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UNSTEADY DETONATIONS DRIVEN BY FIRST-ORDER PHASE TRANSFORMATIONS

R. L. Rabie and W. Fickett
108 Alamos Scientific Laboratorny, Los ALamos, New Mexico 87545, USA

G. R. Fowles
Washington State University, Pullman, Washington 99163, USA

Reactive waves supported by the energy released
during a phuse transformation are examined as elementary
detonations. It is found that a class of eigenvalue
detonations exist containing the well known Chapman-
Jouguet solution as a particular case. In general the
set of elgenvalue detonations are unsteady in any
single inertial reference frame.

INTRODUCTION

A simple two-phase thermodynamic system possessed of a single first-
order phase transformation is examined as an elementary explosive. The
material is allowed to be viscous but not thermally conductive. A reaction
rate and ignition condition are also assumed. This elementary system is suf-
ficiently simple that analytic solution of the steady flow problem is pos-—
gible and yet camplex enough, due primarily to the including of viscosity,
to show the effect of energy dissipation an the flow. The viscous flow
problem for a conventional explosive is discussed in Detonation, for ex-
ample.’ It is qualitatively similar to that for he Navier-Stokes equa-
tions including viscosity, heat conduction, and diffusion, treated by wood.?

The detonation solutions for our system have same features in cormon
with the conventional viscous detonation, but differ in important ways.
There are two possible solutions for uinsupported detonation: the convention-
al, Chapman-Jouget (CJ) solution, and a new type of "eigenvalue" solution.
Which one applies in a given case depends on both the material properties
and the amount by which the initial state is displaced below the (equilib-
rium) phase transition pressure. The CJ solution lies entirely below the
transition pressure. The eigenvalue solution consists of two waves, each
steady in its own frame: the leading reactive shock and a slower following
deflagration, or reactive rarefaction shcck. Part of the reaction takes
place in each wave, with the lengthening region between them a constant



equilibrium state. The corplete-reaction state at the end of the deflagra-
tion is sonic, so that the following rarefaction is attached there as in
the CJ detunation. The CJ detonation thus appears as a limiting case of an
eigenvalue detonation vhen the leading corpressive shock and the following
rarefaction shock travel with the same speed.

Examples of metastable systerms of the sort discussed lere are numerous.
The prcblem of emergency core cooling in miclear reactors presents the
possibility of super heating the coolant and thus the prospect of a vapori-
zation wave. In geophysics, the rystery of the deep focus earthquake may be
solved by considering the olivine/spinel transformation. Olivine carried
below the phase boundary by convection becomes metastable and thus subject
to self-sustai~ing transformation waves. BAnother example is crystallization
waves in amorphous solids. ,

The following discussion is given in four sections. The first presents
the governing equations as they are used in the remainder of the paper. The
second section is a presentation of the analytic techniques used in examining
the system together with the results of the analysis. The third contains the
nurerical calculations done to solve the time-dependent problem end the
fourth is a discussion of the results of the entire investigation including
possible applicaticns.

I. THE GOVERNING EQUATIONS

The system is treated as a one-dimensional viscous fluid. The eguation
of continuity is

p+pux=0 (1)

where p is the mass density and u is the particle velocity. The sub x refers
to partial differentiation with respect to x at constant time and the super-
posed "°" represents the convective or material derivative. The equaticn of
momentum conservaticn is

pu + o, =0 . (2)
where 7 is stress taken positive in compression. Energy conservation is
given by

e+ov=0 (3)

with v = 1/p and e the internal energy per unit mass or specific internal
energy. In addition to the conservation equations an equation governing the
evolution of the reaction progress variable, A, is required. The form as—
sured for this is

A= kr (4)

where k is a constant of dimension t~! and r is a dimensionless function of
the thermodynamic state.

Equations (1)—(4) are supplemented by equations stating the constitutive
assurptions made about the system. These assunptions are

0'=P+'" ’ (5)

w= - Vux ’ (6)
p(v,A) = py(T3/v?) + (7)

'\70 = (l—}\)vol + AVOZ (8)



(v) - A) for p 2 p;

r(v,A) = " 9 (9)
0 or < p.
and P Plg
0 for v < v’l‘-
A (V) = —v:—‘i- for v¥ £ v £ v* (10)
eq vi-vy 1= YT T2t
1 for v > vg

In Egs. (5) through (10) v 01 and v, , are the values of the spec.lﬁc volure
at pressure p = Py ir. the pure phases 1 and 2 respect_nely Vv is the coef-
ficient of viscosity——taken to be constant—and v} and vj are the values of
the volume at pressure p = p* (the constant phase trans 1t.10n pressure) in
tha pure phases 1 and 2 respectively. The quantity r is the viscous pres-—
sure and p; ig is the ignition locus, tsken to be an isobar.

In the statemen: of the constitutive assurptions, Egs. (5) through
(10), a particular feature should be ewphasized and this is the lack of
terperature in Eq. (7). The p~v-T sucfaces of phase 1 and phase 2 are
shown in Fig. 1. The surfaces of constant A in p-v-T space are sections of
cylmcers parallel to the T axis, thet is, the ccefficient of thermal ex-
pan510n is set to zero. Another consequence of this is that Grineisen's
ratio is zero, which is admittedly unusual but not impossible. Finally, we
have assumed a constant uniform specific heat and ideal miving of specific
internal energy and specific volure.
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Fig. 1. P-V-T surfaces showing phases 1 and 2 and the equilibrium mixed
phase.

The f'nal equations to be recorded here are the equations for steady
flov. These may be cbtained from Eqs. (1) through (4) and they are, :Ln the
steady frame (whose velocity in the laberatory is D), given by



p(D-u) = pyD , | (11)

¢ == (pOD)2 VgV ' (12)

e-ey =3 (0+0) v (13)
and .

u =k e

vhere the prime denotes the steady frame and the sub "0" refers to the
initial state esswned to be uniform and motionless.

II. ‘THE STEADY PROBLEM

The general prcblem to be solved can be stated in _..e form of initial
and boundary conditions for the equations of motion. Let the naterial be
confined in a tube of semi-infinite length and perfectly slippery walls,
closed at the left end by a massless piston, as shawn in Fig. 2. The
initial condition is the spatially uniform state p = Pgr V= Vgr A = Ag = 0
with the boundary pressure p, applied to the piston also equal to py sO that
the piston remains at rest. The boundary condition is the specified pressure
history p,,(t) applied to the piston. For this we take the step function
shown, with the appliad pressure jurping at t = 0 to the constant Loundary
or piston pressure p,. The initial jurp initiates the detonation wave, and
the constancy of pj, ensures that at least the rear part of the wave will

eventually become steady.
. Pb(l)q:@ i
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Fig. 2. 'The idealized experiment with input waveform.

This generalpxcblem has two mathematically distinct parts. The steady
solutions—to be examined in this sectionm—and time dependent behavior to be
discussed in the following sectian.

The steady flow will be governed by Egs. (5) through (14). By re-
placing ¢ in Bq. (12) with Eqs. (5) and (6) one gets

vEL = (ppy) - (0D’ (v =R . (15)

Equations (14) and (15) are a pair of autonomous differential equations for
the steady flow. Using Eq. (11), they may be corbined to form the equation
governing the motion of the system point in the w-) phase plane. This re-

sults in
dv _ vR(v,A;D , - :
La =<, 0N (16)

where ,
' L=1vk .



The veloca.ty, D, of the detonation wave occurs as a parameter in Eq.
(16) that is to be adjusted to allow for a eolution to & given piston
problem. Figure 3 shows the relation between the cormon p-v plane repre-
sentation of the prcblem and the v-A phase plane of Fq. (16). Note that
Eq. (16) has critical points wherever the loci R= 0 and r = 0 cross. 'The
locus R = 0 is jwt the locus of steady wave equilibrium end states while
the lccus ¥ = 0 is the zexo rate curve. These two spaces are topologlcally
equivalent; we shall describe how the loci of interest transform in ¢oing
from p-v to v-A. The constant-A loci, or partial-reaction Hugoniots, not
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Fig. 3. 7The topological cavparison of p-v and v-A space.

shown, are just vertical straight lines in v-) space. The line R = 0 is a
straight line in p-v, with R > 0 above and R < 0 belcw. For the particular
substance and value of D chosen for illustration, it intersects the equilib-
rium Hugoniot at four points, the strong points S and S' and the weak points
Wand W'. (We use the conventional tenm.nology The flow behind is subsonic
with respect to the shock at a st.mrg point and superscnic at a weak one.)
In v-A, the shape of the R = 0 line is like that of a left~opening parabola,
with pomt S on the leit boundary, pomts S' and W' on the right boundary,
and point W in hetween. The function R is p051tlve outside of R = 0 and
negative inside, as indicated by the (+) and (-} signs next to the curve.
The equilibrium Hugordot, the solution of r = 0, has three branches: the
upper branch with 2 = 0, the transition region p = p*, and the lower branch
with A = 1. In v}, its upper and lower branches lie on the left and right
. boundaries, respectively. The transition region is the constant-pressure
contour p = p* which intersects the R = 0 locus at point W. (The constant-
pressure contours are segments of straight lines.) The function r is posi—
tive above r = 0 and negalive beloy it, again indicated by (+) and (-) signs
next to the curve. Finally, we have the igniticn locus p = pi,, another
constant-pressure contour near the top of the v~-X diagram. It intersects
the X = 0 locus at the ignition pomt I. The vector field is readily
sketched: The sign of the slope is that of R/r, and R= 0 and r = 0 are the
loci of the liorizontal and vertical turring points, respectively. The
~critical pomts are of course the intersecticns of these two loci, that is,
points S, W, S', and W'. 'The shape of the vector field suggests that S and
S' are nodes and W and W' are saddles. 'This turns out to be the case, as we
shall shortly show. The points S' and W' occur in the conventional viscous
detonation, ! which we shall not discuss here. Ve will have some concern
with point S§', but not with point V'.

A few lntegral curves are shown in Fig. 4, with the direction of de-
creasing x (movmg away from the initial state) indicated by arrows. The
solution for a given D is the integral curve starting fram the initial state
at 0. Since our rate is zero for p < Pj the initial segnent 0T of the
solution lies on the left boundary and 12 just the corresponding secwent of
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Fig. 4. Somre integral curves and their behavior on r = 0 and R = 0.

the steady viscous nonreactive shock. When rcaction begins at point I, the
soluticn curve proceeds into the interior. For the cuse shown A reaches a
maximm as the curve crosses the r = 0 locus and v is a minimum as the curve
crosses the R= 0 locus.

Thermodynamics and the Critical Points
A purely thermocdynamic analysis of the behavior of the system in the
vicinity of an intericr critical point may be done by extending Gibbs' re-
lation for reversible processes. The standard assumption is made that Gibbs'
relation is also valid for first order deviations from equilibrium. This
assurption together with Eg. (3) leads to

T& = ~ (o-p) ¥ - Ak A 17)

where A = g, (p,T) - l(p T) is the difference in specific Gibbs energies or
the a.ffmlty and s is the specific entropy. Assuring the strong form of the
second law both terms on the r.h.s. of BEq. (17) must be positive. BRrploying
standard thexmodynamic identities it is possible to reduce Fg.” (17) to the
pair of conditions

(o +$ < o | (18)
- and ' - ' )
[dv av)s A] [dv (—35)5 A] 20 | . (19)

where g is the slope of the integral curve in the limit as the critical
point is reached. '

The above the.modymamic analysis assumes that a unique solution to a
given piston problem exists. Vhether or not this is the case depends on the
character of the interior critical points possessed by Eq. (16). To deter-—
mine the (.ha.racter of the intevior critical points a standard technique is
erployed. This technique prcceeds by expanding the nurerator and ce-
nominator of the r.h.s. of Bg. (16) separately in the variables v and A
about. the critical point. Denoting values at a critical point by a caret
we have ‘

dv _atv-® +bo-h) | 20
Lax c(v-9) + a(r-1)

with



_ (VR _ 9(VR) _9(x) | _ 9(x)
a==v r b= =55, md A==

Our critical points are either ncdes or saddles. The n=zcessary condition for
this is that the quantity [(a-G)2 + 4bc] be positive. Thus we get:

anode forq > 0

a saddle for g < 0
where

g=ad-bc .

The sign of q may be determined generally if the identification
A=-2A=kr _ (21)

is made where 2 and k are positive quantities and possibly functions of P
and T. Equation (21} can be shown to hold near thermodynamic equilibrium
and hence at all of our critical points. Employing Bq. (21) the cuantity
4 may be shown to be

Ve aA) ep V2 OV
= e e oo 1 + n e . 2
q k (a)\ v,s (av) s [ (po ] (ap ,S] Q )

The coefficient of this expression is always positive since thermodynarmic
stability requires

95 5
(L% >0 and (&) <0 .
Ny, Vas

Further, the quantity

2 (av)

D)2 (59 = - M2
(pgD) P aq My

where M, is the Mach nunber of the shock with respect to the material behind
- and mtﬁ‘ respect to the equilibrium (constant A) sound speed. In the Spe—
‘cific problem treated in this paper Mp = « in the equilibrium mixed phase
and all interior critical points are saddles. The analysis for points on
the pure phase boundaries is analogous if the entropy production is assumed
to approach a maxi am smoothly. With this one finds S and S' =zie nodes
vhile W and W' are saddles.

The Eicenvalue folution

The key to the entire problem is the eigenvalue solution, the integral
curve from I which coincides with thc separatrix of the saddle point ¥ and
thus passes into point ¥, veering neither to the left nor to the right.
This happens only for a unique value of D, which we call B, hence the nare
"eigenvalue”. We call point W the eigenvalue point.

As D increases through I, we have the sequence shown in Fig. 5. Note
first that as D increases the R == 0 éocus shifts to the right so that point
W also moves to the right. For D < D, Fig. 5a, the separatrix from point W
intersects the A = 0 axis below point I, and the solution veers off‘to the
right, terminating at the lower strong point §'. For D = D, Fig. 5b, we have
the eigenvaiue solution: The separatrix passes through point I and becores
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Fig. 5. The problem as a function of the wave velpcity ».

the golution, which thus terminates in the upper weak point W. Firally, for
b > D, Fig. 5c, the separatrix intersects the ignition locus ‘0 the right of
point I, and the solution veers to the left of point W to terminate in the
upper strong point S. ‘

Double-Wave Solutions

In Fig. Sb there arz two integral curves leaving W, cne going to the
left and terminating at S, and one going to the right ard terminating in S'.
Now the integral curve frcm I to W is a detcnation terminating in the par-
tially reacted equilibrium state W. The integral curves leaving W represent
two possible following, steady waves which can propagate into state W. These
provagate at velocity D, the same as the ieading wave IW. The first wave
WS (proceeding to the left in the phase plane) is an endothewmic compression
wave carrying the system back to the higher pressure no-reaction state S.
The second wave Ws' is a deflagration, carrying the system to the lower-
pressure complete-reaction state S'.

_ Similar solutions in which the second wave (velocity D,) runs slower
than the first (velocity D) are also of interest. For these second waves
we must draw a_new v diggram, Fig. 6, since we now have two different ve-

locities D, = B and D, < D. Figure 6 shows the two possible second waves

. v A /
Fig. 6. The quasi-steady soluticns in p-v and v-) space.

~



of a particular velocity D,. Here the Rayleigh line for the first wave and
its extension to point S ate shown dashed. The PRayleigh line for the second

wave originates at point . It is
2
R =P - By~ (4P (4 =0,

the solid line in the figure. The second waves are qualitatively the same
as before, but they are weaker (point S is lowered and point S' is raised)
and they run slower.

These double-wave solutions consist of two waves, each steady in its
own frame, but moving at different velocities. There is, of course, no
single frame in which the entire configuration is steady. We shall call
such a configuration quasi-steady.

: Effect of L

The effect of the material constant L = kv is shown in Fig. 7. For the
system defined by p.,, = 1 GPa, V, = 1 m3/Mg, vy, = 1.4 m3/‘rfg, p* =
SGPa,andpg gGPa,we gsetgevalt.eoJ.L—gMgm 1tomar A
(the value o% A at p* when D = D) about onc-half. This gave'? 0.46, D =
2915 mys. With D fixed at this value we calculated integral curves for
valves of L ranging from 1 to 9 as shown. For this example the Rayleigh
line lies entirely below the complete reacticn locus in p-v so that the
R = 0 locus does not intersect A = 1 and points S’ and W' are absent.

1.0 T 1 T T 71 | p—
R=0
09} —
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MASS FRACTION
Fig. 7. 'The saddlepcint character of W.

In the following section the example calculated and displayed 4in Fig. 7
will be exarined rurerically. It is shown that the predictions of the fore-
going analysis are borne out. :



III. THE NUMERICAL EXPERIMENT

The finite difference"s3 calculation to be displayed ir this section
uses the equation of state and rate set out in Sec. I with the following
constants

p0 = 1 GPa
Voz 1.4 m3/Mg

p* = 5 GPa
k=1 ps!
Pig = 1.5 GPa

v="5GPa-is .

The problem consists of turning on & pressure boundary at time 0 at pressure
5 GPa. This is held for 1 ps and then released instantly to a value of 2
CPa. Figures 8 and 9 contain the essential numerical result. Figure 8 is
u oollecticn of four graphs of p vs %, u vs x, reaction extert vs x and p
vs x at time 4.5 ps. Figure 9 shows the developrent and quasi-steady nature
of the wave in a sequence ot p vs x snapshots covering the tiwe interval

0 to 5 ps. It is evident that the wave is self-supporting and quasi-steady.
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Fig. 8. Pressure, particle velocity, reaction extent, and density plotted
against position for the quasi-steady unsupported wave.

Fig. 9. Pressure distasnce snapshots at various times showing growth of the
quasi—steady wave.



Iv. DISCUSSION

In the foregoing analysis it l.:s been shown that the energy re-
leased during a phase transformation is capable of supporting detonation
and deflagration waves that are only quasi-steady throughout the reaction
zone. These results are general only to the extent that the simplifying
assunptions made in this study do not alter the qualitative features of
first-order phase transforming systems. For example, we have studied the
o~quartz stishovite transformation in a simplified case and the results
are quite similar to those obtained in this work. The question of general
applicability, however, remains open.

The single most important question remairing to be answered is
whether or not such waves as described in the preceding can exist. There
is some experimental evidence suggesting that they dc. recent work with
supersaturated water vapor by D. R. Forshey and W. A. Cowrtney being an
example.® Another possibly related phencmena is the "explosive" crystal-
lization of amorphous solids. Both arsenic and germanium have shown such
behavior.”’8
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