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CALCULATION OF PRtWPT F1SS1ON REUTRON SPECTRA

David G. Madland and J. Ravford Nix
Theoretical Division

Log Alarms Scientific Ubcmatory
University of California

Loa Alamo6, Sew Hexico 87545, MA

We presant a nex calculation of cha prompt fi~sion ntucron spectrum S(E) ●s a function
of both the fioaicming nucleus and its ●xcitation energy. The calculation, b#6ed upcm
standard nuclear-evaporation cheery , accounts ~or the physical ●ffects of (IJ the d!stribu-
ti@n of fiaaion-fra~mHrL re6idua] nuclear tempuraturc , and (2) th~ energy dep~ndenct C! the
croso section for tha inverse process of compeund-nucleus formation. Using ● residual nuclear
temperature. distribution ba6cd upon the Fermi-&a6 model, we haw perfcmned calrulsticns for
twc different ●baumptions concerning the cross acction fm compound-nucleus formation. use of
● constant croaa saccion leads to a closed expression fcr the neutron e-” !rgy spectrum h-llil~ UEW
of an energy-dependent cross saction, calculated with the optical mdel, yields a numerical
integration. Rtisulta obtained fcm the two assumptions a,grec well with CXperimenLal data
although there ia s preference for the ●nergy-dependent cross section calculation.

[RADIcJACTIVITY, FISSION Calculation of prompt fis610n neutron spectrum as function of fissioning

9Y~~~~f;n~~c~Hti~ ●nergy,
Nuclear-evaporation model, Fenrri-gas model. Comparisons to

Cf(af) amperimntal prapt neutron spectra. 1

Introduction

Nuclear reactor design ●nd other applications
require knosledge of the prompt fiaaion neutron
spectrum K(E) as ● function of botfr the fissioning
nucleus and its ●xcitation ●nerSy. The dependence
upcn fissioning nucleus snd incident neutron ●nergy
is particularly important in caaes where fission
neutron spectrum measurenenta do ❑ot sxiat or sre
not possible. We studv these dependencies by we of
standard nuclear-eva~ .ration theory to calculate the
neutrou ●nergy mpectrum in the fission-fragment
cent~r-of-msss system, ●nd then transform th~ae
results to the laboratory system.

The center-of-mass neutron ●nergy spectrum ia
obtiinedlty integrating the ❑uclear-evaporation
spectrum for fixed residual nuclear temperature
over the distribution function of this temperature.
The nuclear temperature is that of the residual
nucleus following ❑eutron emission from the ●vapor-
●tin~ fimaion fragment. The physical origins of the
reaidasl nuclear t~erature distribution art the
Initial distribution of fiaaion-fra~nt ●xcitation
waer~ and the subsequent fra~nt CmOlinS ●a ~u-
trtm ●rr emitted, Following the integration, the
remtltin~ center-of-maaB nmmron ●er~ spectrum la
tranmfomed to the laboratory system under the
aas~tion that the neutrons ●rm aittad isotropi-
caily frw the m~iw framenta.

Our calculations have been pcrforwd using a
triangular ●pproximation to the residual nuclsar
temperature di~tribution determined by Terrell n~
the basis of ●zperiment ●nd the Fermi-Sss ~del.
TWOdiffsrent ●saumptiona haw been tested for the
inverse process of cqouod-nuclsus forution. Uae
of ● constant compound-nucleu~ formation croaa
section yields ● cloacd s~rtasion for B(B) involv-
ing the sxponantial ints~ral ●nd the incomplete
ga- function, Uae of ●n ●nergy-dependent form-
●tion cross section, calculated with the optical
❑odel, yields a nrmerical doL~ble-inteBral ●xpras-
●ion. Capariaona to ●sperimnta] dats demonstrate
the iqortancs of including botb tbe distribution of
re~idual ❑uclear tqerature and the ●nergy-
dependent c~oumd-nuclJus fomation croaa a~ction.
The calculation ●nd rcaults obtainod usin~ the
conataat c~oumd-nuclsuc cross section ●re di
●cuased in the next section ●nd those obtained with

the emer~-depemdent cross ●mction im the section
following that. We then compare the results of both
calculations with ●xperimental data, Our coricluslons
are prerented in the finsl sectloni

Constant Compound-Nucleus Cross Section

The nuclear-rvaporstlnn spectrum corresporui~ng
to a fixed resld~al nuclear temperature? T is given
●pproximately !Jy

O(L) = c(T) Oc(c) L ●xp(-c/t) , (1)

uherr c is the center-of-mass ●nergy, o (C) is thr
cross section for the inverse process oEC
apound-nucleus formation, ●nd c(T) is the normaliza-
tion intesral defined such that O(L) is ❑ormslizrd
to unity whet integrated from zero LO infinity. All
distributions ia this paper are normalized in thi~
way, In th~ case of ● constant compound-nucleus
cross section u , ~henomalization integral c(T)
hza the value l}oCT .

~e initial diatributios of total
fission-fra~nt ●xcitation ●ntrgy la ●pproximately
Gauaaian in mhape, with a total ●verage value given
w

<E*>= <~r> + Bn + En - <EftOt>. (2)

H@re <E > ia thr ●verage ●nergy rehaae, B a,.d i
●re theraeparation ●nergy ●nd kin~~~r ●ner~y of !fk
neutron inducino fitsion, and ~Ef J i- the total
average fiaaion-fragment kinetic ●nergy. For apon-
tanaoua fiaaion both B ●nd En in Eq. (2) ●re zero.
In calculating <E z anfl B we uae the ●xperimenttJ
and systematic maises c~iled by Wapatra and Bos
wher~ ●vailable a~d othetwiae the droplet-~g~el mass
fomrla of Flyers. l!eaaured valuea of CE

i
> are

●lao used where ●vailable ●nd otherwise t ● fomula

<E ‘et> = C,(z2/#3) + c
f z’

vhert Z ●nd A ●re the ●tmmic number ●nd mass nrab~r
of the fiaaionint nucleus and c and c ●re deter-

A i“●ined by leaat-aquarea ●djuatme t to ● p~rmental
data, For low-szcitatioo fisIion w Uae (c ,C2)
walues o! (0513323 Hev, -11.64 HeV) determi~ed by
Uoiket al., and for hi~-excitation fission theb
value~(C1071 HsV, 22.2 tkV) obtained bj Viola.



lo ● study of ●xperiments] dittributiosss of
fission-fragmeot kinetic ●nergy ●nd neutron nmber
Terrell obtained the dictribut”on of kinetic ●nergy
that governs ❑eutron ●misniott. 5

This distribution
was transformed into the distribution P(T) of fisaion-
fragment residual nuclear temperature by use @f the
Fermi-gas model where tbe ●xcitation ●nergy E , tbe
nuclear temperat.lre T, and the nucl~ar level-density
parameter a ●re related by E = aT. Terrell

observed that if the resulting temperature distribu-
tion is approximated by the sha~ cutoff triangular
distribution

{

2TfT 2 , T~Tm
P(T) =

❑
(3)

o ,T>Tm

then the maximum temperature T is related to the
initial Lptal average fission -Ragment excitation
energy <E > by

Tm = (<E*>/a)+ .

For the present studies we use the approximation
stmarized byEqm. (3) ●nd (4) to calculate the
residual nuclear temperature distribution. “~. ‘Joe
the simple relationship

a = A/(l] !’leV) (5)

for the nuclear level-cienslty parameter, where A IS
Lhe ❑ass number of the fissioLling nucleus. It ❑ust
be noted LhaL a slight adjustment in T from the
value predicted by Eqs. (4) and (5) co~ld in prin-
ciple be requi :d.

The neutron ●nergy spectrum in the fission-
fragment center-of-mass system, $(r), is obtained by
integrating Eq. (1) over the temperature distribu-
tion giveti hy Eq. (3). This yields

O(L) ❑ ~ O(L) P(T) dT (6a)

= (2L/T~) E1(c/Tm) , (6b)

where E (x) ❑ ~ [exP(-u)/u]du is the ●xponential
integral. This ~esult has been obtained previously
by Kapcor ●t al. The ●verarne center-of-mass neu-
tron •nerg~<~ is the first moment of Eq. (6b) ,nd
has th~ value (4/3)Tm.

The transformation of the fission-fragment
center-nf-maaa neutron ●nergy spectrum O(C) to Che
laborato~ system, under the aanumption that th~
neutrons are ●mitted isotrvpically fi-om a fission
fragment moving with ●verage kinetic ●nergy per
nucleon Ef, is ●ccomplished by use of the general
result

\

(JE+JEf)2
N(E)=* l*@yld’‘

(JE-d’Ef)
(7)

2where E ia the laboratory neuttan ●nergy, Inserting
Eq. (6b) ●nd interchanging the order of integration,
we obtain fo: the laboratory prompt fi~aion neutron
●pectrum

N(E) 3/2 E= (l/~m) :U2 ]

+ Y (;, U2) - y (;, u

u? = (,%+ \~)2/Tm .

3’2El(ul)U2) - u,

)1 , ($J)

and
a-1

y(a, xj = -(~ u ●xp(-u)du

is tbe incomplete gamna function. The ❑ ean laboratory
neutron ●nergy <E> is the first momenL of Eq. [~1
and has the value Ef + (4/3)Tm.

Since there are two ?isslon fragments, ●ach
●mitting ~pproximately the same average number of
neutrons, but ●ach ❑oving with generally qu]te
different ●verage velocities, the transformation
given by Eq. (7) must be separately
fragment. This leads to

N(E] = ; [NL(E) + NH(E)] ,

where the subscripts refer to light
fragments, Equation (8) is used to
term of Eq. (9). The values of the

applied tu each

(9)

and heavy
evaluatt each
averaBe kinrLl~

●nergy per nucleon for each fragmenL Lran6formatiurJ
are given by

<AH> <EftOt>
EL .

<AL> <EftOt>

f <A > and EH=— —
LA f ‘%’ A ‘]0’

where <A > and <A J are the average integer frag cnt
b!atomic ❑ ss numbe s ● a obtained from l!nik et al. !!

The ❑ ean laboratory neutron energy for the spectrum
——

given by Eq. (9) is

(11!

The pr.mpt fission neutron ~g~;t::u:;~r:~ated
from Eq. (9J for the fiaaion of
0.53-tleV neutrons is shown in Fig. ~. Also show,
● re th~ Watt ●nd Hsxwelliass spectra calculated for
the same fissioning mystem by using temperature TW
●nd T , respectively, constructed to yield mean

Y●nerg ● a identical to that given by Eq. (11) for tbe
prement claculation. These temperat re haw tbe
valuea T = (8/9)T ●nd T =

!!
(1/3) (EttE$ + (8/9)T .

In Fig. ! the ■memcalcul ted mpectr ~ ●fe comparedm
by foming ratios to the present calculation. The
Watt spectrum is ●ccurate to within a few percent
for laboratory neutron ●nergies between O and about
7 fleV ●nd smaller than the pr?seot calculation for
higher ●nergies because the Watt temperature Tk IS
less than T . The tlaxwellian spectrum is a much
less ●ccura?e physical approximation, particularly
●t ●nergies greater than ●bout 5 F!eV where it is
most sensitive to the large value of T

u’.
which must

●ccount for the motion of the finsion agment6 ● s
well AS tht center-of-mass ●otion of tL< ●mitted
neutronn, Finally, the dependence of the present
calculation upon the fissioning nucle~s ●nd the
incident neutron ●nergy is illustrated $n Figs. 3
●nd 4. Figure 3 illumtratea how the high-energy
portion of the spectrum increasea ● s the charge of
the fissioning nucleus increases, for thermal-
neutron-induced fission. Figure 4 illustrates a
similar behavior of tbe bpectrum ● a the kinetic
●nergy of t~~5incident neutrun increasea, for the
fission of U.
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Fig. 1. Prompt fission neutron spectr in the
laboratory sys Le~ for the fiesion of ‘% inducrd by
0.53-tfeV neutrons. The solid curve gives the present
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0.499, ●nd !.016 HeV. %Ie mean laboratory ●nergy:
calculated from Eq. (11), is 2.138 HeV ●nd IS ●qual
to the mean ●nergy of both the calculated Uatt ●nd
Haxwellian spectra which ● re shon for comparison.
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Fig. 2. Ratio of Watt spectrum ●c.d the ffaxwellian
spectrum to the present spectrum, corresponding to
the curves sbowm in Fig. 1.

Fig. 3. Dependence of the prompt fission neutron
opectrum upon the fissioning nucleus, for themel-
neutrors-induced fimsion, AS calculatlsd fron Eqo. (8)
●nd (9),
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4. Dependence of the pr~mpt fission neutror.. . . .
spectrum upor, the kinetic •n~~~~ o! tne lncloenL
neutrnn, for the fission of L, ~s calc~lated from
Eqs, (8) and (9). The values of 1- ahd Ef, obtained
from Eq. (10), are held f~xed fcr ~11 incident neu-
tron ●nergies. Tbe 14-HeV spectrum is calculated
for first-chance fission only.

Energy-Dependent Compound-Nucleus Cross Section

In this section we calculate the prompt fission
neutron spectrum in the case of an ●nergy-dependenl
cross section for the inverse process of co~ound-
❑ucleus !onnation. We obtain this cross section

using the optical model. The calculation proceed?
●xactly ● s in the previous secLion ●xcept that the
integrations must no~ be performed by numerical
methods. The complete expression for the numerical
integration is obtained by combining Eqs. (1), (3),
●nd (6a) into Eq. (7) which yields the double
integral

1x c(T) ●ap(-&/T’) tlT dc (12)

where the normalization integral c(T) ia given by

c(T) = (C VUC(V) ●xp(-u/T)dvj-l .

Gausa-Laguere ●nd Gausm-Legendre quadrature of order
32 ● re used to ●valuate the three integrals appear~ng
in Eq. (12). We represent the optical-model compound-
nucleus formation cross section by ● cubic-apl~ne
fit to a calculated ●rray of 75 points ●xtending from
1 keV to 30 tfeV.

Following the numerical integration of Eq. (12)
for E valuea and ●nergy-dependent cross mectlona

bappro riate to ●ach fragment, we obtain th~ laboratory
prompt fiaaion neutron spectrum using Eq. (9). 235
Calculation were perfo.=ed for the fission of U
induced by 0.53-tfeV neutrons using three, well-known,
neutron-nucleus global optical-mndel Potentials.
These ● r the potential of tloldauer,
Hodsson~O

y~lmoo: ●nd
●nd Eecchett: ●nd Greenleea.

re-ult~ are ahowr in Fig. 5 where the ratioa of the
three calculation to the constant compound-nucleus
cross section calculation of Fig, 1 are plotted.
The results ● re mfiilar for the three poientimle,



namely, there in ●pproximately ● in ●nhancement st
● laboratory ●oergy of about 700 keV ●d ● gradual
decreafie ●bove 2 Htb’, relative to the constant cross
●ection calculation. These structure chantes ● re
due to the gradual decrease of a (c) with ●nergy and
the relative maxina ●nd ●inims o fee(c) below the
l-HeV region.

cap arisons with Experiment-l Data

We compare our remultc to ●xperimentally
detemined prompt fission neutron cpectr

935: ;;:;;e:
●nd 7 for,

‘esprc’ivfly’ ‘he fission of
by 9553-A~~ n’utrons #nd the spontaneous fission
of cf. Calculations using the constan: compound-
nucleus cross section ●gree reasonably well with
this data although they ● re slightly high in various
portions of the tail region. In both figures t
clear preference ●xistg for the energy-dependent
compound-nucleus cross section calculation shown for
the case of the Eilmore-Hodgson optical pstential.
This is ●violent in the high-energy region as weli
as in t~e l-HeV region where the data ●ppear to
support the ●xistence of ●mbanced ttructure. How-
●ver, our energy-dependent calculation is unable to
reproduce magnitude of thiS strmCture in ~
case of Cf(sf),

Conclusions

A neti calculation of the prompt fission neutron
spectrum has been presented. The calculation deroon-
strates the importance of accounting for the physical
●ffects of the residual nuclear temperature distribu-
tion ●nd the ●nergy-dependence of the cross section
for the inverse process of compound-nucleus forma-
tion. The calculation predicts clear dependencies
upon fissioning nuclear species ●nd incident neutron
energy. Fission ❑eutron specLra can now be calculated
in regions devoid of ●xperimental spectrum measure-
mrnls.
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Fig, 5. Ratio of the prompt fission neutron spectra
calculated with ●nergy-dependent c~ound-nucleus
cross sections to that calculated using the constant
compound-nucleu93~ross section shown in Fig. 1, for
the fission of U induced by 0.53-tfeV neutrons.
The dotted curve is for the potential of tloldauer,
the dashed curve is for the potential of Wilmore ●nd
Hod@son, and the dot-d-shed curve ~ for &he potential
of Becchettj and Greenlesfi. The E ●nd E values

[!● re the same for all four of the c lculat ens.
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Fig. 6. Pr~qgt fission neutron spectrum for the
fission of U induced by 0.53-HeV neutrons. The
dashed cucve gives tbe constant cross section calcula-
tion identical to that of Fig. 1 and the solid curve
depicts the ●nergy-dependent cross section calcula-
tion using the opticel potentiml of Witire ~Dd
Bodgeon. In both cases the same values of Ef ●nd EH
have been ●mployed. The ●xperimental data are thos i

Fig. 7. Prompt fission2~~;;ron ~Pectru ‘or ‘hr
spontaneous fission of The dashed curve

givea the const~nt firoes section calculation where
the values of E , Ef, ●nd T are; reSpectivrlyI
0.984, 0.553, ●id 1.209 Hefi The solid curve depi
the ●nergy-dependent cross section calculation usi

both cases the same values of Et % !%~~”b~:
tbe optical potential of Wilmor

employed. Theexperimentsl dat~aret~oseof
Boldernan, ● t ●l.— -.
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