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1. Introduction and Backaround from Mechanics.

We investigate an abstract class of bifurcation
problems from the essential spectrum of the asscciated
Frechet derivative. This class is a very general framework
for the theory of one-dimensional, steady profile traveling
shock wave solutions to a wide family of kinetic integro-
differentizl equations from non-equilibrium statistical
mechanics [1,2]. Such integro-differential equations usu-
ally admit the Navier-Stokes system of compressible gas dy-
namics or the M.H.D. systems in plasma dynamics as a singu-

=7 lar iimit [3-5)], and exhibit similar viscous shock layer
'solutions [6.7].

The mathematical methods associated to systems of

'Partial Differential Equations must however be replaced by
—-the following considerably more complex Bifurcation Theory
setting, first outlined in [8-10] for special cases. We

actually consider a hierarchy of bifurcation problems,
starting with a simple (solved) bifurcation problem from a
....Bimple eigenvalue. L

Let (u,f) ke a nonlinear mapping from a Banach

‘gpace X%, into a Banach space Y, parametrized by u:

(1.1) &(u,f) : R} X x » v.

Consider

(1.2) q‘(u,f) =0,

such that 1
47(u.0) 0, Vu€R",
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We admit all the necessary hypotheses to insure bifurcation

at y = pu*, from a simplec isolated eigenvalue of the Frechet

derivative
*
C?f(u ,0) .

Classical theory [l1l1l] insures that, in some neigh-
borhcod of (u*,0) in Rl X X, there exists a seccnd branch

wlu):
0

J

(v, w(u))
w(u®) = 0.

Thus, the primary hypothesis is bifurcation from a simple

(1.3)

eigenvalue for the operator . In concrecte casecs, the rel-
ative bifurcated and trivial ‘branches correspond to differ-
ent asymptotic steady states at the "tails" of the shock
wave (space-independent subsonic and supersonic states re-
. lated by Rankine-Hugoniot corditions; u = p* corresponds to
the transonic regime).

We shall actually investigate the more involved ex-

tended operator equation, for x € Rl, - o< X S 4+ o

——A) 3 - &(u.f) = 0, or

652(u.f) = 0, where

“(1.5) A(p) : RI X X » ¥

(1.4)

is_a linear operator from X into Y, parametrized by u € Rl.

f is now a vector valued function of x € Rl, - o € x S + o,
‘with values in the Banach space X. Ve may restrict our-
selves to spaces of absolutely continuous functions. If
~A{u)= I and x t, {1.5) reduces to an evolution equation

(1.6) af _ &’ i}
at (Uaf) = 0,

and one looks for solutions which are trajectories between

‘critical points of (l.1), i.e., the trivial solution and
the bifurcated solution Q(u). Such a problem (l.6) of traj-
ectories joining wo steady asymptotic states, has first
.been considered by B. Matkowsky, using matched asymptotic
expansions [12,13); it has been investigated in depth by
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. Iooss [141 ané@ X. Kirchgdssner [15], within the Navier-
Stokes context (see also [1l€)).

However, in (1.4-5), fundamental propcrties of the
physical context impose somewhat pathclogical conditions on
A(u): -

Hypothesis.

l) Zero belongs to the continuous spectrum of A(u),

Vu, i.e.:
R(A{p)) = Y and A(u)f = 0« £ = 0.
2) A(y) is neigher positive nor negative semi-defiriite, nor

"l 30es not exist, Vu.

4? (u*, 0)°” .

does not exist either at p = . In fact the properties of

is it accretive. As a corollary A(u)
Recall that

A(u) are such that an initial value problem for (1.4) is
ill-posed. Attempts to straightforwardly extend methods
.developed for (l.6) lead to erroneous results.

We still look for critical trajectories of (l1.4),
between the trivial solution and w(p). We investigate the
possible existence of a branch Q(u, x), solution of (1l.4)
‘such that: '

1) Q(H*. x)
2a) Q(u. -m)
2b) Q(u, +=)

0, but R(u , X) # 0, p # u's
0, Q(u, +=) = w(n); or '
0, 2y, -=) = w(y),

*
-for p close to u . In an appropriate Barach space of ab-
solutely continuous functions normalized at + =, the hypo-

thetical non-trivial branch Q(u, x) corresronds to bifur-
‘cation from the essential spectrum of:

A1 Zewo = am & - Gewo o -

*
"Specifically at u = p , zero is a limit point of the spec-

trum (a non-isolated eigenvalue in the essential spectrum).
The kernel is non-trivial, as it includes that of C;;(u*,O).
The non-isolated character stems from the individual essen-
(1.4) must be considered as a

.bona-fide problcem of bifurcation from the essential spec-
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trum. Finallv, we shall demonstrate the non-trivial result
"that Q(u, +=j = w(u) or Q(p, =-+) = u(u) (critical trajec-
tory). Since will will emphasize the mathematical tech-
niques, we briefly review the relevancc of (1.4) to fluid
and statistical rechanics.

Steady profile shock waves in compressible fluid
dynausics and magneco-hydrodynamics correspond tc ratiher dif-
ferent mathematical theories according to the level and com-
plexity of the fluid dynamical description. 1In order of
increasing complexity, one has the well known hierarchy of
equations, from the Euler level, to the compressible Navier-

- .8tokes and the Magneto-hydrodynamic (M.H.D.) systems; aad
finally to the Boltzmann equation and the Kinetic integro-
differential equations of collision-dominated plasmas.

While viscosity terms are explicit in macroscopic Navier-
Stoxes equations, they are implicit in kinetic equations,
where they result from explicit int ~rparticle collision
description on a microscopic scala. H. Grad [3-5) has care-
.fully investigated the singular limit of the Boltzmann
.equation (for neutral gases) to the Navier-Stokes system

".when the mean free path between interparticle collisions
(microscopic scale) becomes very small as compared to the
.macroscopic mean fiow scale. His estimates do not cover,

_.however, the shock case.

o Hyperbolic systems are a standard tool for discon-
tinuous shock solutions of Euler equations. Compressible
'Navier-Stokes systems exhibit viscous shock layers: in one
.dimension, Gilbard and Paolucci reduced them to a system of

—mnonlinear autonomous Ordinary Differential Equations {6,7],
.and demonstrated that the shock layer is the unique traj-
.ectory between a node and a saddle point. For M.H.D. sys-
.tems, such concepts have been extended by Conley and Smoller
[17], using advanced tools of Topological Dynamics and
'Global Analysis. Yet none of the above mathematical methods

- -apply to shock solutions of microscopic kinetic equations.

. .Worse, it is well known that Partial Differential Equations



approximations of the "13 morents" tvpe break dcwn at a
finite Mach number = 2 (non-existence of trajectories be-
tween critical points) [18]. The major problem is whether
one can still consider the latter kinetic eguations within
the framework of critical orbits ketween crit:ical states.

Moreover, there is plenty of expecrimertal and numer-
- ical evidence for important microsccpically oricinating
effects obscrved in shock layers ruled by integrocdifferen-
tial kinetic eyuations. Even in neutral gases, at small
Mach numbers of 1.2 (weak shocks), a 40% deviation has been
observed for the local ratio of the heat diffusion to the
viscosity coefficients in the shock, as compared to predic-
tions from the Navier-Stokes equation witnh Transport Coef-
ficients calculated by the time-honoured Chapman-Enskog
expansion [19]. This deviation is especially marked in the
"hot (subsonic) tail" of the shock [20]. Previous numerical
and experimental vesults have missed these important dis-
tortions by focusing only on the geometry of the sharp
transition profile [21]. In (collision-dominated) Plasmas,
small- zcale microinstatilities are as important as large
scale (M.H.D.) macroinstabilities, and account for the dif-
‘ficulties in obtaining stable equilibria configurations.

The simplest kinetic equation - the Boltzmann oper-
ator for neutral rarefied gases, has been wcrked out in
.previous publications [8-10]), and is summarized in the ap-
pendix. Technical estimates do, however, somewhat dissim-
‘ulate the conceptual simplicity of the hierarchy of Bifur-
-cation Problems.

Most of the pathology of the mathematical problem
.8tems from the peculiar properties of the operator

9
Ml

‘This operator is nevertheless universally present in kinetic
(statistical mechanics) equations. Usually called "the
streaming operator", it represents transfer of very high
velocity particles. The latter account for all daviations




observed from Navier-Stokes. Physically, by traveling al-
most instantaneously in opposite upstream and downstream
directions, these very high velocity particles causec a
strong coupliné betwecn the asymptotic "tails" of the shock.

2. The Mathematical Problem: Principal Results.

We first consider a classicai bifurcation sectting
for Problem I:

(2.1) o (;?(u, £) =0 o

where is a bounded nonlinear mapping from a Banach space

---- X into a Banach space Y (usually graph-norm spaces):
o~

(2.2) é?(u, 0) = 0, Yy

__m__é7is assumed to be analytic, both in £ and u:
(2.3.a) é?(u,f)== y L 47‘“’ (0; ()M .
n=1

.with the notations:

= (2.3.b) '""‘“‘"{?7‘1’ (0; £) =T, 7 T T
(2.3.¢) 1 /%) 0; £, £) =T (£, £) ,
ET V]
“JmmiiﬁdmmmWHﬂmﬂh_
n=2 """

;Hypothesis 0.
a) Vu, Tu is a Fredholm operator of index zero.
b) at u = u*, dim ker {Tu*} = 1 (zero is an isol-

rated eigenvalue of Tu*)'

c) &f'u(o;u*)h ¢ R (Tu*). Vh € ker {'ru.}.

:Conclusion. In some neighborhood of (u*, 0) in R1 X X,

.there exists a second branch w(u):

(2.4) éy(u. wp)) = 0 and w(p*) =0 .

. 'Hypothesis 0.d. The bifurcation is bilateral.

We now investigate Problem II. Let x € Rl, - o <

DR S + @
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~(2.5.a) A(u) g—f‘ - &7(11,1') = 0, equivalently

(2.5.b) J)?(u,f) = 0, where

(2.6) A() : R X Xy

is a bounded (in graph-norm) linecar mapping from X into Y.
is a nonlinear mapping acting on spaces of vector-valued
absolutely continuous functions:

(2.7) 4 : RY x acT(r! + x] » r! x ac[r! - v].

The space ACI is such that %5 € AC. Generally, the AC norms

are defined by:

4o
i : of
el = 7 03 e
® TX,Y
In fact, we restrict ourselves to spaces such that %; is

continuous. The abksolutely continuous functions are norm-
alized:

f+0as x+» -=o0r x » +» ,

Now, Vu, £ = 0 is still a trivial solution. The question
is whether there is still bifv:.ration for problem II, at

= u*, such that:

Q(u,x) € acT[rR! + x]

e e e QY %) = 0
Q(u,-=) = 0 or Q(u,+=) = 0 .

'In the affirmative, one might speculate that

9(u.+f=) = w(p) or Q(u,-=) = w(u)

‘This corresponds to bifurcation from the essential spectrum

-of:
. . _ 9 _
(2.8) ¢;z(u,0) = A(u) 3% Tu .

Specifically, at u = u*, zero is a non-isolated point of
the spectrum, with

ker {Tu*} C ker {4;;(u*:0)}

VW WIIAN-NNYD



A A(w) - T, is Fredholm of index zero, Vu.

To insure the bifurcation, and as suggested by statistical
mechanics, we need the further

Hypothesis 1. Zero belongs to the continuous spectrum of

the linear operator A{u), Vu:
R(A(W)) =Y and A(u)fE =0 £ =0

Corollary. (A(u))~' is unbounded for every u.
* -
Remark that, for v = i, T » 1 does not exist ecither.

Hypothesis lbis. A(u) is neither positive nor negative de-

finite, nor more generally accretive; moreover (A A(uy) -
'I‘u)-1 is not compact.

Thus cne cannot construct any equivalent norm.
Hypothesis 2. The generalized spectrum of the operator

. is included in two sectors, one in Re A < 0, the other in

Re A > 0, uniformly in u. (See Figure I). The generalized
spectrum [27] is the set of A such that (A A(u) - Tu)-1
not exist, or is unbkounded as a mapping from Y to X. Remark
that X # Y, and A(y) # I. - L _
From classical perturbation and invariance proper-

does

‘ties of Fredholm operators, we deduce from Hypotheses 0 and

l:

Theorem 2.1.
a) There exists a neighborhood of A = 0 in C, where

* -
b) There exists a neighborhood of (p ,0) in R1 X C,

 where (A A(y) - Tu)-l has a simple pole in ), corresponding

to a simple generalized eigenvalue Ao(u):

-

(2.9) Ao(u) A(u) ¢°(u) - 'ru ¢°(u) =0,

‘where Qo(u) € X is a generalized eigenfunction.]

Hypothesis 3. Ao(u) is real, and
Agu) >0 for u >y,
Ao(u) <0 fur u < p*.

This last hypcthesis implies that the lincarization (2.8)

VIV ALY WY
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_ From Hyootheses 0-3, we demonstrate the fundamental
Theorcm 2.2. There exists a neighborhood of (u+*,0) in
T .
R

of prcblem II, &G(u,x), unique up to a translation, with:

X AC[Rl - X}, where there exists another branch solution

a) u»yu* : Qu,-=) =0
Q(u, +=) “ (u)
b) u « u* : Q(u,+=) 0
Qu,=-=) = w(y) ,

and Q(u*, X) 0 at ¢ = p*. w(u) was defined in (2.4).

Specifically, Q(u, x) belongs to a closed subspace of
AC[R1 + X] such that, denoting by c® the stanrdard space of
Holder continuous functions of index a:

%e c®R! » x] n LR! - x)
2 N
3—3-5 Atwe € c*rY » w3 oLl - vy,
.4

(with appropriate asymptotic decay conditions at x = + =,
specified in later sections). Here, 0 < @ < 1.
As a word of caution, note that
Recall that (A(u))-1 does not exist, Vu.
The pathology introduced by the aperator A(u) re-

AX

specifically new methods for the bifurcation Problem II.
‘The general line is to attempt to rescue the time-honored
Lyapunov-Schmidt decomposition, at the followina cost:

l) The generalized Lyapunov-Schmidt decomposition
requires infinite dimensional projection operators. These
are constructed with the help of a generalized Operational
Calculus, characterized by non-commutativity properties.

2) The first generalized Lyapunov-Schmidt equation
is closely related to the essential spectrum and represents
the "fast particles contribution". It is solved with the
help of a generalized operator inverse; the latter is con-
structed with ceneralized holomorphic semi-groups which do
not admit any infinitesimal generator.

3) The second generalized Lyapunov-Schmidt cquation

0 does not exist.

1= s M. RO



is not a mapping on finite-dirmens:onal spccis Batdor it
1s a Functional=Differential couation 11 the el vartallae
x € Rl, = < x 7 +%, and qlobal (ron=local) o sharoetops
the initial valuc problem is ill=porcd. Moreover, the:
eguation in itsclf ig aagqain a hifurcation jrolioe tirom o
purely continuous spectrim,

We outline the matheratical teehnigue: in the oeoxt
sections. Full details will appcar irn [22] wusl eloewhers,

3. A Generalized Operatinonal Calenlne, aml the Poroeat e
of the Generalized Lyanunov=schrinat Ltat b,
Let
(3.1) R(A,u) = ()M A(n) -

T, -1
where 'ru is defincd as thn Frochot deori ative of 67“ 1)l
£ =0 (2.3.b).

In order to contitruct appropriate Preieet jons aneeges
1a?ed to the isnlated pole lo(u), one cannot ute the e laan=
ical operational calculus bhased on Dunford lutearal « ot

R(A,u), since the standurd remrolvent identiiy
R{A) = R(A'") = (A' = )) R(\) R(\')

is false (non commutataivity of A(u) and T"). It munt e
replaced by the following corrcct identiticm

(3.2.a) A R(N) = ARM") = (A' = 2) A RODY AR(OY
(3.2.Db) R(A) A= R(A')DA ~» (X' = X)) R(NA R(VY)A

Based on (3.2), a Generalised operational Calenlun te econ -
structed, characterized by anticommtativety properts s,
Proposition 3.1. Thoere oxiotys two tfamilioa of paoject e
operators:

Bav (Aotu)) 1 Y 2 ¥ (range)

Enp (Ao(u)) t X * X (domain)

associated to the qeneralised otaeavalue l“(n), Bitech thatg

swuu) Aw) = A(n) I:“r(\")
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Following the agcneral trend of the Lyapunov-Schmidt
method, we dccompose the solution f in the space X as:

(3.4.a) £ = Eap (w) £ + (1 - Eap (w)) £
(3.4.b) = c(x) Go (u) + w(u, x), where
(3.4.c) c(x) %o (u) = Eap (v) £,
(3.4.4) wlu, x) = (1 - Eg5 (W) £,

and Go(u) € X is the gencralized eigenfunction associated
to Ao(u) and defined in (2.9). 1In fact:
L

= 1 - -
w(u, x) € AC [R (I Eap)x]

c(x) € A cY (R

Applying the projection (I - Eav (v)) to Problem II (2.5),
uging che anticommutation properties of Proposition (3.1)
and thc¢ reduction properties of Corollary (3.3), we obtain
the following gencralized Lyapunov-Schmidt equations, which
we shall call L1 and L2:

3.5 (Ll)

A(u) %¥ - Tu wa=(I-E,, (u)) /4/(u; c(x)Go + W)
where /V. Acfined in (2.3.d) is the remainder of the anal-
ytic cxpansion of (u,f) at £ = 0, excluding the first
order Frethet derivative Tu' but including the second order
dorivative T“(f,f).

S8hould the major problem of constructinc a pseudo-
inverse for the left haad side of (3.5) be solved, the im-
plicit function theorem in Banach Spaces would yield w as a
funclional of c(x):

(3.6)  w tex)) ¢ act(rY) » ac (rR! » (1 - Eyp) X1 -

To obtain the sccond Lyapunov-Schmidt equition, we
apply the projection Eav(u) to (2.35), use the anticommut-
ation propertica of Proposition (3.1) and assume the result
(3.6)., To simnplify L2, we also nead
Theorem _3.4.  For a simple isolated eigenvalue Ao (W), there

s sMomABNW W T



exists n(u) € Y* and y(n) € x*, such that:
A n = v,
Egp (M) £ = €,(6) €0lu), £3/<h(1),3 (w)>,
B,y (W) £ = AG) ¢ () <n(), £3/<p(u),8 (w)> .|
With the previous result, L2 simplifies as:

(L2) =00 clxi - k() (clx))?
-(3.7.2) --Q,4Qc(x),w}, -
where . | _
K(u) = = <n(u),T (¢_,0 )> %
(3.7.b) Wwro ol Y

k(u) # 0, k(u) = 0(1),
(3.8.a) J/{c(x).w} = <n(uj, /V(u; c(x)2, + Wi ¥

Y
and the normalization <¢(u).$°(u)>x* = 1. (/‘/ and I' have
-been defined in (2.3.c-d)).

A prioricyélis a mapping on c(x) and w:
(3.8.b) H: act (rR'] x ac (Rl » x] » ac (R} ;

T en(u), T (e(x)¢ g ie(x)p ) >y

but with the implicit functional w{c({x)} in (3.6):
H ¢ act 1’ + ac wl,

where w{c} depends globally upon c(x), =~ € x € +=, So in

fact, L2 (3.7) is a functional differential equaticn for

c(x), global in nature. The initial value problem is a

nonsense, as initial data ouuht to be specified Vx, == <

X € +»! We remark that the differential part (including

the quadratic term) of the functional differential equation
L2 is in fact Landau's Equaticon [24]. The exact corrective

term to Landau's model is, interestingly enough, neither
polynomial, nor differential, but a non-local mapping .
We now define exactly the functional sukspaces é?;,

ég;, and é;; abpropriate for the investigation of Ll1-L2:

MDY . Wi



' (3.9)

c(x) € ég if:

1
.S; € ACIR' + (1-E, )X]

gy c AcIR! - (1-E )Y]
f € gx if:
a) 2% ¢ capgl . (1-E,)X] Ll(r! » (1-E,1X]
b) ;% Af € c"[r! - (I-Eap)x] ntr! » (I-F.ap)X]
52

of o 1
c) exp(-zxox) % and exp( 2A°x) ;;5 Af € L [R”] for x<0

(asymptotic decay at x = =-w)
2
_af ) w ]
d) exp((A° E)x)ax and exp((Ao-c)x);;I Af €L [R”) for x>0

(asymptotic decay at x = +=; € > 0).

f € é? if the c%?ditions a, ¢, 4, (excluding b and any
conditions for —37 Af) arc satisfied, with X replaced by Y,

! X" .a
and Eap by Eav' Cc
0 <a <1l.

is the usual HOlder space of index o,

C
a) §£ec®rln R} ana

b) exp(-A_x) %; e L°{rl], for x < o0,

) exp((A -e)x) % € L”IRY), for x > 0.
c(x) € cSLI ifa

a) c(x) € :SL and

b) ﬁ-:- e S.

c

4. Methods of Solution for the Lyapunov-Schmidt and the

Funciional Differcntial Ecuations.
. Consider the first Lyapunov equation (3.5) as a
mapping :

b g
(4.1.a) fv(c.w) : é?c X é?x + é?y ’

(4.1.b) A,0 = o,




Aic,wy = Al %; - T v

(4.1.c) -1k, ) Mo et G+ wi =0

Theorem 4.1. %7w(0,0) is an isomorphism Qf 45; ont? é?y.l
2
Corollary 4.2. In some neighborhood of (0,0) in c X é;x,

there exists a unique continuous mapping:

I
wic(w),ul} Sc - gx
such that:
/Q(C(x), wic(x),u}) = 0.]

~-Theorem 4.1 hinges upon the existence of %QW(G,O)_I; let:
= f ¢ =
(4.2) A 0,008 = am - 1= s

To solve for f in (4.2), we construct generalized
holomorphiz semi-greoups. The mapping /jw(0,0) acts from
(I-Eap)x into (I-EaV)YU cf. the reduction diagram (3.3). 1In
particular the reduced operator AA(u) - Tu is invertible in
a neighborhood of A, (u) (deletion of the eigenvalue A (uj).
The essential spectrum (cf. figure I) remains only, which
allows for the definition of Dunford Path Integrals along
it. Let 'Y, I'" be such paths along respectively the left
and right side essential spectra (cf. figure I).

Proposition 4.3. If S(x) € é?v in (4.2), then the solution
f e Sx of (4.2) is gi\;‘en by:
(4.3) £(x) =[ U+(x-y) [Sly)=S(x)] dy

1

X _ -
+f U (x-y) [S(y)-S(x)] dy - 'I‘u S(x),

+ o
(T;l is the pseudo-inverse, which now does exist
*

even at u = u )3

1

(4.4) vti(x) = !%I'Jr exx(kh(u)-T axr;

)=
re,r- s
+ 1
el = ot |x] ~ 03
. x i b b
although U- ar: not semi-groups, A U" and U°A are:

. (4.5) A vi(x+y) = & Ut(x) A US(Y),
for x > 0, y > 0or x<0,yc« 0;

IO SRPP YRV P T W P TOrS



*
(4.6) OAU” ¢ _ T, vl

X
(4.7) au*A t
. axf=-U'!I!'uf;but:
(4.8) e u*ll =06, Ixl »o,

and the holomorphic semi-groups (4.5) have no infinitesimal
generator. |

A technical hypothesis needed for Proposition (4.1),
and suggested by statistical mechanics is:
Hypothesis 4. Let R(A,u) = (AA(u) - T)"'; then as [A| » =,

within the resolvent set:

(4.a) | REA, W) || = O(Tj%a), 0 <a <l

or:
(4.b) [ R(A.u)[l = 0(1).

Proof of Proposition (4.1) is more complicated with
hypothesis 4.b. Specifically, A u*(o*) exist in the case
of hypothesis 4.a (althcugh limits are projections, but not
the identity!), but are undefined under hypothesis 4.b.

We now investigate the functional differential eg-

uvation L2 (3.7-8): I
L2 : é?c -+ é§=

= A e(x) - ki (e(x))?
+ cﬂﬁu, c, wicl).

Vu, ¢ £ 0 is a trivial soluticn (as cA/is multilinear in ¢
and w{cl). (4.9) is again a full-sized bifurcation problem
from a continuous spectrum, at u = u"

(4.9) dc
dx

Ao(u') =0, k(p") = 0(1), u = u*.

At u = u', the Frethet derivative of (4.9) reduées to %%.

The latter's spcctrum, in spaces of absolutely continuous
functions, is a purcly continuous spectrum containing the

full left or right half complex plane, including the




imaginary axis (depending on normalization of the AC spaces).

New techniques are necded for (4.9). We first make

the following remarks; in a neighborhood of uy = u*:

A (n) = o(u-u*) ,
lle(x) || = o(u=n*) ,
(4.10) £ =c(x) ¢ + o(u-u*)2

~
~

A_(u) exp(r_x)
O o .2
k(u) exp(:\ox).,.]_ 'O(U) + O(u=u") ;

the lowest order Landau differential operator approximation
(4.10) is accurate only to O(u-u*). The exact (:,c,w)
contribution appears at O(u-u')2 and corresponds to devia-
tions from the "Navier-Stokes" solution (so called since
the Landau equation (4.9) without the functional cA/ admits
the universal hyperbolic tangent Taylor weak shock profile
for one-dimensional Navier-Stokes systems).

The key concept is to consider (4.9) not as a bi-
furcation from c(x) = 0, but as a branching from the Landau-

Taylor profile

Ao(u) exp(xox) .
(4.11) £ = “k(u) 1+exp(A°x) ¢°(u) *

To do so, we introduce a change of function, a change of
variable and a change of parameter in (4.9):

(4.12.a) T = Ao(u) * y = y(r),
(4.12.b) y=1tx = on '

_ 1 eY
(4.12.¢c) c(x) =1 m——eY.p]_ (1+0(y)) -«

L2 becomes a functional-differential ecquation for 0(y), on
- € y € +», parametrized by T:

o~

b4 -

(4.13.2) 98 . & o - - eY 92, : k(1) (1se”Y) aAI{G}.
dy e¥+1 e’+1

(4.13.b) 6 0Oat vt = 0

lot L3 be the operator defined by (4.13), then:
2
(4.13.c) B: ST+ 8
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~o
a’/(O(y)) is identical to al/(c(x)) (3.8), after substitu-
tion of (4.12.a-b-c).

Whereas we look for 8@ - 0 as 7 » 0% (branching from
Landau's solution (4.11)), the former trivial branch c(x):=0
now becomes 2(y):-1l, ¥1v. We have effectively achieved sep-
aration of branches. This is confirmed by:

Theorcem 4.4. Let a!(?) be the Frechet derivative of L3 at
0 = 0:

y
14.14) o Loy =R, =
Y e¥+1

then .[_1 is a bounded mapping from Sc onto SCI, V: > 0.
Remark: J?-l is an integral operator on -» € y € +», which
is in general unbounded on spaces of integrable functions.
This required a much more complicated theory in [10]. If
we do take into account the asymptotic decay conditions

included in &, I (3.9):
C [«
2
de da“e «, 1
exp(-y) =— and exp(-y) €L (R)
dy ay?
. for y € 0, and . - .
2
exp((l-¢c)y) g% and exp((l-e)y) 93 € L™[r)]
dy

for y » 0, € > 0, then .[_1 is bounded from Sc onto ch.
These decay conditions are, of course, suggested by the
behavior of the derivatives of Landau's solution (4.11) at
y = i, To conclude:

Corollary 4.5. 1In some neighborhood of t = @ in Rl, there

exists a unique mapping

T+ 0{1}
Rl"glo
c
such that 06{t} is the unique solution of (4.13) with
e{0} = o.|
To demonstrate the corollary, we use the implicit
function theorem applied to (4i13.n) considered as a map-

ping from: Rl X gc - Sc .
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Finally from %{1}, we reconstruct
exp(TX)

= X -
(1) = g Texprry (1*ELTH

£ = c(1) Go(r) + wic(t)} .

The solution is actually unique up to a translation, since
we have chosen an arbitrary (normalized) origin is obtain-
ing the Landau profile (4.11) solution of:

(4.15) C g w e -k ten? .

The asymptotic behavior of f at x = 2« shows that
deviations from the "Navier-Stokes" component c(x), causcd
by w{c}, appear 0(12) in the "hot tail" of the shccrk.
Roughly speaking, c(y) decays O(exp(y)) as y = ==, whereas
w(y) decays O(exp(2y)). As y » +», both c(y) and w(y) decay
O(exp-(l-e)y).

To conclude, we remark that the concept of modified
Landau's equation has also been introduced by N. N. Janenko
[25,26] : he has added higher order polynomial terms in c(x)

- €0 (4.15), in order to study the transition to turbulence

in incompressible Navier-Stokes flows. Here, at the kinetic
level, we have a corrective glohal functional operator aA(
A natural extension of Problems I-II is:

of of - .
(4.16) 3¢ t AW 3% a(u.f) 0;
in this respect, we have the
Conjecture. For u < u*, 1 < 0, the second branch Q(u,x) is
unstable in time; it is stable for u > u*, t > 0. (This
corresponds to well-known Entrcpy Conditions across the

shock for Navier-Stokes). Also morc general wave solutions
of (4.16) may be investigated, including Burgers-like waves.
Work is in progress on these questions.

APPENDIX

We summarize technical results of [8-10]. The
Boltzmann equation [27) rules the evolution of a local vel-
ocity particle distribution F(&), with thec lecal velocity
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vector

(A1) ¢ = (s €50 €3)7 € = ¢ .
The space-indcpendent Boltzmann operator:
(A.2) Q[F, F] =0

is a bilinear integral operator in Lz(R3) It acts only
upon the velocity vector c. Classically:

(A.3) QIF, F] = 0 F = w(u, &) ,
where w is a maxwellian (gaussian) distribution:
2 2 2
(cl-u) +c, " +cy )

-> - o -
wlu, €) = 3rRry3/7 ©XP 2RT

where p is the density, u the mean velocity (directed along
the x-axis) and T the temperature. These macroscopic quan-
tities which appear in the Navier-Stokes eguations, are
simply related to weighted averages of F(S, x):

p = fr(?:.x)dé. pu = fc1 F(@,x)aé ,
3pRT-= Jf(é-ﬁ)z F(¢,x)de ,
where R is the perfect gas constant.

In one space dimeneion, the space dependent Boltz-
mann equation for the velocity distribution

F(cl' C, X, t)' c = IEI ’

X E€E R, = & x € 42 ,
becomes:

oF oF
(A.5) 3t + clﬁ Q[F,F])

The second term on the left side is the one dimensional
version of the ubiquitous "streamiug operator”

-
c. vx F .
We look for traveling waves of the type

F(Clo C, X + ut)

-k wRmn cSwe



A viscous shock is defined as a nonlincar trans-

" ition profile between two asymptotic (x = o) Maxwellians:
one with mean velocity e subsonic; the other with 4~ super-
sonic. It must be noted that the same Rankine-Hugoniot
conditions as for Navier-Stoles uniquely reclate u+, c+, T+
and u, p, T . After renormaiization [9,10]:

of _ -

where I.u is the Frechet derivative of Q, and ru, an approp-
rlate second order derivative; together with the normal-
ization:

(AI7) f(c1' C, -.) = 0 or f(cl' c' +°) = 0 [}

(A.6) 1is investigated in a space AC of absolutely contin-
uous functions: -

1 1 1
AC[R™ =+ X] ~» L;oc[R Y]

(normalized at *=, cf. (A.7)) and X,Y are appropriate graph-
norm Banach spaces defined uniquely on the velocity variable.
The following is then demonstrated:

Proposition A.l1. 1In appropriate spaces X,Y (implicitly
incorporating the Rankine-Hugoniot conditions},

(A.2bis) Qf,f] = Lu £ + Pu[f,f]

is a bifurcation problem from a simple isolated eigenvalue
of L+ at the critical sonic value of w = u*. The two
branches correspond to a subsonic and a supersonic Maxwell-
ian, identical at u = u*.|

Looking for a critical trajectory joining the two
asymptotic bifurcated subsonic and supersonic rmaxwellians,
ve consider (A.6) as a bifurcation problem from the essen-
tial spectrum, superimposed upon the simple bifurcation
problem (A.2bis). In (A.6), £ = 0 is indeed a trivial sol-
ution VYu. The essential spectrum is evident from the
identification:

(A.8) A(y) = (u+c1)I ’



which docs not possess an inverse in LZ(R3), since

- Q c1 Q 4+

(cf. c, = -¢). The hypothesis required by the abstract
setting are campleted through the:
Proposition A.2. The gecneralized eigenvalue prcblem

A(u+c1)¢ - Lu¢ =0

has a real, simple, 1solated eigenvalue Ao(u), in the
spaces X and Y:

A () <0, u<yt
A (w20, >t

Similar results were obtained by H. Weyl in 1949
[28), for the Navier-Stokes equations linearized about sub-
or supersonic equilibria. Finally, the "streaming operator"
A(u) defined in (A.8), though responsible for the pathology
of the problem, is universally present in kinetic (stat-
istical mechanics) equations. It represents transfer of
very high velocity particles, anéd generates the essential
spectrum of kinetic oparators.
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