proposed applications for satellites with reactors in Earth orbit are in geosynchronous orbit (19,400 nautical miles). In missions at geosynchronous orbit whele orbital lifetimes are practically indefinite, the safety considerations are negligible.

The potential missions, why reactors are being considered as a prime power candidate, reactor features, and safety considerations will be discussed.

A VIGOROUS PROGRAM for use of reactors in space existed from the mid 1950s until the early 1970s. This included the U.S. nuclear-powered rocket program whose prime objective was to provide a propulsion unit for taking men to Mars and an array of space electric power systems for powering sensors and ion propulsion units. As mission emphasis changed, the various propulsion and space electric power systems being developed no longer were needed to support the revised program plans and by 1973 the development of reactors for space were largely discontinued.

The major factor warranting a fresh look at the need for higher power levels, and thus possibly considering nuclear reactors again for space, is the space transportation system (STS) or space shuttle. The space shuttle provides a reusable system that can be considered a true transportation system. As such, it opens a new space era leading to larger satellites and generating new power requirements.

MISSION REQUIREMENTS

A nuclear power plant should be designed with the intent of meeting a range of potential

power requirements. Because of development times involved, continually evolving definitions of potential missions, uncertainties during payload integration, and uncertainties with schedules and budgets, it is not desirable to concentrate reactor power plant development on a single mission. Both Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) future missions are being analyzed as a basis for establishing power plant requirements.

A number of potential DoD missions have been identified in communications and electro-optical and radar surveillance requiring electric power in the 10-100 kW_e range. A plot of peak projected power requirements (Fig. 1) indicates that electric power requirements would grow continuously from a few kilowatts currently to maybe 50 kW_e in the late 1980s and over 100 kW in the early 1990s.

Fig. 1 - Maximum single-spacecraft power requirements by year

NASA's potential missions for nuclear reactors center on large satellites in geosynchronous Earth-orbits and planetary exploration. I. Bekey, H. I. Mayer, and M. G. Wolfel did a comprehensive study which categorized various potential space applications as to the function, weight, size, power, orbit, time frame, initial operational cost, and risk. Potential missions in geosynchronous orbit requiring 15-220 kWe are plotted in Fig. 2. The space shuttle2 is estimated to provide about 29,000 kg capacity in low Earth orbit; however in geosynchronous orbit, the payload estimate is 3180 kg. The low Earth

crbit requirements can usually be handled with a aclar arrays plus batteries power supply. However, the weight limitations at geosynchronous orbit imply the need for compact, low-weight power supplies, and thus this orbit is a potential application for nuclear power sources.

Table I provides a summary of power plant requirements to be used as a basis for making various technology decisions.

WHY REACTORS BECOME A PRIME POWER SOURCE?

Projected 1985 power technologies (the technologies that would be used in 1990 missions) indicate that solar arrays with batteries are

Fig. 2 - Potential NASA applications in geosynchronous orbit. Source: "Advanced Space System Concepts and Their Orbital Support Needs (1980-2000)," Aerospace report AIR-76(7365)-1

expected to be heavier than reactor above 10-20 kWe (Table II). At 50 kWe, nuclear system mass is about 60% of the solar system mass, and at 100 kWe, it is 40Z.

at 100 kWe, it is 40%.

Reactors will be less costly than solar power aystems. Table II shows a cost comparison including a factor for launch mass differences. At 10 kHe, the cost of delivery to geoaynchrorous orbit is estimated to be almost equal, but at 50 kWe, the reactor cost is one-fourth of the solar coat and at 100 kWe, it is one-fifth.

Table I - Power Plant Requirements for Geosynchronous Orbit Missions

	Geosynchronous
Power output (kW _e)	10-200
Lifetimes (yr)	7
Reliability	0.95
Mass	
Single shuttle (kg)	955
Dual shuttle (kg)	1910
Configuration	Minimize pack-
_	aging volume in
	shuttle bay
Radiation attenuation	_
Neutrons (nvt)	1013
Gamma (rad)	107
Maneuverability	Mission
•	dependent
Safety	STS requirements

The space shuttle is expected to be the main launch vehicle. Considering that the practical limite of most missions around 1990 are two shuitle trips per spacecraft, about 1910 kg would probably be the most that can be devoted to the power supply for geosynchronous orbit missions. This implies that solar arrays will have difficulty in providing 50 kWe power and will be much too heavy at 100 kWe. Reactor systems can spen the whole range.

Solar arrays have been flight demonstrated in a 16 kW₀ system. Because of weight limitations imposed by the shuttle and the mass of a solar array plus battery system, it is doubtful that 50 kW₀ power systems can be demonstrated by the mid 1980s. The SNAP 10A is the only flight-demonstrated space reactor, and it operated at 500 W.3.4 Today's technology would permit flight testing a fast, compact reactor system in the mid to late 1980s at 100 kW₀.

Solar arrays have to be oriented sunward. Reactors require no orientation mechanism, power transfer slip rings, array deployment, or muchanism to compensate for tracking disturbances. However, both systems have location limitations. Because of their size and the need to focus on the sun, solar arrays must be arranged to avoid shadowing ty large antennas and other spacecraft components. Reactors must be positioned to minimize radiation shielding.

Solar arrays restrict maneuverability. Unless a mechanism for retracting and deploying the arrays is included, the spacecraft will have to

Table II - Solar Array vs Reactors Based on Projected Technology, 1985

	10 kW_		50 kW		100 kW	
	Solar 24	Nuclear	<u>Solar</u> 24	Nuclear	Solar	Nuclear
W/kg	24	14	24	40	22	5 5
Cost, delivered to geo- synchronous orbit (Nillion \$)	В	7	32	10	63	14
Shuttle Compatible						
(~1810 kg)	Yes	Yes	Diffi- cult	Yes	No	Yes
Space Flight	Demon- strated	Possible	Possi- ble	Possible	boubt- ful	Possi. ble

be moved slowly to minimize acceleration loads.

Reactors are compact, making maneuverability feasible.

Natural rediation affects solar array life, but has no effect on nuclear resctors. However, solar arrays do not introduce radiation, which is a major consideration with reactors. Shielding must be provided to attenuate radiation emitted from the reactor. Radiation rates affect component life by both instantaneous intensity (which ionizes sensitive electronic systems) and integral effects (which cause aemipermanent lattice defects that create physical and chemical property changes in materials). The amount of shielding depends on the power level, the distance of radiation-aensitive components from the reactor, and their radiation tolerance. Each individual mission's best reactor location must be determined. Judicious location will usually permit unmanned shieldings of less than a few hundred kilograms.

Solar arraya create a minimum of safety handling and disposal problems. The reactor aafety considerations were demonstrated solvable in the SNAP 10A reactor flight test. More concerning reactor safety will be discussed later.

In summary, 5- to 25-kWe solar arrays power systems have been demonstrated, but solar arrays with batteries become quite neavy at 50 kWe. They introduce a minimum of radiation, safety, handling, or disposal problems. Reactor power plants tend to weigh less, have lower unit cost, and are compatible with the shuttle loads at 10 to 100 kWe. Space reactors are compact and independent of spececraft orientation. Furthermore, the space reactor power plant is unaffected by natural radiation, can be made highly reliable end allows the spacecraft to be maneuverable.

POWER PLANT DESCRIPTION

The power plant includes the reactor, radiation shield, electrical converter, and waste-heat radietor.

REACTOR-A typicel 1000 kW reactor deacribed herein could setisfy the 10 to 220 kW power demands.

The reactor core contains 90 hexagonal fuel elements made of 90% UC and 10% ZrC (Fig. 3) Each element is 27.9 mm across the hexagonal flats and 280 mm long and is contained in a thin-walled molybdenum can. Each is cooled by centrally located molybdenum heat pipe, en efficient means of transporting heat from the core. The heet pipe is a self-contained structure that achieves very high thermal conductances by means of two-phase flow with capillary circulation. Heat is transferred within the heat pipe's contained envelope by evaporating a liquid (sodium), transporting the vapor to another part of the container, condensing it, and returning the condensate to the evaporator through a wick of suitable capillary structure. The fuel is segmented to allow for swelling, minimize fabrication problems, prevent howing, enhance heat transfer, permit veriations in uranium loading, and ellow for thermal expansion.

The core is enclosed and is kept compressed by a seriaa of rings. Multi-foil insulation min-

imizes heat transfer from the core to the reflector. The core, with its 90 heat pipes, essentially provides 90 independent loops for removing heat. Loss of one heat pipe causes clevated, but acceptable temperature increase in the surrounding pipes. The core could sustain several failures with no major degradation of performance.

The core is surrounded by a neutron reflector of beryllium on the sides and aft end and beryllium oxide is required at the forward end. Beryllium oxide is required at the end that the heat pipes penetrate because of higher operating temperatures there. The reaccor is controlled by changing the position of neutron-absorbing material within the reflector. Twelve drums are used in the reflec-

Fig. 3 " Reactor core assembly

tor, each containing a boron-carbide sector that is rotated for power control. The control surfaces are rotated in discrete steps by actuators placed behind the shield to reduce the incident nuclear and thermal radiation that maches them. The reactor power will be controlled to maintain a constant outlet voltage from the power conversion units so as to minimize thermal cycling of the reactor. Redundant instrumentation and control electrorics are provided to increase reliability and eliminate single-point failures.

Table III shows typical design parameters for the 1000 $k\mathrm{W}_{\mathrm{L}}$ reactor.

SHIELD-Shield design and technology make extensive use of work on space reactor shields for SNAP 2, 8, and 10A, and of ROVER experience. These reactors mave certain features in common with current designs, namely, small physical size, unmanned space application with comparable allowance of neutron and gamme doses, and comparable radiation flux levels. Only shadow shielding is required. The shield can be considered as follows: mentron attenuation is provided by lithium hydride (LiH) in the shape of a frustum, and a heavy metal gamma shield is added at the reactor and of the shield if needed.

To minimize single-point failures, the lill is to be encapsulated in a number of pancake-shaped caus, so that pressure containment failure from meteoroid penetration or a weld failure, for ex-

Table III - Design Parameters for 1000-kWt Reactor (1400 K Heat pipe Temperature)

Temperatures (K)		238	
Max fuel delta t	155	Burn fraction of 238U	0.0272
Av delta t across heat pipe	17.5	Fuel swalling, volZ	8.0
wall			
Av fuel temperatura	1469		
Max fuel temperature	1581		
Reactor Dimensions (n)		Fuel Element Dimensions (mm)	
Core diam	0.28	Width across hex flats	27.9
Core height	0.28	Equiv fuel element diam	28.3
Reactor diam	0.51	Equiv fuel region o.d.	28.6
Reactor haight	0.49	Heat pipe o.d.	15.3
Reflector thickness	0.10	Vapor diam ,	11.9
Pipe length outside reactor	1.00	Vapor area (mm²)	110.4
Total heat pipe length	1.38		
Overall reactor and heat pape	1.49	1	
length			
Reactor Masa (kg)		225	
Fuel	127	includes 108 kg of ²³⁵ U)	
Reflector	133		
Heat pipes	94	·	
Control ayatem	33		
Support Structure	27		
Total	414		

ample, will deplete the hydrogen in only a small part of the shield. The shield is also a structural member that connects to the reactor on one end and by a boom to the payload on the other. The load can be carried by the outer conical shield shell.

ELECTRIC POWER CONVERTERS-A number of technologies for electric power converter systems are
being developed. The principal near-term ones
are thermoelectrics and dynamic converters, such
as the Brayton cycle.

THERMOELECTRICS-Thermoelectrics (TE) have been used in many space missions as the power conversion elements of radioisotope power supplies with demonstrated high reliability. The heet removed by each reactor heat pipe becomes the heat source of a TE module. The TE operates at about 1275 K.

The cold side of the TE module will be cooled by heat pipes that are an integral part of the heat rejection radiator. The cold-side temperature is a compromise between that required for optimal TE efficiency and that required for optimal radiator size and weight. About 775 K TE heat sink temperature seems nearly optimum and is in the range alreedy tested with potassium-filled heat pipes.

A number of semiconductor TE materials have been developed. Silicon-germarium is well known and has the potential for operating at as high as 1400 K with 6.5% efficiency. The reference design is based on a "compression" module that was built and tested several years ago; other designs have also been made with high-performance TE modules. Figure 4 is a conceptual drawing of the module and shows projected converter efficiencies.

DYNAMIC CONVERTERS-The Brayton cycle is used to illustrate dynamic converter aystems. Mounted on the end of the reactor heat pipes are heat exchangers to feed redundent Brayton loops. The Brayton loop consists of a rotating group (compressor, turbine, and alternator on a single shaft aupported on foil gas bearings) and heat exchangers from the reactor, the recuperator, and

Fig. 4 - Thermoelectric design concept and projected converter efficiencies

to the radiator. An inert gas, xenon and helium, is used as working fluid in the closed-loop system. Typical temperatures and pressures are shown in Fig. 5.

Fig. 6 - Thermoelectric power plant

Fig. 5 - Brayton cycle power system

A single-uni: Prayton converter has operated over 30,000 h in tests by NASA-Lewis Research Center? at a turbine inlet temperature of 1:45 K. The documentary of 1:45 km.

RADIATORS-The radietor is being designed for 99% reliability and 7-yr lifetime. Radiator area depends on such factors as the converter efficiency, electric power level, heat rejection temperature, and probability of component feilure mainly from meteoroids. The present concept is based on stringer heat pipe arrangement transporting the heat from a thermoelectric coldjunction ring. Circumferential heat pipes aurround the stringers to distribute the heat and act as a bumper and as fins. Calculations of meteoroid penetration were based on NASA space shuttle user guidelines for payloads in geosynchronous orbit.5.6 To ensure that the heat pipe radiator survives meteoroid penetration throughout the mission, the radiator can be overdesigned and penetration armor can be added. Beryllium and titanium seem the most promising space radiator materiels; others are appreciably heavier.

SYSTEM MASS-Figure 6 shows a thermoelectric system. The core and shield are separated to provide space to bend the core heat pipes around the shield to the thermoelectric converters. The converters are located in a ring of good thermal conductive material. The radiator extracts the heat from the cold junction of the converter ring.

A representative power plant layout for the Brayton cycle is shown in Fig. 7. As a compromise between converter efficiency and radiator mass, we use 25% efficiency in analyzing Brayton converter weights. To avoid single-point failures, duplicate loops each capable of full-power operation have been included in the aystem mass totals. This redundancy achieved at some weight penalty appears feasible within the total weight constraints.

Fig. 7 - Brayton cycle space electric power supply

Table IV shows the mass parameters of major components at 10, 50, and 100 $\rm kW_{\mbox{\scriptsize e}}.$

SAFETY

Recently, questions have been raised as to whether nuclear reactors can be used safely as electric power plants in Earth orbit and whether such power sources are indeed needed.

Sefety has been and continues to be a major concern of U.S. scientists involved in using reactors in space. Before operation, the reactor and its uranium fusl are perfectly safe to handle. There is absolutely no possibility that a nuclear electric power plant can explode.

The key to safe operation before and during launch is to keep the reactor in a nonoperative mode. This is accomplished by adding built-in safety features, such as redundant control elements, where only one element is nllnred to be unlocked at a time; brakes on the control element actuating mechanisms to prevent movement without two independent signals; and a reactor designal to remain nonoperative even with environment changes, such as immersion in water.

Most applications considered for nuclear reactors are in high orbits, such as geosys-

Table IV - Mass Farameters for Nuclear Space Electric Power (7-yr lifetime)

	10kW_		5	50kW		100kW	
	TE 156	Brayton	TE 781	Bräyton	TEC	Brayton	
Reactor power (kW_)	156	40	78 1	200	1111	490	
Efficiency (%)	6.4	25	6.4	25	9.0	25	
Radiator power (kW_)	146	30	731	150	1011	300	
Radiator temp (K)	775	475	775	475	775	475	
Mass (kg)							
Core	415	415	415	415	525	415	
Shield	165	110	215	130	250	145	
Converter	45	250 ⁰	235	460 ^D	335	710 ^b	
Radiator	35	30	255	200	380	400	
Structure	65	80	$\frac{110}{1230}$	120	150	165	
Total	725	885	1230	1325	1640	1835	
W/kg	14	11	41	38	61	54	

Assume 12° cone half-angle at 25 m.

Dual converter systems.

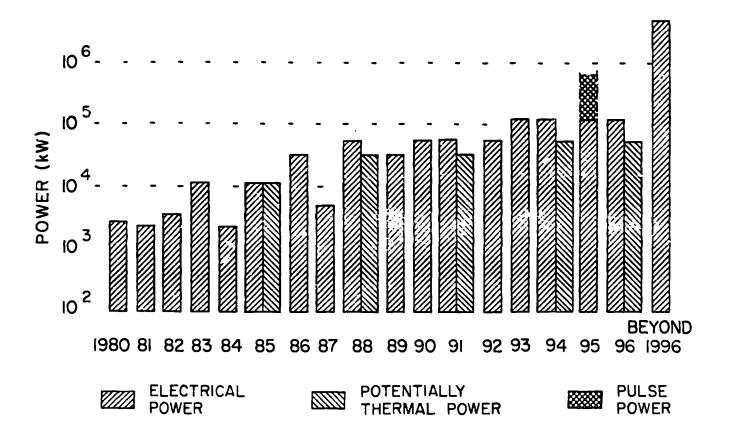
chronous. The higher the orbit, the longer a satellilte will remain in orbit. Long orbit times provide time for radioactive elements to decay. An orbit altitude of about 400-500 n mi will provide for over a 1000 y life and thus could provide a margin of conservatism in meeting affety criterion. Doubling the orbit increases the orbital lifetime to about a million years. Satellites in geosynchronous orbit (19,400 nautical miles), the proposed location of most reactor-powered U.S. satellites, will, for all practical purposes, never reenter the earth's atmosphere.

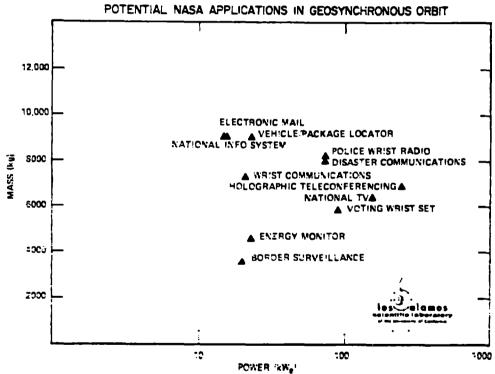
PROGRAM STATUS

At the time this report was prepared, screening studies were under way at the Los Alamus Scientific Laboratory to determine the design approach to be followed in developing future electrical systems. The heat pipe reactors described here are only one approach under consideration, but are heavily favored because of longevity requirements and to avoid single failure pointe that could result in a significant lose in power.

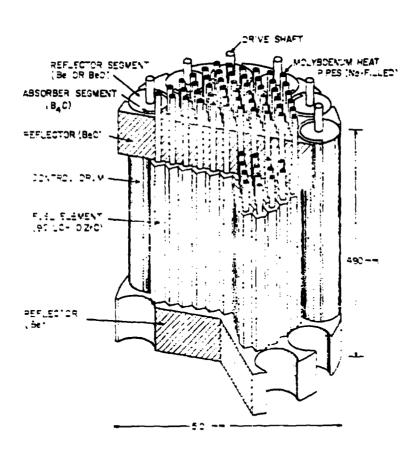
An experimental program is planned to start in Fiscat-1979 to resolve key technology feasibility questions. The experimental program will be performed in areas where sufficient data are not available to make a system selection for a ground demonstration power plant.

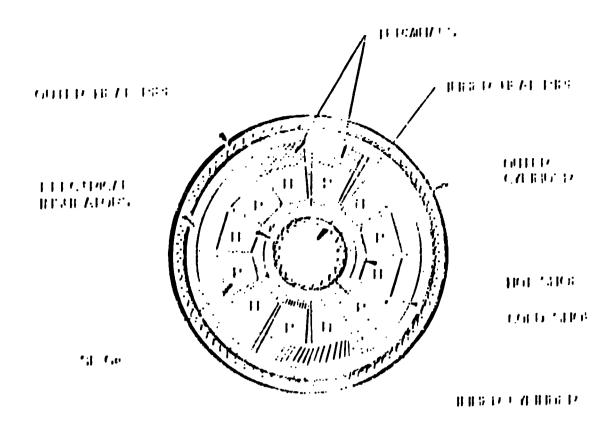
ACKNOWLEDGMENTS

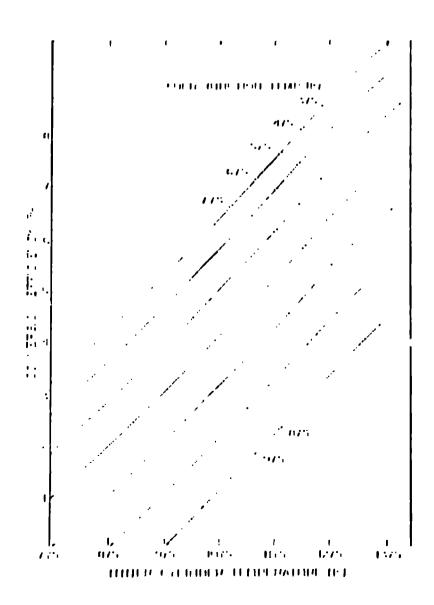

Work supported by the U.S. Department of Energy, Division of Nuclear Research and Applications.

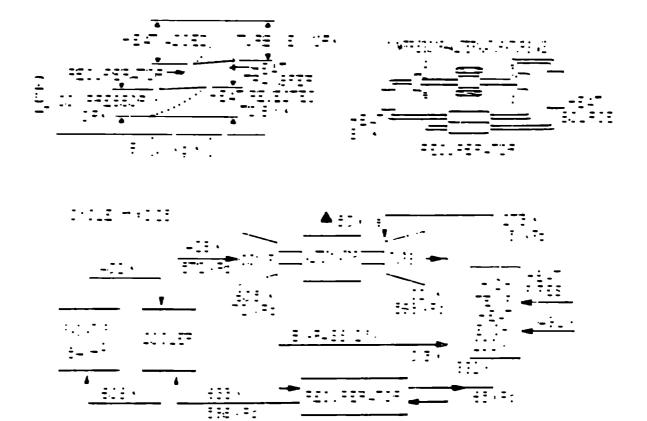

REFERENCES

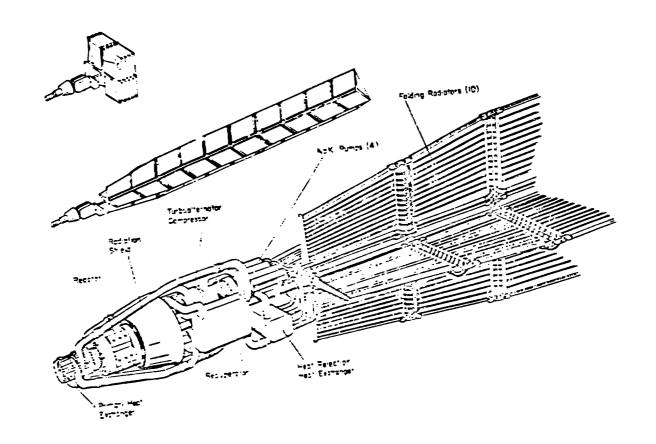
- 1. I. Bekey, H. I. Mayer, and N. G. Wolfe, "Advanced Space System Concepts and Their Orbital Support Needs (1980-2700)," Vola. I-IV, Aerospace report ATR-76(7365)-1, April 1976.
- Space Transportation Systems User Handbook," National Aeronautics Space Administration, July 1977.


- 3. J. H. vsn Oadol, W. B. Thomaon, and O. S. Merrill, "Uranium Zirconium Hydride Reactor Space Power System," Proc. Intern. Astronautical Fed., XXVIIth Congress, Anaheim, California, October 10-16, 1976.
- 4. "10 to 75 kWe Reactor Power Systems for Space Applications," Rockwell International, Atomics International Division report N652T2240023. March 24, 2976.
- N652T2240023, March 24, 2976.
 5. "NASA Space Vehicle Design Criteria (Environment). Meteoroid Environment Model 1969, Near-Earth to Lunar Surface," NASA-SP-8013, N-69-40326, 1969.
- 6. "Space Shuttle Program, Space Shuttle System Payload Accommodations," JSC 0770, Vol. XIV, Rev. D. November 26, 1975.


CImproved TE material and larger reactor (1500 kW,).






SOURCE ADVANCED SPACE SYSTEM CONCEPTS AND THEIR ORBITAL SUPPORT NEEDS 1990 2000 AEROSPACE REPORT: AIR-76 1365 -1

